Skip to content
2000
image of From Patents to Progress: Unraveling Gout's Journey Through Clinical Trials and Advancements

Abstract

Gout, an inflammatory arthritis form, is renowned for its historical association with affluence. This review delves into its pathophysiology, exploring hyperuricemia, urate crystal formation, and the ensuing inflammatory response. The epidemiology of gout is examined, focusing on its rising prevalence and impact on public health. In this study, progress in gout management is discussed, involving pharmacological interventions, dietary changes, and emerging therapies. Genetic predisposition and triggers like alcohol, temperature, and diet are highlighted in this study. Prevention strategies, including serum urate-lowering therapy and lifestyle modifications, aim to reduce recurrent flares and complications. The inflammatory response in acute gout attacks is elucidated, involving immune cells, cytokines, and the NLRP3 inflammasome. Chronic gout manifestations, such as gouty tophus formation, are explored for their destructive impact on surrounding tissues. Recent advancements in gout treatment, including nanotherapies and novel compounds, are discussed, along with promising urate-lowering drugs. Cutting-edge research on zinc ferrite nanoparticles, dimethyl fumarate, and myricetin/nobiletin hybrids addresses oxidative stress and inflammation in gout. Additionally, the potential therapeutic role of methanolic leaf extract of Euphorbia milii and tip-loaded CLC-Soluplus® MAPs is explored as natural and transdermal alternatives for gout management. The review also covers the development status of new urate-lowering drugs, providing insights into promising candidates and their mechanisms. Patents on gout and recent diagnostic advancements using techniques like laser confocal micro Raman spectrometer, FTIR, and THz-TDS offer a more accurate approach for gout stone analysis, enabling early detection and targeted treatment.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871308473240926044126
2024-10-08
2024-11-26
Loading full text...

Full text loading...

References

  1. Dalbeth N. Choi H.K. Joosten L.A.B. Khanna P.P. Matsuo H. Perez-Ruiz F. Stamp L.K. Gout. Nat. Rev. Dis. Primers 2019 5 1 69 10.1038/s41572‑019‑0115‑y 31558729
    [Google Scholar]
  2. Major T.J. Dalbeth N. Stahl E.A. Merriman T.R. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 2018 14 6 341 353 10.1038/s41584‑018‑0004‑x 29740155
    [Google Scholar]
  3. Emmerson B.T. The management of gout. N. Engl. J. Med. 1996 334 7 445 451 10.1056/NEJM199602153340707 8552148
    [Google Scholar]
  4. Ragab G. Elshahaly M. Bardin T. Gout: An old disease in new perspective – A review. J. Adv. Res. 2017 8 5 495 511 10.1016/j.jare.2017.04.008 28748116
    [Google Scholar]
  5. Pascual E. Sivera F. Time required for disappearance of urate crystals from synovial fluid after successful hypouricaemic treatment relates to the duration of gout. Ann. Rheum. Dis. 2007 66 8 1056 1058 10.1136/ard.2006.060368 17223663
    [Google Scholar]
  6. Singh J.A. Challenges faced by patients in gout treatment: a qualitative study. J. Clin. Rheumatol. 2014 20 3 172 174 10.1097/RHU.0000000000000091 24662562
    [Google Scholar]
  7. Singh JA Gaffo A Gout epidemiology and comorbidities. Sem. Arthr. Rheumat. 2020 50 3 Suppl. S11 S16 10.1016/j.semarthrit.2020.04.008
    [Google Scholar]
  8. Chopra A. Patil J. Billempelly V. Relwani J. Tandle H.S. WHO-ILAR COPCORD Study. WHO International League of Associations from Rheumatology Community Oriented Program from Control of Rheumatic Diseases Prevalence of rheumatic diseases in a rural population in western India: a WHO-ILAR COPCORD Study. J. Assoc. Physicians India 2001 49 240 246 11225138
    [Google Scholar]
  9. Matthew A. Danda D. Clinical profile of young onset gout in India. J Ind Rheum Assoc. 2004 13 12 18
    [Google Scholar]
  10. Misra A. Khurana L. Obesity and the metabolic syndrome in developing countries. J. Clin. Endocrinol. Metab. 2008 93 11_supplement_1 Suppl. 1 s9 s30 10.1210/jc.2008‑1595 18987276
    [Google Scholar]
  11. Saleh M.I. Parisa N. Kamaluddin M.T. Sinaga E. The inflammation process of gout arthritis and its treatment. J. Adv. Pharm. Technol. Res. 2023 14 3 166 170 10.4103/japtr.japtr_144_23 37691999
    [Google Scholar]
  12. Ahmed S. Shaffique S. Asif H.M. Hussain G. Ahmad K. Pathophysiology, clinical consequences, epidemiology and treatment of hyperurecemic gout. RADS J.Pharm. Pharmaceut. Sci. 2018 6 1 88 94
    [Google Scholar]
  13. Perez-Ruiz F. Calabozo M. Erauskin G.G. Ruibal A. Herrero-Beites A.M. Renal underexcretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis Care Res. 2002 47 6 610 613 10.1002/art.10792 12522834
    [Google Scholar]
  14. Marangella M. Uric acid elimination in the urine. Pathophysiological implications. Contrib. Nephrol. 2005 147 132 148
    [Google Scholar]
  15. Kuwabara M. Kodama T. Ae R. Kanbay M. Andres-Hernando A. Borghi C. Hisatome I. Lanaspa M.A. Update in uric acid, hypertension, and cardiovascular diseases. Hypertens. Res. 2023 46 7 1714 1726 10.1038/s41440‑023‑01273‑3 37072573
    [Google Scholar]
  16. Hyndman D. Liu S. Miner J.N. Urate handling in the human body. Curr. Rheumatol. Rep. 2016 18 6 34 10.1007/s11926‑016‑0587‑7 27105641
    [Google Scholar]
  17. Martillo M.A. Nazzal L. Crittenden D.B. The crystallization of monosodium urate. Curr. Rheumatol. Rep. 2014 16 2 400 10.1007/s11926‑013‑0400‑9 24357445
    [Google Scholar]
  18. Jeong Y.J. Park S. Yon D.K. Lee S.W. Tizaoui K. Koyanagi A. Jacob L. Kostev K. Dragioti E. Radua J. Stickley A. Oh H. Shin J.I. Smith L. Global burden of gout in 1990–2019: A systematic analysis of the Global Burden of Disease study 2019. Eur. J. Clin. Invest. 2023 53 4 e13937 10.1111/eci.13937 36511834
    [Google Scholar]
  19. Martinon F. Pétrilli V. Mayor A. Tardivel A. Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006 440 7081 237 241 10.1038/nature04516 16407889
    [Google Scholar]
  20. Lioté F. Prudhommeaux F. Schiltz C. Champy R. Herbelin A. Ortiz-Bravo E. Bardin T. Inhibition and prevention of monosodium urate monohydrate crystal–induced acute inflammation in vivo by transforming growth factor β1. Arthritis Rheum. 1996 39 7 1192 1198 10.1002/art.1780390718 8670330
    [Google Scholar]
  21. Yagnik D.R. Evans B.J. Florey O. Mason J.C. Landis R.C. Haskard D.O. Macrophage release of transforming growth factor β1 during resolution of monosodium urate monohydrate crystal–induced inflammation. Arthritis Rheum. 2004 50 7 2273 2280 10.1002/art.20317 15248227
    [Google Scholar]
  22. Martinon F. Mayor A. Tschopp J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 2009 27 1 229 265 10.1146/annurev.immunol.021908.132715 19302040
    [Google Scholar]
  23. Dinarello C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 2009 27 1 519 550 10.1146/annurev.immunol.021908.132612 19302047
    [Google Scholar]
  24. Wessig A.K. Hoffmeister L. Klingberg A. Alberts A. Pich A. Brand K. Witte T. Neumann K. Natural antibodies and CRP drive anaphylatoxin production by urate crystals. Sci. Rep. 2022 12 1 4483 10.1038/s41598‑022‑08311‑z 35296708
    [Google Scholar]
  25. Cabău G. Crișan T.O. Klück V. Popp R.A. Joosten L.A.B. Urate‐induced immune programming: Consequences for gouty arthritis and hyperuricemia. Immunol. Rev. 2020 294 1 92 105 10.1111/imr.12833 31853991
    [Google Scholar]
  26. Cao Y. Icariin alleviates MSU ‐induced rat GA models through NF‐κB / NALP3 pathway. Cell Biochem. Funct. 2021 39 3 357 366 10.1002/cbf.3598 33135192
    [Google Scholar]
  27. Riley M Leong M. Rheumatic and Infectious Causes of Knee Pain. A Case-Based Approach to Knee Pain, A Pocket Guide to Pathology, Diagnosis and Management Cham Springer 2023
    [Google Scholar]
  28. Mikhalchik E.V. Ivanov V.A. Borodina I.V. Pobeguts O.V. Smirnov I.P. Gorudko I.V. Grigorieva D.V. Boychenko O.P. Moskalets A.P. Klinov D.V. Panasenko O.M. Filatova L.Y. Kirzhanova E.A. Balabushevich N.G. Neutrophil activation by mineral microparticles coated with methylglyoxal-glycated albumin. Int. J. Mol. Sci. 2022 23 14 7840 10.3390/ijms23147840 35887188
    [Google Scholar]
  29. Daoussis D. Bogdanos D.P. Dimitroulas T. Sakkas L. Andonopoulos A.P. Adrenocorticotropic hormone: an effective “natural” biologic therapy for acute gout? Rheumatol. Int. 2020 40 12 1941 1947 10.1007/s00296‑020‑04659‑5 32715340
    [Google Scholar]
  30. Daoussis D. Kordas P. Varelas G. Michalaki M. Onoufriou A. Mamali I. Iliopoulos G. Melissaropoulos K. Ntelis K. Velissaris D. Tzimas G. Georgiou P. Vamvakopoulou S. Paliogianni F. Andonopoulos A.P. Georgopoulos N. ACTH vs steroids for the treatment of acute gout in hospitalized patients: a randomized, open label, comparative study. Rheumatol. Int. 2022 42 6 949 958 10.1007/s00296‑022‑05128‑x 35445840
    [Google Scholar]
  31. Soliman E. Elshazly S.M. Shewaikh S.M. El-shaarawy F. Reno- and hepato-protective effect of allopurinol after renal ischemia/reperfusion injury: Crosstalk between xanthine oxidase and peroxisome proliferator-activated receptor gamma signaling. Food Chem. Toxicol. 2023 178 113868 10.1016/j.fct.2023.113868 37269893
    [Google Scholar]
  32. Zhao J. Wei K. Jiang P. Chang C. Xu L. Xu L. Shi Y. Guo S. Xue Y. He D. Inflammatory response to regulated cell death in gout and its functional implications. Front. Immunol. 2022 13 888306 10.3389/fimmu.2022.888306 35464445
    [Google Scholar]
  33. Brostjan C. Oehler R. The role of neutrophil death in chronic inflammation and cancer. Cell Death Discov. 2020 6 1 26 10.1038/s41420‑020‑0255‑6 32351713
    [Google Scholar]
  34. Schweyer S. Hemmerlein B. Radzun H.J. Fayyazi A. Continuous recruitment, co-expression of tumour necrosis factor-α and matrix metalloproteinases, and apoptosis of macrophages in gout tophi. Virchows Arch. 2000 437 5 534 539 10.1007/s004280000282 11147175
    [Google Scholar]
  35. Hasselbacher P. McMillan R.M. Vater C.A. Hahn J. Harris E.D. Jr Stimulation of secretion of collagenase and prostaglandin E2 by synovial fibroblasts in response to crystals of monosodium urate monohydrate: a model for joint destruction in gout. Trans. Assoc. Am. Physicians 1981 94 243 252 6283706
    [Google Scholar]
  36. Gutowski Ł. Kanikowski S. Formanowicz D. Mast cell involvement in the pathogenesis of selected musculoskeletal diseases. Life (Basel) 2023 13 8 1690 10.3390/life13081690 37629547
    [Google Scholar]
  37. Nieradko-Iwanicka B. The role of alcohol consumption in pathogenesis of gout. Crit. Rev. Food Sci. Nutr. 2022 62 25 7129 7137 10.1080/10408398.2021.1911928 33866874
    [Google Scholar]
  38. Meng Y. Qi Z. Jiang H. Li Z. Xiao Q. Xia Z. Yu M. Ruan X. He G. Jiang X. Restrained MSUM crystallization via hydrogel composited membrane based platform for gout prevention and control. Chem. Eng. J. 2022 450 138155 10.1016/j.cej.2022.138155
    [Google Scholar]
  39. Liu Y. Cheng R. Ou C. Zhang X. Fu T. Acetate: an alcohol metabolite as a growth promoter of pathological crystallization of gout. Cryst. Growth Des. 2020 20 5 2842 2846 10.1021/acs.cgd.9b01518
    [Google Scholar]
  40. Liu Y.R. Tantoh D.M. Lin C.C. Hsiao C.H. Liaw Y.P. Risk of gout among Taiwanese adults with ALDH-2 rs671 polymorphism according to BMI and alcohol intake. Arthritis Res. Ther. 2021 23 1 115 10.1186/s13075‑021‑02497‑9 33858492
    [Google Scholar]
  41. Ahn H. Lee G. Lee G.S. Lower temperatures exacerbate NLRP3 inflammasome activation by promoting monosodium urate crystallization, causing gout. Cells 2021 10 8 1919 10.3390/cells10081919 34440688
    [Google Scholar]
  42. Zhang Q.B. Zhu D. Dai F. Huang Y.Q. Zheng J.X. Tang Y.P. Dong Z.R. Liao X. Qing Y.F. MicroRNA-223 suppresses IL-1β and TNF-α production in gouty inflammation by targeting the NLRP3 inflammasome. Front. Pharmacol. 2021 12 637415 10.3389/fphar.2021.637415 33935726
    [Google Scholar]
  43. He Y.S. Wang G.H. Wu Z.D. Sam N.B. Chen Y. Tao J.H. Fang X.Y. Xu Z. Pan H.F. Association between non-optimal temperature and hospitalizations for gout in Anqing, China: a time-series analysis. Environ. Sci. Pollut. Res. Int. 2022 29 10 13797 13804 10.1007/s11356‑021‑16580‑w 34599442
    [Google Scholar]
  44. Danve A. Sehra S.T. Neogi T. Role of diet in hyperuricemia and gout. Best Pract. Res. Clin. Rheumatol. 2021 35 4 101723 10.1016/j.berh.2021.101723 34802900
    [Google Scholar]
  45. Chang Y.H. Chiang Y.F. Chen H.Y. Huang Y.J. Wang K.L. Hong Y.H. Ali M. Shieh T.M. Hsia S.M. Anti-inflammatory and anti-hyperuricemic effects of chrysin on a high fructose corn syrup-induced hyperuricemia rat model via the amelioration of urate transporters and inhibition of NLRP3 inflammasome signaling pathway. Antioxidants 2021 10 4 564 10.3390/antiox10040564 33917369
    [Google Scholar]
  46. Hong F. Zheng A. Xu P. Wang J. Xue T. Dai S. Pan S. Guo Y. Xie X. Li L. Qiao X. Liu G. Zhai Y. High-protein diet induces hyperuricemia in a new animal model for studying human gout. Int. J. Mol. Sci. 2020 21 6 2147 10.3390/ijms21062147 32245084
    [Google Scholar]
  47. Bereda G. Antihypertensive Medications: Explanation, Mechanisms of Action, Adverse Drug Reaction, and Drug Interaction. Int. J. Chem. Lifesci. 2021 10 5 2131 2144
    [Google Scholar]
  48. Light J. Wellman L.L. Conran R.M. Educational Case: Gout. Acad. Pathol. 2023 10 1 100065 10.1016/j.acpath.2022.100065 36970328
    [Google Scholar]
  49. Eun Y. Han K. Lee S.W. Kim K. Kang S. Lee S. Cha H.S. Koh E.M. Kim H. Lee J. Altered risk of incident gout according to Changes in metabolic syndrome Status: a nationwide, population‐based cohort study of 1.29 million young men. Arthritis Rheumatol. 2023 75 5 806 815 10.1002/art.42381 36415898
    [Google Scholar]
  50. Eun Y. Han K. Lee S.W. Kim K. Kang S. Lee S. Cha H.S. Koh E.M. Kim H. Lee J. Increased risk of incident gout in young men with metabolic syndrome: A nationwide population-based cohort study of 3.5 million men. Front. Med. (Lausanne) 2022 9 1010391 10.3389/fmed.2022.1010391 36452893
    [Google Scholar]
  51. Singh J.A. Reddy S.G. Kundukulam J. Risk factors for gout and prevention: a systematic review of the literature. Curr. Opin. Rheumatol. 2011 23 2 192 202 10.1097/BOR.0b013e3283438e13 21285714
    [Google Scholar]
  52. Hainer B.L. Matheson E. Wilkes R.T. Diagnosis, treatment, and prevention of gout. Am. Fam. Physician 2014 90 12 831 836 25591183
    [Google Scholar]
  53. Yokose C. McCormick N. Choi H.K. Dietary and lifestyle-centered approach in gout care and prevention. Curr. Rheumatol. Rep. 2021 23 7 51 10.1007/s11926‑021‑01020‑y 34196878
    [Google Scholar]
  54. Koguchi T. Modification of dietary habits for prevention of gout in Japanese people: Gout and micronutrient intake or alcohol consumption. Am. J. Health Res. 2021 9 5 143 157 10.11648/j.ajhr.20210905.14
    [Google Scholar]
  55. van Durme CM Wechalekar MD Buchbinder R Schlesinger N van der Heijde D Landewé RB Non‐steroidal anti‐inflammatory drugs for acute gout. Cochrane Database Syst Rev. 2021 2021 12 CD010120 10.1002/14651858.CD010120.pub2
    [Google Scholar]
  56. Cronstein B.N. Terkeltaub R. The inflammatory process of gout and its treatment. Arthritis Res. Ther. 2006 8 Suppl 1 Suppl. 1 S3 10.1186/ar1908 16820042
    [Google Scholar]
  57. Zhang S. Zhang Y. Liu P. Zhang W. Ma J. Wang J. Efficacy and safety of etoricoxib compared with NSAIDs in acute gout: a systematic review and a meta-analysis. Clin. Rheumatol. 2016 35 1 151 158 10.1007/s10067‑015‑2991‑1 26099603
    [Google Scholar]
  58. Dalbeth N. Lauterio T.J. Wolfe H.R. Mechanism of action of colchicine in the treatment of gout. Clin. Ther. 2014 36 10 1465 1479 10.1016/j.clinthera.2014.07.017 25151572
    [Google Scholar]
  59. Pascart T. Richette P. Colchicine in gout: an update. Curr. Pharm. Des. 2018 24 6 684 689 10.2174/1381612824999180115103951 29336252
    [Google Scholar]
  60. Cocco G. Chu D.C.C. Pandolfi S. Colchicine in clinical medicine. A guide for internists. Eur. J. Intern. Med. 2010 21 6 503 508 10.1016/j.ejim.2010.09.010 21111934
    [Google Scholar]
  61. Janssens H.J.E.M. Janssen M. van de Lisdonk E.H. van Riel P.L.C.M. van Weel C. Use of oral prednisolone or naproxen for the treatment of gout arthritis: a double-blind, randomised equivalence trial. Lancet 2008 371 9627 1854 1860 10.1016/S0140‑6736(08)60799‑0 18514729
    [Google Scholar]
  62. Abhishek A. Managing gout flares in the elderly: practical considerations. Drugs Aging 2017 34 12 873 880 10.1007/s40266‑017‑0512‑4 29214511
    [Google Scholar]
  63. Ojha R. Singh J. Ojha A. Singh H. Sharma S. Nepali K. An updated patent review: xanthine oxidase inhibitors for the treatment of hyperuricemia and gout (2011-2015). Expert Opin. Ther. Pat. 2017 27 3 311 345 10.1080/13543776.2017.1261111 27841045
    [Google Scholar]
  64. Chen M. Meng L. The double faced role of xanthine oxidoreductase in cancer. Acta Pharmacol. Sin. 2022 43 7 1623 1632 10.1038/s41401‑021‑00800‑7 34811515
    [Google Scholar]
  65. Bove M. Cicero A.F.G. Borghi C. The effect of xanthine oxidase inhibitors on blood pressure and renal function. Curr. Hypertens. Rep. 2017 19 12 95 10.1007/s11906‑017‑0793‑3 29071435
    [Google Scholar]
  66. Huddleston E.M. Gaffo A.L. Emerging strategies for treating gout. Curr. Opin. Pharmacol. 2022 65 102241 10.1016/j.coph.2022.102241 35609384
    [Google Scholar]
  67. Pruis S. Jeon Y.K. Pearce F. Thong B.Y.H. Aziz M.I.A. Cost-effectiveness of sequential urate lowering therapies for the management of gout in Singapore. J. Med. Econ. 2020 23 8 838 847 10.1080/13696998.2020.1757456 32301360
    [Google Scholar]
  68. Szekanecz Z. Szamosi S. Kovács G.E. Kocsis E. Benkő S. The NLRP3 inflammasome - interleukin 1 pathway as a therapeutic target in gout. Arch. Biochem. Biophys. 2019 670 82 93 10.1016/j.abb.2019.01.031 30710503
    [Google Scholar]
  69. Malcova H. Milota T. Strizova Z. Cebecauerova D. Striz I. Sediva A. Horvath R. Interleukin-1 blockade in polygenic autoinflammatory disorders: where are we now? Front. Pharmacol. 2021 11 619273 10.3389/fphar.2020.619273 33708123
    [Google Scholar]
  70. Schlesinger N Lipsky PE Pegloticase treatment of chronic refractory gout: Update on efficacy and safety. Semin Arthritis Rheum. 2020 50 3S S31 S38
    [Google Scholar]
  71. Botson J.K. Baraf H.S.B. Keenan R.T. Albert J. Masri K.R. Peterson J. Yung C. Freyne B. Amin M. Abdellatif A. Soloman N. Edwards N.L. Strand V. Expert opinion on pegloticase with concomitant immunomodulatory therapy in the treatment of uncontrolled gout to improve efficacy, safety, and durability of response. Curr. Rheumatol. Rep. 2022 24 1 12 19 10.1007/s11926‑022‑01055‑9 35167037
    [Google Scholar]
  72. Zhang F. Gan Y. Xie W. Zha Y. Liang Y. Ge Y. Zhang J. Qian J. Duan Y. Wu Z. Zhang S. Role of Novel Zinc Ferrite Nanoparticle in Gout Arthritis: Alleviating Inflammation and Oxidative Stress by Regulating Nlrp3 Inflammasome Activation and Nrf2 Pathway. SSRN 2022 10.2139/ssrn.4554185
    [Google Scholar]
  73. Cao Y. Hu Y. Jin X.F. Liu Y. Zou J.M. Dimethyl fumarate attenuates MSU-induced gouty arthritis by inhibiting NLRP3 inflammasome activation and oxidative stress. Eur. Rev. Med. Pharmacol. Sci. 2023 27 2 628 641 36734707
    [Google Scholar]
  74. Li Y. Pu L.Y. Li Y. Zhu G. Wu Z. Design, synthesis and evaluation of a myricetin and nobiletin hybrid compound for alleviating hyperuricemia based on metabolomics and gut microbiota. RSC Advances 2023 13 31 21448 21458 10.1039/D3RA03188H 37465570
    [Google Scholar]
  75. Mutalib N.S. Zain M.H. Asari A. Maulidiani M. Aziz A.N. Yusuf N. Wahab N.H. Malaysian Medicinal Plants (Euphorbia milii) As A Drug Alternative Source For Anti-Gout Therapy. Malays. J. Anal. Sci. 2023 27 1 189 197
    [Google Scholar]
  76. Anjani Q.K. Sabri A.H.B. Moreno-Castellanos N. Utomo E. Cárcamo-Martínez Á. Domínguez-Robles J. Wardoyo L.A.H. Donnelly R.F. Soluplus®-based dissolving microarray patches loaded with colchicine: towards a minimally invasive treatment and management of gout. Biomater. Sci. 2022 10 20 5838 5855 10.1039/D2BM01068B 35972236
    [Google Scholar]
  77. Chen Z. Han B. Liao L. Hu X. Hu Q. Gao Y. Qiu Y. Enhanced transdermal delivery of polydatin via a combination of inclusion complexes and dissolving microneedles for treatment of acute gout arthritis. J. Drug Deliv. Sci. Technol. 2020 55 101487 10.1016/j.jddst.2019.101487
    [Google Scholar]
  78. Fan Y. Zhang Q. Development of liposomal formulations: From concept to clinical investigations. Asian J. Pharm. Sci. 2013 8 2 81 87 10.1016/j.ajps.2013.07.010
    [Google Scholar]
  79. Bozzuto G. Molinari A. Liposomes as nanomedical devices. Int. J. Nanomedicine 2015 10 975 999 10.2147/IJN.S68861 25678787
    [Google Scholar]
  80. Akbarzadeh A. Rezaei-Sadabady R. Davaran S. Joo S.W. Zarghami N. Hanifehpour Y. Samiei M. Kouhi M. Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 2013 8 1 102 10.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  81. Singh H.P. Utreja P. Tiwary A.K. Jain S. Elastic liposomal formulation for sustained delivery of colchicine: in vitro characterization and in vivo evaluation of anti-gout activity. AAPS J. 2009 11 1 54 64 10.1208/s12248‑008‑9078‑8 19191031
    [Google Scholar]
  82. Pando D. Matos M. Gutiérrez G. Pazos C. Formulation of resveratrol entrapped niosomes for topical use. Colloids Surf. B Biointerfaces 2015 128 398 404 10.1016/j.colsurfb.2015.02.037 25766923
    [Google Scholar]
  83. Chandu V.P. Arunachalam A. Jeganath S. Yamini K. Tharangini K. Chaitanya G. Niosomes: a novel drug delivery system. Int. J. Novel Trends Pharm. Sci. 2012 2 1 25 31
    [Google Scholar]
  84. Singh N. Parashar P. Tripathi C.B. Kanoujia J. Kaithwas G. Saraf S.A. Oral delivery of allopurinol niosomes in treatment of gout in animal model. J. Liposome Res. 2017 27 2 130 138 10.1080/08982104.2016.1174943 28067087
    [Google Scholar]
  85. Parhi R. Suresh P. Preparation and characterization of solid lipid nanoparticles-a review. Curr. Drug Discov. Technol. 2012 9 1 2 16 10.2174/157016312799304552 22235925
    [Google Scholar]
  86. Mosallaei N. Jaafari M.R. Hanafi-Bojd M.Y. Golmohammadzadeh S. Malaekeh-Nikouei B. Docetaxel-loaded solid lipid nanoparticles: preparation, characterization, in vitro, and in vivo evaluations. J. Pharm. Sci. 2013 102 6 1994 2004 10.1002/jps.23522 23558514
    [Google Scholar]
  87. Wang S. Chen T. Chen R. Hu Y. Chen M. Wang Y. Emodin loaded solid lipid nanoparticles: Preparation, characterization and antitumor activity studies. Int. J. Pharm. 2012 430 1-2 238 246 10.1016/j.ijpharm.2012.03.027 22465546
    [Google Scholar]
  88. Wang Q. Yang Q. Cao X. Wei Q. Firempong C.K. Guo M. Shi F. Xu X. Deng W. Yu J. Enhanced oral bioavailability and anti-gout activity of [6]-shogaol-loaded solid lipid nanoparticles. Int. J. Pharm. 2018 550 1-2 24 34 10.1016/j.ijpharm.2018.08.028 30125653
    [Google Scholar]
  89. Rajpoot K Tekade M Pandey V Nagaraja S Youngren-Ortiz SR Tekade RK Self-microemulsifying drug-delivery system: ongoing challenges and future ahead. Drug Delivery Systems: Advances in Pharmaceutical Product Development and Research Cambridge, Massachusetts Academic Press 2020 10.1016/B978‑0‑12‑814487‑9.00009‑0
    [Google Scholar]
  90. Wu L. Qiao Y. Wang L. Guo J. Wang G. He W. Yin L. Zhao J. A self-microemulsifying drug delivery system (SMEDDS) for a novel medicative compound against depression: a preparation and bioavailability study in rats. AAPS PharmSciTech 2015 16 5 1051 1058 10.1208/s12249‑014‑0280‑y 25652729
    [Google Scholar]
  91. Qureshi M.J. Mallikarjun C. Kian W.G. Enhancement of solubility and therapeutic potential of poorly soluble lovastatin by SMEDDS formulation adsorbed on directly compressed spray dried magnesium aluminometasilicate liquid loadable tablets: A study in diet induced hyperlipidemic rabbits. Asian J. Pharm. Sci. 2015 10 1 40 56 10.1016/j.ajps.2014.08.003
    [Google Scholar]
  92. Zhang K. Wang Q. Yang Q. Wei Q. Man N. Adu-Frimpong M. Toreniyazov E. Ji H. Yu J. Xu X. Enhancement of oral bioavailability and anti-hyperuricemic activity of isoliquiritigenin via self-microemulsifying drug delivery system. AAPS PharmSciTech 2019 20 5 218 10.1208/s12249‑019‑1421‑0 31187334
    [Google Scholar]
  93. Benson H.A.E. Transfersomes for transdermal drug delivery. Expert Opin. Drug Deliv. 2006 3 6 727 737 10.1517/17425247.3.6.727 17076595
    [Google Scholar]
  94. Malakar J. Sen S.O. Nayak A.K. Sen K.K. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm. J. 2012 20 4 355 363 10.1016/j.jsps.2012.02.001 23960810
    [Google Scholar]
  95. Tiwari R. Tiwari G. Singh R. Allopurinol loaded transferosomes for the alleviation of symptomatic after-effects of Gout: An Account of Pharmaceutical implications. Curr. Drug Ther. 2020 15 4 404 419 10.2174/1574885515666200120124214
    [Google Scholar]
  96. Manceau J.M. Nevin A. Fotakis C. Tzortzakis S. Terahertz time domain spectroscopy for the analysis of cultural heritage related materials. Appl. Phys. B 2008 90 3-4 365 368 10.1007/s00340‑008‑2933‑6
    [Google Scholar]
  97. Paraskevaidi M. Matthew B.J. Holly B.J. Hugh B.J. Thulya C.P.V. Loren C. StJohn C. Peter G. Callum G. Sergei K.G. Kamila K. Maria K. Kássio L.M.G. Pierre M-H.L. Evangelos P. Savithri P. John A.A. Alexandra S. Marfran S. Josep S-S. Gunjan T. Michael W. Bayden W. Clinical applications of infrared and Raman spectroscopy in the fields of cancer and infectious diseases. Appl. Spectrosc. Rev. 2021 56 8-10 804 868 10.1080/05704928.2021.1946076
    [Google Scholar]
  98. Auner G.W. Koya S.K. Huang C. Broadbent B. Trexler M. Auner Z. Elias A. Mehne K.C. Brusatori M.A. Applications of Raman spectroscopy in cancer diagnosis. Cancer Metastasis Rev. 2018 37 4 691 717 10.1007/s10555‑018‑9770‑9 30569241
    [Google Scholar]
  99. Movasaghi Z. Rehman S. Rehman I.U. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2007 42 5 493 541 10.1080/05704920701551530
    [Google Scholar]
  100. Jamrógiewicz M. Application of the near-infrared spectroscopy in the pharmaceutical technology. J. Pharm. Biomed. Anal. 2012 66 1 10 10.1016/j.jpba.2012.03.009 22469433
    [Google Scholar]
  101. Castro-Camus E. Koch M. Mittleman D.M. Recent advances in terahertz imaging: 1999 to 2021. Appl. Phys. B 2022 128 1 12 10.1007/s00340‑021‑07732‑4
    [Google Scholar]
  102. Bakris G.L. Mikami H. Hirata M. Nakajima A. Cressman M.D. A non-purine xanthine oxidoreductase inhibitor reduces albuminuria in patients with DKD: a randomized controlled trial. Kidney360 2021 2 8 1240 1250 10.34067/KID.0001672021 35369650
    [Google Scholar]
  103. Yoon S. Lee H. Jang I-J. Yu K-S. Shin D. Pharmacokinetics, pharmacodynamics, and tolerability of LC350189, a novel xanthine oxidase inhibitor, in healthy subjects. Drug Des. Devel. Ther. 2015 9 5033 5049 10.2147/DDDT.S86884 26357467
    [Google Scholar]
  104. Shahid H. Singh J.A. Investigational drugs for hyperuricemia. Expert Opin. Investig. Drugs 2015 24 8 1013 1030 10.1517/13543784.2015.1051617 26073200
    [Google Scholar]
  105. Poiley J. Steinberg A.S. Choi Y.J. Davis C.S. Martin R.L. McWherter C.A. Boudes P.F. A randomized, double‐blind, active‐and placebo‐controlled efficacy and safety study of arhalofenate for reducing flare in patients with gout. Arthritis Rheumatol. 2016 68 8 2027 2034 10.1002/art.39684 26989892
    [Google Scholar]
  106. Steinberg AS Vince BD Choi Y-J Martin RL McWherter CA The Pharmacodynamics, Pharmacokinetics, and Safety of Arhalofenate in Combination with Febuxostat When Treating Hyperuricemia Associated with Gout. J Rheumatol. 2017 44 3 374 379
    [Google Scholar]
  107. Abdel-Latif R.T. Wadie W. Abdel-mottaleb Y. Abdallah D.M. El-Maraghy N.N. El-Abhar H.S. Reposition of the anti-inflammatory drug diacerein in an in-vivo colorectal cancer model. Saudi Pharm. J. 2022 30 1 72 90 10.1016/j.jsps.2021.12.009 35145347
    [Google Scholar]
  108. Taniguchi T. Ashizawa N. Matsumoto K. Iwanaga T. Enhancement of pharmacological effects of uricosuric agents by concomitant treatment with pyrazinamide in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2017 390 3 253 260 10.1007/s00210‑016‑1324‑5 27933340
    [Google Scholar]
  109. Taniguchi T. Ashizawa N. Matsumoto K. Saito R. Motoki K. Sakai M. Chikamatsu N. Hagihara C. Hashiba M. Iwanaga T. Pharmacological evaluation of dotinurad, a selective urate reabsorption inhibitor. J. Pharmacol. Exp. Ther. 2019 371 1 162 170 10.1124/jpet.119.259341 31371478
    [Google Scholar]
  110. Lin Y. Chen X. Ding H. Ye P. Gu J. Wang X. Jiang Z. Li D. Wang Z. Long W. Li Z. Jiang G. Li X. Bi L. Jiang L. Wu J. Guo L. Cai X. Lu X. Chen Q. Chen H. Peng A. Zuo X. Ning R. Zhang Z. Tai Y. Zhang T. Bao C. Efficacy and safety of a selective URAT1 inhibitor SHR4640 in Chinese subjects with hyperuricaemia: a randomized controlled phase II study. Rheumatology (Oxford) 2021 60 11 5089 5097 10.1093/rheumatology/keab198 33693494
    [Google Scholar]
  111. Mouradjian M.T. Plazak M.E. Gale S.E. Noel Z.R. Watson K. Devabhakthuni S. Pharmacologic management of gout in patients with cardiovascular disease and heart failure. Am. J. Cardiovasc. Drugs 2020 20 5 431 445 10.1007/s40256‑020‑00400‑6 32090301
    [Google Scholar]
  112. Zhang L Wyatt D Stazzone K Shi Z Wang Y. OP0205 PHASE I STUDY OF D-0120, A NOVEL URAT1 INHIBITOR IN CLINICAL DEVELOPMENT FOR HYPERURICEMIA AND GOUT. BMJ 2020 79 1 127
    [Google Scholar]
  113. Tan P.K. Liu S. Gunic E. Miner J.N. Discovery and characterization of verinurad, a potent and specific inhibitor of URAT1 for the treatment of hyperuricemia and gout. Sci. Rep. 2017 7 1 665 10.1038/s41598‑017‑00706‑7 28386072
    [Google Scholar]
  114. Shiramoto M. Liu S. Shen Z. Yan X. Yamamoto A. Gillen M. Ito Y. Hall J. Verinurad combined with febuxostat in Japanese adults with gout or asymptomatic hyperuricaemia: a phase 2a, open-label study. Rheumatology (Oxford) 2018 57 9 1602 1610 10.1093/rheumatology/key100 29868853
    [Google Scholar]
  115. Fitz-Patrick D. Roberson K. Niwa K. Fujimura T. Mori K. Hall J. Yan X. Shen Z. Liu S. Ito Y. Baumgartner S. Safety and efficacy of verinurad, a selective URAT1 inhibitor, for the treatment of patients with gout and/or asymptomatic hyperuricemia in the United States and Japan: Findings from two phase II trials. Mod. Rheumatol. 2019 29 6 1042 1052 10.1080/14397595.2018.1538003 30334639
    [Google Scholar]
  116. Fleischmann R. Winkle P. Miner J.N. Yan X. Hicks L. Valdez S. Hall J. Liu S. Shen Z. Gillen M. Hernandez-Illas M. Pharmacodynamic and pharmacokinetic effects and safety of verinurad in combination with allopurinol in adults with gout: a phase IIa, open-label study. RMD Open 2018 4 1 e000584 10.1136/rmdopen‑2017‑000584 29531784
    [Google Scholar]
  117. Fleischmann R. Winkle P. Hall J. Valdez S. Liu S. Yan X. Hicks L. Lee C. Miner J.N. Gillen M. Hernandez-Illas M. Pharmacodynamic and pharmacokinetic effects and safety of verinurad in combination with febuxostat in adults with gout: a phase IIa, open-label study. RMD Open 2018 4 1 e000647 10.1136/rmdopen‑2018‑000647 29657831
    [Google Scholar]
  118. Lee H.A. Yu K.S. Park S.I. Yoon S. Onohara M. Ahn Y. Lee H. URC102, a potent and selective inhibitor of hURAT1, reduced serum uric acid in healthy volunteers. Rheumatology (Oxford) 2019 58 11 1976 1984 31056705
    [Google Scholar]
  119. Ichida K. [New antihyperuricemic medicine: febuxostat, Puricase, etc]. Jpn. J. Clin. Med. 2008 66 4 759 765 18409528
    [Google Scholar]
  120. Pascart T. Richette P. Investigational drugs for hyperuricemia, an update on recent developments. Expert Opin. Investig. Drugs 2018 27 5 437 444 10.1080/13543784.2018.1471133 29718730
    [Google Scholar]
  121. Fay B.T. Mikuls T.R. Advances and unmet needs in gout. Int. J. Clin. Rheumatol. 2010 5 2 187 197 10.2217/ijr.10.9
    [Google Scholar]
  122. Kivitz A. DeHaan W. Azeem R. Park J. Rhodes S. Inshaw J. Leung S.S. Nicolaou S. Johnston L. Kishimoto T.K. Traber P.G. Sands E. Choi H. Phase 2 dose-finding study in patients with gout using SEL-212, a novel PEGylated uricase (SEL-037) combined with tolerogenic nanoparticles (SEL-110). Rheumatol. Ther. 2023 10 4 825 847 10.1007/s40744‑023‑00546‑0 37069364
    [Google Scholar]
  123. Stamp L.K. Merriman T.R. Singh J.A. Expert opinion on emerging urate-lowering therapies. Expert Opin. Emerg. Drugs 2018 23 3 201 209 10.1080/14728214.2018.1527899 30244605
    [Google Scholar]
  124. Otsuka Y. Ohno Y. Morita A. Otani N. Jutabha P. Ouchi M. Tsuruoka S. Anzai N. <b>Molecular mechanism of urate-lowering effects of anserine nitrate</b>. GOUT NUCLEIC ACID METABOL. 2016 40 2 137 143 10.6032/gnam.40.137
    [Google Scholar]
  125. Kubomura D. Yamada M. Masui A. Tuna extract reduces serum uric acid in gout-free subjects with insignificantly high serum uric acid: A randomized controlled trial. Biomed. Rep. 2016 5 2 254 258 10.3892/br.2016.701 27446553
    [Google Scholar]
  126. Kuwabara M. Niwa K. Nishi Y. Mizuno A. Asano T. Masuda K. Komatsu I. Yamazoe M. Takahashi O. Hisatome I. Relationship between serum uric acid levels and hypertension among Japanese individuals not treated for hyperuricemia and hypertension. Hypertens. Res. 2014 37 8 785 789 10.1038/hr.2014.75 24671018
    [Google Scholar]
  127. Matsuo H. Shinomiya N. Takada T. Inhibiting the onset of gout. US Patent 11098364 2021
  128. Ranganathan N. Composition and method for preventing or treating gout or hyperuricemia. United States patent US. US Patent 9655932 2017
  129. Quart B.D. Girardet J.L. Gunic E. Yeh L.T. Compounds and compositions and methods of use. US Patent 10183012 2019
  130. Moloney A.P. Compositions and methods of use. US Patent 11154578 2021
  131. Chen S.J. Chen Y.L. Hsu H.Y. Wann S.Y. Chen M.H. Yu L.W. Strain of Lactobacillus rhamnosus and its metabolites for use in inhibiting xanthine oxidase and treating gout. US Patent 9636368 2017
  132. Hsieh P.S. Hsieh-Hsun H.O. Tsai Y.C. Kuo C.W. Method for reducing blood uric acid concentration and for degrading purine. US Patent 11785975 2023
  133. Terruzzi S. Bellomi S. Marras G. Barreca G. Ventimiglia G. Cervellino A. Masciocchi N. Disclosing the rich crystal chemistry of lesinurad by ab initio laboratory X-ray powder diffraction methods. Cryst. Growth Des. 2018 18 11 6863 6872 10.1021/acs.cgd.8b01083
    [Google Scholar]
  134. Ku MS Chen CK Lu WS Lin IY Métodos y composiciones para tratar hiperuricemia y trastornos metabólicos asociados con hiperuricemia. 2017
  135. Agnew-Francis K.A. Williams C.M. Squaramides as bioisosteres in contemporary drug design. Chem. Rev. 2020 120 20 11616 11650 10.1021/acs.chemrev.0c00416 32930577
    [Google Scholar]
  136. Davis M.W. Feng H. Colchine compositions and methods. US Patent 8415396 2013
  137. Amicus Therapeutics FDA Approves Galafold™ (migalastat) for the Treatment of Certain Adult Patients with Fabry Disease. 2018 Available From: https://ir.amicusrx.com/news-releases/news-release-details/fda-approves-galafoldtm-migalastat-treatment-certain-adult
  138. Zhang C. Fan K. Ma X. Yang L. Hu C. Luo H. Mei X. Pegylated analogue protein or canine urate oxidase, preparation method and use thereof. US Patent 9193967 2015
  139. Chen C. Lu J.M. Yao Q. Small molecule xanthine oxidase inhibitors and methods of use. US Patent 8895626 2014
  140. Shi D. Changjin F.U. Cheng X. Zhu J. Gu J. URAT1 inhibitor and use thereof. US Patent 10875865 2020
  141. Fitzgerald K. Hinkle G. Mooney T.R. Xanthine dehydrogenase (xdh) irna compositions and methods of use thereof. US Patent 15747571 2018
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871308473240926044126
Loading
/content/journals/rrct/10.2174/0115748871308473240926044126
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: patents ; recent advancement ; clinical trials ; hyperuricemia ; Gout ; pathophysiology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test