Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1574-8871
  • E-ISSN: 1876-1038

Abstract

Gout, an inflammatory arthritis form, is renowned for its historical association with affluence. This review delves into its pathophysiology, exploring hyperuricemia, urate crystal formation, and the ensuing inflammatory response. The epidemiology of gout is examined, focusing on its rising prevalence and impact on public health. In this study, progress in gout management is discussed, involving pharmacological interventions, dietary changes, and emerging therapies. Genetic predisposition and triggers like alcohol, temperature, and diet are highlighted in this study. Prevention strategies, including serum urate-lowering therapy and lifestyle modifications, aim to reduce recurrent flares and complications. The inflammatory response in acute gout attacks is elucidated, involving immune cells, cytokines, and the NLRP3 inflammasome. Chronic gout manifestations, such as gouty tophus formation, are explored for their destructive impact on surrounding tissues. Recent advancements in gout treatment, including nanotherapies and novel compounds, are discussed, along with promising urate-lowering drugs. Cutting-edge research on zinc ferrite nanoparticles, dimethyl fumarate, and myricetin/nobiletin hybrids addresses oxidative stress and inflammation in gout. Additionally, the potential therapeutic role of methanolic leaf extract of Euphorbia milii and tip-loaded CLC-Soluplus® MAPs is explored as natural and transdermal alternatives for gout management. The review also covers the development status of new urate-lowering drugs, providing insights into promising candidates and their mechanisms. Patents on gout and recent diagnostic advancements using techniques like laser confocal micro Raman spectrometer, FTIR, and THz-TDS offer a more accurate approach for gout stone analysis, enabling early detection and targeted treatment.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871308473240926044126
2024-10-08
2025-07-11
Loading full text...

Full text loading...

References

  1. DalbethN. ChoiH.K. JoostenL.A.B. KhannaP.P. MatsuoH. Perez-RuizF. StampL.K. Gout.Nat. Rev. Dis. Primers2019516910.1038/s41572‑019‑0115‑y31558729
    [Google Scholar]
  2. MajorT.J. DalbethN. StahlE.A. MerrimanT.R. An update on the genetics of hyperuricaemia and gout.Nat. Rev. Rheumatol.201814634135310.1038/s41584‑018‑0004‑x29740155
    [Google Scholar]
  3. EmmersonB.T. The management of gout.N. Engl. J. Med.1996334744545110.1056/NEJM1996021533407078552148
    [Google Scholar]
  4. RagabG. ElshahalyM. BardinT. Gout: An old disease in new perspective – A review.J. Adv. Res.20178549551110.1016/j.jare.2017.04.00828748116
    [Google Scholar]
  5. PascualE. SiveraF. Time required for disappearance of urate crystals from synovial fluid after successful hypouricaemic treatment relates to the duration of gout.Ann. Rheum. Dis.20076681056105810.1136/ard.2006.06036817223663
    [Google Scholar]
  6. SinghJ.A. Challenges faced by patients in gout treatment: a qualitative study.J. Clin. Rheumatol.201420317217410.1097/RHU.000000000000009124662562
    [Google Scholar]
  7. SinghJA GaffoA Gout epidemiology and comorbidities.Sem. Arthr. Rheumat.2020503Suppl.S11S1610.1016/j.semarthrit.2020.04.008
    [Google Scholar]
  8. ChopraA. PatilJ. BillempellyV. RelwaniJ. TandleH.S. WHO-ILAR COPCORD Study. WHO International League of Associations from Rheumatology Community Oriented Program from Control of Rheumatic Diseases Prevalence of rheumatic diseases in a rural population in western India: a WHO-ILAR COPCORD Study.J. Assoc. Physicians India20014924024611225138
    [Google Scholar]
  9. MatthewA. DandaD. Clinical profile of young onset gout in India.J Ind Rheum Assoc.2004131218
    [Google Scholar]
  10. MisraA. KhuranaL. Obesity and the metabolic syndrome in developing countries.J. Clin. Endocrinol. Metab.20089311_supplement_1Suppl. 1s9s3010.1210/jc.2008‑159518987276
    [Google Scholar]
  11. SalehM.I. ParisaN. KamaluddinM.T. SinagaE. The inflammation process of gout arthritis and its treatment.J. Adv. Pharm. Technol. Res.202314316617010.4103/japtr.japtr_144_2337691999
    [Google Scholar]
  12. AhmedS. ShaffiqueS. AsifH.M. HussainG. AhmadK. Pathophysiology, clinical consequences, epidemiology and treatment of hyperurecemic gout.RADS J.Pharm. Pharmaceut. Sci.2018618894
    [Google Scholar]
  13. Perez-RuizF. CalabozoM. ErauskinG.G. RuibalA. Herrero-BeitesA.M. Renal underexcretion of uric acid is present in patients with apparent high urinary uric acid output.Arthritis Care Res.200247661061310.1002/art.1079212522834
    [Google Scholar]
  14. MarangellaM. Uric acid elimination in the urine. Pathophysiological implications.Contrib. Nephrol.2005147132148
    [Google Scholar]
  15. KuwabaraM. KodamaT. AeR. KanbayM. Andres-HernandoA. BorghiC. HisatomeI. LanaspaM.A. Update in uric acid, hypertension, and cardiovascular diseases.Hypertens. Res.20234671714172610.1038/s41440‑023‑01273‑337072573
    [Google Scholar]
  16. HyndmanD. LiuS. MinerJ.N. Urate handling in the human body.Curr. Rheumatol. Rep.20161863410.1007/s11926‑016‑0587‑727105641
    [Google Scholar]
  17. MartilloM.A. NazzalL. CrittendenD.B. The crystallization of monosodium urate.Curr. Rheumatol. Rep.201416240010.1007/s11926‑013‑0400‑924357445
    [Google Scholar]
  18. JeongY.J. ParkS. YonD.K. LeeS.W. TizaouiK. KoyanagiA. JacobL. KostevK. DragiotiE. RaduaJ. StickleyA. OhH. ShinJ.I. SmithL. Global burden of gout in 1990–2019: A systematic analysis of the Global Burden of Disease study 2019.Eur. J. Clin. Invest.2023534e1393710.1111/eci.1393736511834
    [Google Scholar]
  19. MartinonF. PétrilliV. MayorA. TardivelA. TschoppJ. Gout-associated uric acid crystals activate the NALP3 inflammasome.Nature2006440708123724110.1038/nature0451616407889
    [Google Scholar]
  20. LiotéF. PrudhommeauxF. SchiltzC. ChampyR. HerbelinA. Ortiz-BravoE. BardinT. Inhibition and prevention of monosodium urate monohydrate crystal–induced acute inflammation in vivo by transforming growth factor β1.Arthritis Rheum.19963971192119810.1002/art.17803907188670330
    [Google Scholar]
  21. YagnikD.R. EvansB.J. FloreyO. MasonJ.C. LandisR.C. HaskardD.O. Macrophage release of transforming growth factor β1 during resolution of monosodium urate monohydrate crystal–induced inflammation.Arthritis Rheum.20045072273228010.1002/art.2031715248227
    [Google Scholar]
  22. MartinonF. MayorA. TschoppJ. The inflammasomes: guardians of the body.Annu. Rev. Immunol.200927122926510.1146/annurev.immunol.021908.13271519302040
    [Google Scholar]
  23. DinarelloC.A. Immunological and inflammatory functions of the interleukin-1 family.Annu. Rev. Immunol.200927151955010.1146/annurev.immunol.021908.13261219302047
    [Google Scholar]
  24. WessigA.K. HoffmeisterL. KlingbergA. AlbertsA. PichA. BrandK. WitteT. NeumannK. Natural antibodies and CRP drive anaphylatoxin production by urate crystals.Sci. Rep.2022121448310.1038/s41598‑022‑08311‑z35296708
    [Google Scholar]
  25. CabăuG. CrișanT.O. KlückV. PoppR.A. JoostenL.A.B. Urate‐induced immune programming: Consequences for gouty arthritis and hyperuricemia.Immunol. Rev.202029419210510.1111/imr.1283331853991
    [Google Scholar]
  26. CaoY. Icariin alleviates MSU-induced rat GA models through NF-κB/NALP3 pathway.Cell Biochem. Funct.202139335736610.1002/cbf.359833135192
    [Google Scholar]
  27. RileyM LeongM. Rheumatic and Infectious Causes of Knee Pain.A Case-Based Approach to Knee Pain, A Pocket Guide to Pathology, Diagnosis and ManagementChamSpringer2023
    [Google Scholar]
  28. MikhalchikE.V. IvanovV.A. BorodinaI.V. PobegutsO.V. SmirnovI.P. GorudkoI.V. GrigorievaD.V. BoychenkoO.P. MoskaletsA.P. KlinovD.V. PanasenkoO.M. FilatovaL.Y. KirzhanovaE.A. BalabushevichN.G. Neutrophil activation by mineral microparticles coated with methylglyoxal-glycated albumin.Int. J. Mol. Sci.20222314784010.3390/ijms2314784035887188
    [Google Scholar]
  29. DaoussisD. BogdanosD.P. DimitroulasT. SakkasL. AndonopoulosA.P. Adrenocorticotropic hormone: an effective “natural” biologic therapy for acute gout?Rheumatol. Int.202040121941194710.1007/s00296‑020‑04659‑532715340
    [Google Scholar]
  30. DaoussisD. KordasP. VarelasG. MichalakiM. OnoufriouA. MamaliI. IliopoulosG. MelissaropoulosK. NtelisK. VelissarisD. TzimasG. GeorgiouP. VamvakopoulouS. PaliogianniF. AndonopoulosA.P. GeorgopoulosN. ACTH vs steroids for the treatment of acute gout in hospitalized patients: a randomized, open label, comparative study.Rheumatol. Int.202242694995810.1007/s00296‑022‑05128‑x35445840
    [Google Scholar]
  31. SolimanE. ElshazlyS.M. ShewaikhS.M. El-shaarawyF. Reno- and hepato-protective effect of allopurinol after renal ischemia/reperfusion injury: Crosstalk between xanthine oxidase and peroxisome proliferator-activated receptor gamma signaling.Food Chem. Toxicol.202317811386810.1016/j.fct.2023.11386837269893
    [Google Scholar]
  32. ZhaoJ. WeiK. JiangP. ChangC. XuL. XuL. ShiY. GuoS. XueY. HeD. Inflammatory response to regulated cell death in gout and its functional implications.Front. Immunol.20221388830610.3389/fimmu.2022.88830635464445
    [Google Scholar]
  33. BrostjanC. OehlerR. The role of neutrophil death in chronic inflammation and cancer.Cell Death Discov.2020612610.1038/s41420‑020‑0255‑632351713
    [Google Scholar]
  34. SchweyerS. HemmerleinB. RadzunH.J. FayyaziA. Continuous recruitment, co-expression of tumour necrosis factor-α and matrix metalloproteinases, and apoptosis of macrophages in gout tophi.Virchows Arch.2000437553453910.1007/s00428000028211147175
    [Google Scholar]
  35. HasselbacherP. McMillanR.M. VaterC.A. HahnJ. HarrisE.D.Jr Stimulation of secretion of collagenase and prostaglandin E2 by synovial fibroblasts in response to crystals of monosodium urate monohydrate: a model for joint destruction in gout.Trans. Assoc. Am. Physicians1981942432526283706
    [Google Scholar]
  36. GutowskiŁ. KanikowskiS. FormanowiczD. Mast cell involvement in the pathogenesis of selected musculoskeletal diseases.Life (Basel)2023138169010.3390/life1308169037629547
    [Google Scholar]
  37. Nieradko-IwanickaB. The role of alcohol consumption in pathogenesis of gout.Crit. Rev. Food Sci. Nutr.202262257129713710.1080/10408398.2021.191192833866874
    [Google Scholar]
  38. MengY. QiZ. JiangH. LiZ. XiaoQ. XiaZ. YuM. RuanX. HeG. JiangX. Restrained MSUM crystallization via hydrogel composited membrane based platform for gout prevention and control.Chem. Eng. J.202245013815510.1016/j.cej.2022.138155
    [Google Scholar]
  39. LiuY. ChengR. OuC. ZhangX. FuT. Acetate: an alcohol metabolite as a growth promoter of pathological crystallization of gout.Cryst. Growth Des.20202052842284610.1021/acs.cgd.9b01518
    [Google Scholar]
  40. LiuY.R. TantohD.M. LinC.C. HsiaoC.H. LiawY.P. Risk of gout among Taiwanese adults with ALDH-2 rs671 polymorphism according to BMI and alcohol intake.Arthritis Res. Ther.202123111510.1186/s13075‑021‑02497‑933858492
    [Google Scholar]
  41. AhnH. LeeG. LeeG.S. Lower temperatures exacerbate NLRP3 inflammasome activation by promoting monosodium urate crystallization, causing gout.Cells2021108191910.3390/cells1008191934440688
    [Google Scholar]
  42. ZhangQ.B. ZhuD. DaiF. HuangY.Q. ZhengJ.X. TangY.P. DongZ.R. LiaoX. QingY.F. MicroRNA-223 suppresses IL-1β and TNF-α production in gouty inflammation by targeting the NLRP3 inflammasome.Front. Pharmacol.20211263741510.3389/fphar.2021.63741533935726
    [Google Scholar]
  43. HeY.S. WangG.H. WuZ.D. SamN.B. ChenY. TaoJ.H. FangX.Y. XuZ. PanH.F. Association between non-optimal temperature and hospitalizations for gout in Anqing, China: a time-series analysis.Environ. Sci. Pollut. Res. Int.20222910137971380410.1007/s11356‑021‑16580‑w34599442
    [Google Scholar]
  44. DanveA. SehraS.T. NeogiT. Role of diet in hyperuricemia and gout.Best Pract. Res. Clin. Rheumatol.202135410172310.1016/j.berh.2021.10172334802900
    [Google Scholar]
  45. ChangY.H. ChiangY.F. ChenH.Y. HuangY.J. WangK.L. HongY.H. AliM. ShiehT.M. HsiaS.M. Anti-inflammatory and anti-hyperuricemic effects of chrysin on a high fructose corn syrup-induced hyperuricemia rat model via the amelioration of urate transporters and inhibition of NLRP3 inflammasome signaling pathway.Antioxidants202110456410.3390/antiox1004056433917369
    [Google Scholar]
  46. HongF. ZhengA. XuP. WangJ. XueT. DaiS. PanS. GuoY. XieX. LiL. QiaoX. LiuG. ZhaiY. High-protein diet induces hyperuricemia in a new animal model for studying human gout.Int. J. Mol. Sci.2020216214710.3390/ijms2106214732245084
    [Google Scholar]
  47. BeredaG. Antihypertensive medications: Explanation, mechanisms of action, adverse drug reaction, and drug interaction.Int. J. Chem. Lifesci.202110521312144
    [Google Scholar]
  48. LightJ. WellmanL.L. ConranR.M. Educational Case: Gout.Acad. Pathol.202310110006510.1016/j.acpath.2022.10006536970328
    [Google Scholar]
  49. EunY. HanK. LeeS.W. KimK. KangS. LeeS. ChaH.S. KohE.M. KimH. LeeJ. Altered risk of incident gout according to Changes in metabolic syndrome Status: A nationwide, population-based cohort study of 1.29 million young men.Arthritis Rheumatol.202375580681510.1002/art.4238136415898
    [Google Scholar]
  50. EunY. HanK. LeeS.W. KimK. KangS. LeeS. ChaH.S. KohE.M. KimH. LeeJ. Increased risk of incident gout in young men with metabolic syndrome: A nationwide population-based cohort study of 3.5 million men.Front. Med. (Lausanne)20229101039110.3389/fmed.2022.101039136452893
    [Google Scholar]
  51. SinghJ.A. ReddyS.G. KundukulamJ. Risk factors for gout and prevention: a systematic review of the literature.Curr. Opin. Rheumatol.201123219220210.1097/BOR.0b013e3283438e1321285714
    [Google Scholar]
  52. HainerB.L. MathesonE. WilkesR.T. Diagnosis, treatment, and prevention of gout.Am. Fam. Physician2014901283183625591183
    [Google Scholar]
  53. YokoseC. McCormickN. ChoiH.K. Dietary and lifestyle-centered approach in gout care and prevention.Curr. Rheumatol. Rep.20212375110.1007/s11926‑021‑01020‑y34196878
    [Google Scholar]
  54. KoguchiT. Modification of dietary habits for prevention of gout in Japanese people: Gout and micronutrient intake or alcohol consumption.Am. J. Health Res.20219514315710.11648/j.ajhr.20210905.14
    [Google Scholar]
  55. van DurmeCM WechalekarMD BuchbinderR SchlesingerN van der HeijdeD LandewéRB Non-steroidal anti-inflammatory drugs for acute gout.Cochrane Database Syst Rev.2021202112CD01012010.1002/14651858.CD010120.pub2
    [Google Scholar]
  56. CronsteinB.N. TerkeltaubR. The inflammatory process of gout and its treatment.Arthritis Res. Ther.20068Suppl 1Suppl. 1S310.1186/ar190816820042
    [Google Scholar]
  57. ZhangS. ZhangY. LiuP. ZhangW. MaJ. WangJ. Efficacy and safety of etoricoxib compared with NSAIDs in acute gout: a systematic review and a meta-analysis.Clin. Rheumatol.201635115115810.1007/s10067‑015‑2991‑126099603
    [Google Scholar]
  58. DalbethN. LauterioT.J. WolfeH.R. Mechanism of action of colchicine in the treatment of gout.Clin. Ther.201436101465147910.1016/j.clinthera.2014.07.01725151572
    [Google Scholar]
  59. PascartT. RichetteP. Colchicine in gout: an update.Curr. Pharm. Des.201824668468910.2174/138161282499918011510395129336252
    [Google Scholar]
  60. CoccoG. ChuD.C.C. PandolfiS. Colchicine in clinical medicine. A guide for internists.Eur. J. Intern. Med.201021650350810.1016/j.ejim.2010.09.01021111934
    [Google Scholar]
  61. JanssensH.J.E.M. JanssenM. van de LisdonkE.H. van RielP.L.C.M. van WeelC. Use of oral prednisolone or naproxen for the treatment of gout arthritis: a double-blind, randomised equivalence trial.Lancet200837196271854186010.1016/S0140‑6736(08)60799‑018514729
    [Google Scholar]
  62. AbhishekA. Managing gout flares in the elderly: practical considerations.Drugs Aging2017341287388010.1007/s40266‑017‑0512‑429214511
    [Google Scholar]
  63. OjhaR. SinghJ. OjhaA. SinghH. SharmaS. NepaliK. An updated patent review: xanthine oxidase inhibitors for the treatment of hyperuricemia and gout (2011-2015).Expert Opin. Ther. Pat.201727331134510.1080/13543776.2017.126111127841045
    [Google Scholar]
  64. ChenM. MengL. The double faced role of xanthine oxidoreductase in cancer.Acta Pharmacol. Sin.20224371623163210.1038/s41401‑021‑00800‑734811515
    [Google Scholar]
  65. BoveM. CiceroA.F.G. BorghiC. The effect of xanthine oxidase inhibitors on blood pressure and renal function.Curr. Hypertens. Rep.201719129510.1007/s11906‑017‑0793‑329071435
    [Google Scholar]
  66. HuddlestonE.M. GaffoA.L. Emerging strategies for treating gout.Curr. Opin. Pharmacol.20226510224110.1016/j.coph.2022.10224135609384
    [Google Scholar]
  67. PruisS. JeonY.K. PearceF. ThongB.Y.H. AzizM.I.A. Cost-effectiveness of sequential urate lowering therapies for the management of gout in Singapore.J. Med. Econ.202023883884710.1080/13696998.2020.175745632301360
    [Google Scholar]
  68. SzekaneczZ. SzamosiS. KovácsG.E. KocsisE. BenkőS. The NLRP3 inflammasome - interleukin 1 pathway as a therapeutic target in gout.Arch. Biochem. Biophys.2019670829310.1016/j.abb.2019.01.03130710503
    [Google Scholar]
  69. MalcovaH. MilotaT. StrizovaZ. CebecauerovaD. StrizI. SedivaA. HorvathR. Interleukin-1 blockade in polygenic autoinflammatory disorders: where are we now?Front. Pharmacol.20211161927310.3389/fphar.2020.61927333708123
    [Google Scholar]
  70. SchlesingerN LipskyPE Pegloticase treatment of chronic refractory gout: Update on efficacy and safety.Semin Arthritis Rheum.2020503SS31S38
    [Google Scholar]
  71. BotsonJ.K. BarafH.S.B. KeenanR.T. AlbertJ. MasriK.R. PetersonJ. YungC. FreyneB. AminM. AbdellatifA. SolomanN. EdwardsN.L. StrandV. Expert opinion on pegloticase with concomitant immunomodulatory therapy in the treatment of uncontrolled gout to improve efficacy, safety, and durability of response.Curr. Rheumatol. Rep.2022241121910.1007/s11926‑022‑01055‑935167037
    [Google Scholar]
  72. ZhangF. GanY. XieW. ZhaY. LiangY. GeY. ZhangJ. QianJ. DuanY. WuZ. ZhangS. Role of novel zinc ferrite nanoparticle in gout arthritis: Alleviating inflammation and oxidative stress by regulating Nlrp3 inflammasome activation and Nrf2 pathway.SSRN202210.2139/ssrn.4554185
    [Google Scholar]
  73. CaoY. HuY. JinX.F. LiuY. ZouJ.M. Dimethyl fumarate attenuates MSU-induced gouty arthritis by inhibiting NLRP3 inflammasome activation and oxidative stress.Eur. Rev. Med. Pharmacol. Sci.202327262864136734707
    [Google Scholar]
  74. LiY. PuL.Y. LiY. ZhuG. WuZ. Design, synthesis and evaluation of a myricetin and nobiletin hybrid compound for alleviating hyperuricemia based on metabolomics and gut microbiota.RSC Advances20231331214482145810.1039/D3RA03188H37465570
    [Google Scholar]
  75. MutalibN.S. ZainM.H. AsariA. MaulidianiM. AzizA.N. YusufN. WahabN.H. Malaysian medicinal plants (Euphorbia milii) as a drug alternative source for anti-gout therapy.Malays. J. Anal. Sci.2023271189197
    [Google Scholar]
  76. AnjaniQ.K. SabriA.H.B. Moreno-CastellanosN. UtomoE. Cárcamo-MartínezÁ. Domínguez-RoblesJ. WardoyoL.A.H. DonnellyR.F. Soluplus®-based dissolving microarray patches loaded with colchicine: Towards a minimally invasive treatment and management of gout.Biomater. Sci.202210205838585510.1039/D2BM01068B35972236
    [Google Scholar]
  77. ChenZ. HanB. LiaoL. HuX. HuQ. GaoY. QiuY. Enhanced transdermal delivery of polydatin via a combination of inclusion complexes and dissolving microneedles for treatment of acute gout arthritis.J. Drug Deliv. Sci. Technol.20205510148710.1016/j.jddst.2019.101487
    [Google Scholar]
  78. FanY. ZhangQ. Development of liposomal formulations: From concept to clinical investigations.Asian J. Pharm. Sci.201382818710.1016/j.ajps.2013.07.010
    [Google Scholar]
  79. BozzutoG. MolinariA. Liposomes as nanomedical devices.Int. J. Nanomedicine20151097599910.2147/IJN.S6886125678787
    [Google Scholar]
  80. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. SamieiM. KouhiM. Nejati-KoshkiK. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑10223432972
    [Google Scholar]
  81. SinghH.P. UtrejaP. TiwaryA.K. JainS. Elastic liposomal formulation for sustained delivery of colchicine: In vitro characterization and in vivo evaluation of anti-gout activity.AAPS J.2009111546410.1208/s12248‑008‑9078‑819191031
    [Google Scholar]
  82. PandoD. MatosM. GutiérrezG. PazosC. Formulation of resveratrol entrapped niosomes for topical use.Colloids Surf. B Biointerfaces201512839840410.1016/j.colsurfb.2015.02.03725766923
    [Google Scholar]
  83. ChanduV.P. ArunachalamA. JeganathS. YaminiK. TharanginiK. ChaitanyaG. Niosomes: a novel drug delivery system.Int. J. Novel Trends Pharm. Sci.2012212531
    [Google Scholar]
  84. SinghN. ParasharP. TripathiC.B. KanoujiaJ. KaithwasG. SarafS.A. Oral delivery of allopurinol niosomes in treatment of gout in animal model.J. Liposome Res.201727213013810.1080/08982104.2016.117494328067087
    [Google Scholar]
  85. ParhiR. SureshP. Preparation and characterization of solid lipid nanoparticles-a review.Curr. Drug Discov. Technol.20129121610.2174/15701631279930455222235925
    [Google Scholar]
  86. MosallaeiN. JaafariM.R. Hanafi-BojdM.Y. GolmohammadzadehS. Malaekeh-NikoueiB. Docetaxel-loaded solid lipid nanoparticles: preparation, characterization, in vitro, and in vivo evaluations.J. Pharm. Sci.201310261994200410.1002/jps.2352223558514
    [Google Scholar]
  87. WangS. ChenT. ChenR. HuY. ChenM. WangY. Emodin loaded solid lipid nanoparticles: Preparation, characterization and antitumor activity studies.Int. J. Pharm.20124301-223824610.1016/j.ijpharm.2012.03.02722465546
    [Google Scholar]
  88. WangQ. YangQ. CaoX. WeiQ. FirempongC.K. GuoM. ShiF. XuX. DengW. YuJ. Enhanced oral bioavailability and anti-gout activity of [6]-shogaol-loaded solid lipid nanoparticles.Int. J. Pharm.20185501-2243410.1016/j.ijpharm.2018.08.02830125653
    [Google Scholar]
  89. RajpootK TekadeM PandeyV NagarajaS Youngren-OrtizSR TekadeRK Self-microemulsifying drug-delivery system: Ongoing challenges and future ahead.Drug Delivery Systems: Advances in Pharmaceutical Product Development and ResearchCambridge, MassachusettsAcademic Press202010.1016/B978‑0‑12‑814487‑9.00009‑0
    [Google Scholar]
  90. WuL. QiaoY. WangL. GuoJ. WangG. HeW. YinL. ZhaoJ. A self-microemulsifying drug delivery system (SMEDDS) for a novel medicative compound against depression: A preparation and bioavailability study in rats.AAPS PharmSciTech20151651051105810.1208/s12249‑014‑0280‑y25652729
    [Google Scholar]
  91. QureshiM.J. MallikarjunC. KianW.G. Enhancement of solubility and therapeutic potential of poorly soluble lovastatin by SMEDDS formulation adsorbed on directly compressed spray dried magnesium aluminometasilicate liquid loadable tablets: A study in diet induced hyperlipidemic rabbits.Asian J. Pharm. Sci.2015101405610.1016/j.ajps.2014.08.003
    [Google Scholar]
  92. ZhangK. WangQ. YangQ. WeiQ. ManN. Adu-FrimpongM. ToreniyazovE. JiH. YuJ. XuX. Enhancement of oral bioavailability and anti-hyperuricemic activity of isoliquiritigenin via self-microemulsifying drug delivery system.AAPS PharmSciTech201920521810.1208/s12249‑019‑1421‑031187334
    [Google Scholar]
  93. BensonH.A.E. Transfersomes for transdermal drug delivery.Expert Opin. Drug Deliv.20063672773710.1517/17425247.3.6.72717076595
    [Google Scholar]
  94. MalakarJ. SenS.O. NayakA.K. SenK.K. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery.Saudi Pharm. J.201220435536310.1016/j.jsps.2012.02.00123960810
    [Google Scholar]
  95. TiwariR. TiwariG. SinghR. Allopurinol loaded transferosomes for the alleviation of symptomatic after-effects of Gout: An Account of Pharmaceutical implications.Curr. Drug Ther.202015440441910.2174/1574885515666200120124214
    [Google Scholar]
  96. ManceauJ.M. NevinA. FotakisC. TzortzakisS. Terahertz time domain spectroscopy for the analysis of cultural heritage related materials.Appl. Phys. B2008903-436536810.1007/s00340‑008‑2933‑6
    [Google Scholar]
  97. ParaskevaidiM. MatthewB.J. HollyB.J. HughB.J. ThulyaC.P.V. LorenC. StJohnC. PeterG. CallumG. SergeiK.G. KamilaK. MariaK. KássioL.M.G. PierreM-H.L. EvangelosP. SavithriP. JohnA.A. AlexandraS. MarfranS. JosepS-S. GunjanT. MichaelW. BaydenW. Clinical applications of infrared and Raman spectroscopy in the fields of cancer and infectious diseases.Appl. Spectrosc. Rev.2021568-1080486810.1080/05704928.2021.1946076
    [Google Scholar]
  98. AunerG.W. KoyaS.K. HuangC. BroadbentB. TrexlerM. AunerZ. EliasA. MehneK.C. BrusatoriM.A. Applications of Raman spectroscopy in cancer diagnosis.Cancer Metastasis Rev.201837469171710.1007/s10555‑018‑9770‑930569241
    [Google Scholar]
  99. MovasaghiZ. RehmanS. RehmanI.U. Raman spectroscopy of biological tissues.Appl. Spectrosc. Rev.200742549354110.1080/05704920701551530
    [Google Scholar]
  100. JamrógiewiczM. Application of the near-infrared spectroscopy in the pharmaceutical technology.J. Pharm. Biomed. Anal.20126611010.1016/j.jpba.2012.03.00922469433
    [Google Scholar]
  101. Castro-CamusE. KochM. MittlemanD.M. Recent advances in terahertz imaging: 1999 to 2021.Appl. Phys. B202212811210.1007/s00340‑021‑07732‑4
    [Google Scholar]
  102. BakrisG.L. MikamiH. HirataM. NakajimaA. CressmanM.D. A non-purine xanthine oxidoreductase inhibitor reduces albuminuria in patients with DKD: A randomized controlled trial.Kidney3602021281240125010.34067/KID.000167202135369650
    [Google Scholar]
  103. YoonS. LeeH. JangI-J. YuK-S. ShinD. Pharmacokinetics, pharmacodynamics, and tolerability of LC350189, a novel xanthine oxidase inhibitor, in healthy subjects.Drug Des. Devel. Ther.201595033504910.2147/DDDT.S8688426357467
    [Google Scholar]
  104. ShahidH. SinghJ.A. Investigational drugs for hyperuricemia.Expert Opin. Investig. Drugs20152481013103010.1517/13543784.2015.105161726073200
    [Google Scholar]
  105. PoileyJ. SteinbergA.S. ChoiY.J. DavisC.S. MartinR.L. McWherterC.A. BoudesP.F. A randomized, double-blind, active-and placebo-controlled efficacy and safety study of arhalofenate for reducing flare in patients with gout.Arthritis Rheumatol.20166882027203410.1002/art.3968426989892
    [Google Scholar]
  106. SteinbergAS VinceBD ChoiY-J MartinRL McWherterCA The pharmacodynamics, pharmacokinetics, and safety of arhalofenate in combination with febuxostat when treating hyperuricemia associated with gout.J Rheumatol.2017443374379
    [Google Scholar]
  107. Abdel-LatifR.T. WadieW. Abdel-mottalebY. AbdallahD.M. El-MaraghyN.N. El-AbharH.S. Reposition of the anti-inflammatory drug diacerein in an in-vivo colorectal cancer model.Saudi Pharm. J.2022301729010.1016/j.jsps.2021.12.00935145347
    [Google Scholar]
  108. TaniguchiT. AshizawaN. MatsumotoK. IwanagaT. Enhancement of pharmacological effects of uricosuric agents by concomitant treatment with pyrazinamide in rats.Naunyn Schmiedebergs Arch. Pharmacol.2017390325326010.1007/s00210‑016‑1324‑527933340
    [Google Scholar]
  109. TaniguchiT. AshizawaN. MatsumotoK. SaitoR. MotokiK. SakaiM. ChikamatsuN. HagiharaC. HashibaM. IwanagaT. Pharmacological evaluation of dotinurad, a selective urate reabsorption inhibitor.J. Pharmacol. Exp. Ther.2019371116217010.1124/jpet.119.25934131371478
    [Google Scholar]
  110. LinY. ChenX. DingH. YeP. GuJ. WangX. JiangZ. LiD. WangZ. LongW. LiZ. JiangG. LiX. BiL. JiangL. WuJ. GuoL. CaiX. LuX. ChenQ. ChenH. PengA. ZuoX. NingR. ZhangZ. TaiY. ZhangT. BaoC. Efficacy and safety of a selective URAT1 inhibitor SHR4640 in Chinese subjects with hyperuricaemia: a randomized controlled phase II study.Rheumatology (Oxford)202160115089509710.1093/rheumatology/keab19833693494
    [Google Scholar]
  111. MouradjianM.T. PlazakM.E. GaleS.E. NoelZ.R. WatsonK. DevabhakthuniS. Pharmacologic management of gout in patients with cardiovascular disease and heart failure.Am. J. Cardiovasc. Drugs202020543144510.1007/s40256‑020‑00400‑632090301
    [Google Scholar]
  112. ZhangL WyattD StazzoneK ShiZ WangY. OP0205 phase i study of D-0120, a novel URAT1 inhibitor in clinical development for hyperuricemia and gout.BMJ2020791127
    [Google Scholar]
  113. TanP.K. LiuS. GunicE. MinerJ.N. Discovery and characterization of verinurad, a potent and specific inhibitor of URAT1 for the treatment of hyperuricemia and gout.Sci. Rep.20177166510.1038/s41598‑017‑00706‑728386072
    [Google Scholar]
  114. ShiramotoM. LiuS. ShenZ. YanX. YamamotoA. GillenM. ItoY. HallJ. Verinurad combined with febuxostat in Japanese adults with gout or asymptomatic hyperuricaemia: a phase 2a, open-label study.Rheumatology (Oxford)20185791602161010.1093/rheumatology/key10029868853
    [Google Scholar]
  115. Fitz-PatrickD. RobersonK. NiwaK. FujimuraT. MoriK. HallJ. YanX. ShenZ. LiuS. ItoY. BaumgartnerS. Safety and efficacy of verinurad, a selective URAT1 inhibitor, for the treatment of patients with gout and/or asymptomatic hyperuricemia in the United States and Japan: Findings from two phase II trials.Mod. Rheumatol.20192961042105210.1080/14397595.2018.153800330334639
    [Google Scholar]
  116. FleischmannR. WinkleP. MinerJ.N. YanX. HicksL. ValdezS. HallJ. LiuS. ShenZ. GillenM. Hernandez-IllasM. Pharmacodynamic and pharmacokinetic effects and safety of verinurad in combination with allopurinol in adults with gout: a phase IIa, open-label study.RMD Open201841e00058410.1136/rmdopen‑2017‑00058429531784
    [Google Scholar]
  117. FleischmannR. WinkleP. HallJ. ValdezS. LiuS. YanX. HicksL. LeeC. MinerJ.N. GillenM. Hernandez-IllasM. Pharmacodynamic and pharmacokinetic effects and safety of verinurad in combination with febuxostat in adults with gout: a phase IIa, open-label study.RMD Open201841e00064710.1136/rmdopen‑2018‑00064729657831
    [Google Scholar]
  118. LeeH.A. YuK.S. ParkS.I. YoonS. OnoharaM. AhnY. LeeH. URC102, a potent and selective inhibitor of hURAT1, reduced serum uric acid in healthy volunteers.Rheumatology (Oxford)201958111976198431056705
    [Google Scholar]
  119. IchidaK. New antihyperuricemic medicine: Febuxostat, Puricase, etc.Jpn. J. Clin. Med.200866475976518409528
    [Google Scholar]
  120. PascartT. RichetteP. Investigational drugs for hyperuricemia, an update on recent developments.Expert Opin. Investig. Drugs201827543744410.1080/13543784.2018.147113329718730
    [Google Scholar]
  121. FayB.T. MikulsT.R. Advances and unmet needs in gout.Int. J. Clin. Rheumatol.20105218719710.2217/ijr.10.9
    [Google Scholar]
  122. KivitzA. DeHaanW. AzeemR. ParkJ. RhodesS. InshawJ. LeungS.S. NicolaouS. JohnstonL. KishimotoT.K. TraberP.G. SandsE. ChoiH. Phase 2 dose-finding study in patients with gout using SEL-212, a novel PEGylated uricase (SEL-037) combined with tolerogenic nanoparticles (SEL-110).Rheumatol. Ther.202310482584710.1007/s40744‑023‑00546‑037069364
    [Google Scholar]
  123. StampL.K. MerrimanT.R. SinghJ.A. Expert opinion on emerging urate-lowering therapies.Expert Opin. Emerg. Drugs201823320120910.1080/14728214.2018.152789930244605
    [Google Scholar]
  124. OtsukaY. OhnoY. MoritaA. OtaniN. JutabhaP. OuchiM. TsuruokaS. AnzaiN. Molecular mechanism of urate-lowering effects of anserine nitrate.Gout Nucleic Acid Metabol.201640213714310.6032/gnam.40.137
    [Google Scholar]
  125. KubomuraD. YamadaM. MasuiA. Tuna extract reduces serum uric acid in gout-free subjects with insignificantly high serum uric acid: A randomized controlled trial.Biomed. Rep.20165225425810.3892/br.2016.70127446553
    [Google Scholar]
  126. KuwabaraM. NiwaK. NishiY. MizunoA. AsanoT. MasudaK. KomatsuI. YamazoeM. TakahashiO. HisatomeI. Relationship between serum uric acid levels and hypertension among Japanese individuals not treated for hyperuricemia and hypertension.Hypertens. Res.201437878578910.1038/hr.2014.7524671018
    [Google Scholar]
  127. MatsuoH. ShinomiyaN. TakadaT. Inhibiting the onset of gout.US Patent 110983642021
  128. RanganathanN. Composition and method for preventing or treating gout or hyperuricemia. United States patent US.US Patent 96559322017
  129. QuartB.D. GirardetJ.L. GunicE. YehL.T. Compounds and compositions and methods of use.US Patent 101830122019
  130. MoloneyA.P. Compositions and methods of use.US Patent 111545782021
  131. ChenS.J. ChenY.L. HsuH.Y. WannS.Y. ChenM.H. YuL.W. Strain of Lactobacillus rhamnosus and its metabolites for use in inhibiting xanthine oxidase and treating gout.US Patent 96363682017
  132. HsiehP.S. Hsieh-HsunH.O. TsaiY.C. KuoC.W. Method for reducing blood uric acid concentration and for degrading purine.US Patent 117859752023
  133. TerruzziS. BellomiS. MarrasG. BarrecaG. VentimigliaG. CervellinoA. MasciocchiN. Disclosing the rich crystal chemistry of lesinurad by ab initio laboratory X-ray powder diffraction methods.Cryst. Growth Des.201818116863687210.1021/acs.cgd.8b01083
    [Google Scholar]
  134. KuMS ChenCK LuWS LinIY Métodos y composiciones para tratar hiperuricemia y trastornos metabólicos asociados con hiperuricemia.2017
  135. Agnew-FrancisK.A. WilliamsC.M. Squaramides as bioisosteres in contemporary drug design.Chem. Rev.202012020116161165010.1021/acs.chemrev.0c0041632930577
    [Google Scholar]
  136. DavisM.W. FengH. Colchine compositions and methods.US Patent 84153962013
  137. Amicus TherapeuticsFDA Approves Galafold™ (migalastat) for the Treatment of Certain Adult Patients with Fabry Disease.2018Available From: https://ir.amicusrx.com/news-releases/news-release-details/fda-approves-galafoldtm-migalastat-treatment-certain-adult
  138. ZhangC. FanK. MaX. YangL. HuC. LuoH. MeiX. Pegylated analogue protein or canine urate oxidase, preparation method and use thereof.US Patent 91939672015
  139. ChenC. LuJ.M. YaoQ. Small molecule xanthine oxidase inhibitors and methods of use.US Patent 88956262014
  140. ShiD. ChangjinF.U. ChengX. ZhuJ. GuJ. URAT1 inhibitor and use thereof.US Patent 108758652020
  141. FitzgeraldK. HinkleG. MooneyT.R. Xanthine dehydrogenase (xdh) irna compositions and methods of use thereof.US Patent 157475712018
    [Google Scholar]
  142. Theorell T. Konarski K. Westerlund H. Burell AM. Engström R. Lagercrantz AM. Teszary J. Thulin K. Treatment of patients with chronic somatic symptoms by means of art psychotherapy: A process description.Psychotherapy and Psychosomatics,1998; Jan 126715056
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871308473240926044126
Loading
/content/journals/rrct/10.2174/0115748871308473240926044126
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test