Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-8871
  • E-ISSN: 1876-1038

Abstract

Different levels of residual drugs can be monitored within a relatively safe range without causing harm to human health if the appropriate dosing methodology is considered and the drug withdrawal period is controlled during poultry and livestock raising. Antimicrobials are factors that can suppress the growth of microorganisms, and antibiotic residues in livestock farming have been considered as a potential cause of antimicrobial resistance in animals and humans. Antimicrobial drug resistance is associated with the capability of a microorganism to survive the inhibitory effects of the antimicrobial components. Antibiotic residue presence in chicken is a human health concern due to its negative effects on consumer health. Neglected aspects related to the application of veterinary drugs may threaten the safety of both humans and animals, as well as their environment. The detection of chemical contaminants is essential to ensure food quality. The most important antibiotic families used in veterinary medicines are β-lactams (penicillins and cephalosporins), tetracyclines, chloramphenicols, macrolides, spectinomycin, lincosamide, sulphonamides, nitrofuranes, nitroimidazoles, trimethoprim, polymyxins, quinolones, and macrocyclics (glycopeptides, ansamycins, and aminoglycosides). Antibiotic residue presence is the main contributor to the development of antibiotic resistance, which is considered a chief concern for both human and animal health worldwide. The incorrect application and misuse of antibiotics carry the risk of the presence of residues in the edible tissues of the chicken, which can cause allergies and toxicity in hypersensitive consumers. The enforcement of the regulation of food safety depends on efficacious monitoring of antimicrobial residues in the foodstuff. In this review, we have explored the rapid detection of drug residues in broilers.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871305331240724104132
2024-08-20
2025-07-09
Loading full text...

Full text loading...

References

  1. LiB. LaiG. ZhangH. HuS. YuA. Copper chromogenic reaction based colorimetric immunoassay for rapid and sensitive detection of a tumor biomarker.Anal. Chim. Acta201796310611110.1016/j.aca.2017.01.03028335963
    [Google Scholar]
  2. XuF. RenK. YangY. GuoJ. MaG. LiuY. LuY. LiX. Immunoassay of chemical contaminants in milk: A review.J. Integr. Agric.201514112282229510.1016/S2095‑3119(15)61121‑2
    [Google Scholar]
  3. DziadoszM. TeskeJ. HenningK. KlintscharM. NordmeierF. LC–MS/MS screening strategy for cannabinoids, opiates, amphetamines, cocaine, benzodiazepines and methadone in human serum, urine and post-mortem blood as an effective alternative to immunoassay based methods applied in forensic toxicology for preliminary examination.Forensic Chem.20187333710.1016/j.forc.2017.12.007
    [Google Scholar]
  4. BaynesR.E. DedonderK. KissellL. MzykD. MarmulakT. SmithG. TellL. GehringR. DavisJ. RiviereJ.E. Health concerns and management of select veterinary drug residues.Food Chem. Toxicol.20168811212210.1016/j.fct.2015.12.02026751035
    [Google Scholar]
  5. XuN. LiM. ChouW.C. LinZ. A physiologically based pharmacokinetic model of doxycycline for predicting tissue residues and withdrawal intervals in grass carp (Ctenopharyngodon idella).Food Chem. Toxicol.202013711112710.1016/j.fct.2020.11112731945393
    [Google Scholar]
  6. HassanM. WangY. RajputS.A. ShaukatA. YangP. FarooqM.Z. ChengQ. AliM. MiX. AnY. QiD. Ameliorative effects of luteolin and activated charcoal on growth performance, immunity function, and antioxidant capacity in broiler chickens exposed to deoxynivalenol.Toxins202315847810.3390/toxins1508047837624235
    [Google Scholar]
  7. HodakC.R. BescucciD.M. ShamashK. KellyL.C. MontinaT. SavageP.B. InglisG.D. Antimicrobial growth promoters altered the function but not the structure of enteric bacterial communities in broilers chicks ± microbiota transplantation.Animals202313699710.3390/ani1306099736978538
    [Google Scholar]
  8. MarmittD.J. ShahrajabianM.H. Plant species used in Brazil and Asia regions with toxic properties.Phytother. Res.20213594703472610.1002/ptr.710033793002
    [Google Scholar]
  9. MarmittD.J. ShahrajabianM.H. GoettertM.I. RempelC. Clinical trials with plants in diabetes mellitus therapy: A systematic review.Expert Rev. Clin. Pharmacol.202114673574710.1080/17512433.2021.191738033884948
    [Google Scholar]
  10. BarrosA. NovoC.S. FeddernV. ColdebellaA. ScheuermannG.N. Determination of eleven veterinary drugs in chicken meat and liver.Appl. Sci.20211118873110.3390/app11188731
    [Google Scholar]
  11. KalamM.A. AlimM.A. ShanoS. NayemM.R.K. BadshaM.R. MamunM.A.A. HoqueA. TanzinA.Z. KhanS.A. IslamA. IslamM.M. HassanM.M. Knowledge, attitude, and practices on antimicrobial use and antimicrobial resistance among poultry drug and feed sellers in Bangladesh.Vet. Sci.20218611110.3390/vetsci806011134203812
    [Google Scholar]
  12. MdegelaR.H. MwakapejeE.R. RubegwaB. GebeyehuD.T. NiyigenaS. MsambichakaV. NongaH.E. Antoine-MoussiauxN. FasinaF.O. Antimicrobial use, residues, resistance and governance in the food and agriculture sectors, Tanzania.Antibiotics202110445410.3390/antibiotics1004045433923689
    [Google Scholar]
  13. BokhtiarS.M. IslamM.R. AhmedM.J. RahmanA. RafiqK. Assessment of heavy metals contamination and antimicrobial drugs residue in broiler edible tissues in Bangladesh.Antibiotics202312466210.3390/antibiotics1204066237107024
    [Google Scholar]
  14. CornejoJ. YevenesK. AvelloC. PokrantE. MaddalenoA. MartinB.S. LapierreL. Determination of chlortetracycline residues, antimicrobial activity and presence of resistance genes in droppings of experimentally treated broiler chickens.Molecules2018236126410.3390/molecules2306126429799472
    [Google Scholar]
  15. IwińskiH. ChodkowskaK.A. DrabikK. BatkowskaJ. KarwowskaM. KuropkaP. SzumowskiA. SzumnyA. RóżańskiH. The impact of a phytobiotic mixture on broiler chicken health and meat safety.Animals20231313215510.3390/ani1313215537443953
    [Google Scholar]
  16. WuM. ChengX. WuX. QianH. WangW. Effect of cooking methods on amphenicols and metabolites residues in livestock and poultry meat spiked tissues.Foods20221121349710.3390/foods1121349736360114
    [Google Scholar]
  17. AbreuR. Semedo-LemsaddekT. CunhaE. TavaresL. OliveiraM. Antimicrobial drug resistance in poultry production: Current status and innovative strategies for bacterial control.Microorganisms202311495310.3390/microorganisms1104095337110376
    [Google Scholar]
  18. KumarH. BhardwajK. KaurT. NepovimovaE. KučaK. KumarV. BhatiaS.K. DhanjalD.S. ChopraC. SinghR. GuleriaS. BhallaT.C. VermaR. KumarD. Detection of bacterial pathogens and antibiotic residues in chicken meat: A review.Foods2020910150410.3390/foods910150433092226
    [Google Scholar]
  19. CampagnoloE.R. JohnsonK.R. KarpatiA. RubinC.S. KolpinD.W. MeyerM.T. EstebanJ.E. CurrierR.W. SmithK. ThuK.M. McGeehinM. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations.Sci. Total Environ.20022991-3899510.1016/S0048‑9697(02)00233‑412462576
    [Google Scholar]
  20. MoriT. FujieK. KuwatsukaS. KatayamaA. Accelerated microbial degradation of chlorothalonil in soils amended with farmyard manure.Soil Sci. Plant Nutr.199642231532210.1080/00380768.1996.10415101
    [Google Scholar]
  21. Song-Quan Ong Hamdan Ahmad AhmadH. Abdul Hafiz Ab Majid.Insecticides residues on poultry manures: Field efficacy test on selected insecticides in managing Musca domestica population.Trop. Life Sci. Res.2017282455510.21315/tlsr2017.28.2.428890760
    [Google Scholar]
  22. KeenP.L. De WithN. Tracking antibiotics and antibiotic resistance genes through the composting process and field distribution of poultry waste: Lessons learned201110.1002/9781118156247.ch24
    [Google Scholar]
  23. MotoyamaM. NakagawaS. TanoueR. SatoY. NomiyamaK. ShinoharaR. Residues of pharmaceutical products in recycled organic manure produced from sewage sludge and solid waste from livestock and relationship to their fermentation level.Chemosphere201184443243810.1016/j.chemosphere.2011.03.04821570103
    [Google Scholar]
  24. ZhangY.D. ZhengN. HanR.W. ZhengB.Q. YuZ.N. LiS.L. ZhengS.S. WangJ.Q. Occurrence of tetracyclines, sulfonamides, sulfamethazine and quinolones in pasteurized milk and UHT milk in China’s market.Food Control201436123824210.1016/j.foodcont.2013.08.012
    [Google Scholar]
  25. ShahrajabianM.H. SunW. Mechanism of action of collagen and epidermal growth factor: A review on theory and research methods.Mini Rev. Med. Chem.20232337587815
    [Google Scholar]
  26. ShahrajabianM.H. SunW. Study of different types of fermentation in wine making process and considering aromatic substances and organic acid.Curr. Org. Synth.2023202310.2174/157017942066623080310225337534487
    [Google Scholar]
  27. ShahrajabianM.H. SunW. Various techniques for molecular and rapid detection of infectious and epidemic diseases.Lett. Org. Chem.202320977980110.2174/1570178620666230331095720
    [Google Scholar]
  28. ShahrajabianM.H. SunW. The importance of salicylic acid, humic acid and fulvic acid on crop production.Lett. Drug Des. Discov.2023202320116
    [Google Scholar]
  29. ShahrajabianM.H. SunW. Survey on multi-omics, and multi-omics data analysis, integration and application.Curr. Pharm. Anal.202319426728110.2174/1573412919666230406100948
    [Google Scholar]
  30. ShahrajabianM.H. SunW. Great health benefits of essential oils of pennyroyal (Mentha pulegium L.): A natural and organic medicine.Curr. Nutr. Food Sci.202319434034510.2174/1573401318666220620145213
    [Google Scholar]
  31. ShahrajabianM.H. SunW. The important nutritional benefits and wonderful health benefits of Cashew (Anacardium occidentale L.).Nat. Prod. J.2023134e27042220412710.2174/2210315512666220427113702
    [Google Scholar]
  32. ShahrajabianM.H. SunW. Assessment of wine quality, traceability and detection of grapes wine, detection of harmful substances in alcohol and liquor composition analysis.Lett. Drug Des. Discov.202320
    [Google Scholar]
  33. ShahrajabianM.H. SunW. Potential roles of longan as a natural remedy with tremendous nutraceutical values.Curr. Nutr. Food Sci.202319988889510.2174/1573401319666230221111242
    [Google Scholar]
  34. ShahrajabianM.H. SunW. Kashk and doogh: The yogurt-based national Persian products.Curr. Nutr. Food Sci.202319992292710.2174/1573401319666230228115432
    [Google Scholar]
  35. ShahrajabianM.H. SunW. A friendly strategy for an organic life by considering Syrian bean caper (Zygophyllum fabago L.), and parsnip (Pastinaca sativa L.).Curr. Nutr. Food Sci.202319987087410.2174/1573401319666230207093757
    [Google Scholar]
  36. ShahrajabianM.H. SunW. Survey on medicinal plants and herbs in traditional Iranian medicine with anti-oxidant, anti-viral, anti-microbial, and anti-inflammation properties.Lett. Drug Des. Discov.202320111707174310.2174/1570180819666220816115506
    [Google Scholar]
  37. ShahrajabianM.H. SunW. Importance of thymoquinone, sulforaphane, phloretin, and epigallocatechin and their health benefits.Lett. Drug Des. Discov.202319
    [Google Scholar]
  38. ShahrajabianM.H. SunW. The golden spice for life: Turmeric with the pharmacological benefits of curcuminoids components, including curcumin, bisdemethoxycurcumin, and demethoxycurcumin.Curr. Org. Synth.202320
    [Google Scholar]
  39. ShahrajabianM.H. SunW. Five important seeds in traditional medicine, and pharmacological benefits.Seeds20232329030810.3390/seeds2030022
    [Google Scholar]
  40. DuB. WenF. ZhangY. ZhengN. LiS. LiF. WangJ. Presence of tetracyclines, quinolones, lincomycin and streptomycin in milk.Food Control201910017117510.1016/j.foodcont.2019.01.005
    [Google Scholar]
  41. HuY. WangJ. ShenY. Enhanced performance of anaerobic digestion of cephalosporin C fermentation residues by gamma irradiation-induced pretreatment.J. Hazard. Mater.202038412133510.1016/j.jhazmat.2019.12133531590081
    [Google Scholar]
  42. LiuX. SteeleJ.C. MengX.Z. Usage, residue, and human health risk of antibiotics in chinese aquaculture: A review.Environ. Pollut.201722316116910.1016/j.envpol.2017.01.00328131482
    [Google Scholar]
  43. JiaW. ChuX. LingY. HuangJ. ChangJ. High-throughput screening of pesticide and veterinary drug residues in baby food by liquid chromatography coupled to quadrupole orbitrap mass spectrometry.J. Chromatogr. A2014134712212810.1016/j.chroma.2014.04.08124816507
    [Google Scholar]
  44. HeX. DengM. WangQ. YangY. YangY. NieX. Residues and health risk assessment of quinolones and sulfonamides in cultures fish from pearl river delta, china.Aquaculture2016458384610.1016/j.aquaculture.2016.02.006
    [Google Scholar]
  45. WilkeM.S. LoveringA.L. StrynadkaN.C.J. β-Lactam antibiotic resistance: A current structural perspective.Curr. Opin. Microbiol.20058552553310.1016/j.mib.2005.08.01616129657
    [Google Scholar]
  46. DemolyP. RomanoA. Update on beta-lactam allergy diagnosis.Curr. Allergy Asthma Rep.20055191410.1007/s11882‑005‑0048‑215659257
    [Google Scholar]
  47. WuQ. GaoX. ShabbirM.A.B. PengD. TaoY. ChenD. HaoH. ChengG. LiuZ. YuanZ. WangY. Rapid multi-residue screening of antibiotics in muscle from different animal species by microbiological inhibition method.Microchem. J.202015210441710.1016/j.microc.2019.104417
    [Google Scholar]
  48. ZhouD. LiY. HuangL. QianM. LiD. SunG. YangB. A reliable and cost-efficient TLC-HPLC method for determining total florfenicol residues in porcine edible tissues.Food Chem.202030312539910.1016/j.foodchem.2019.12539931470274
    [Google Scholar]
  49. QinY. JatamunuaF. ZhangJ. LiY. HanY. ZouN. ShanJ. JiangY. PanC. Analysis of sulfonamides, tilmicosin and avermectins residues in typical animal matrices with multi-plug filtration cleanup by liquid chromatography–tandem mass spectrometry detection.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20171053273310.1016/j.jchromb.2017.04.00628410479
    [Google Scholar]
  50. ZhaoF. GaoX. TangZ. LuoX. WuM. XuJ. FuX. Development of a simple multi-residue determination method of 80 veterinary drugs in Oplegnathus punctatus by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20171065-1066202810.1016/j.jchromb.2017.09.01328941404
    [Google Scholar]
  51. YinZ. ChaiT. MuP. XuN. SongY. WangX. JiaQ. QiuJ. Multi-residue determination of 210 drugs in pork by ultra-high-performance liquid chromatography–tandem mass spectrometry.J. Chromatogr. A20161463495910.1016/j.chroma.2016.08.00127499107
    [Google Scholar]
  52. KangJ. Studies of rapid determination for motile-residues of veterinary drug in animal derived food and establishment of the accurate mass library.Yanshan university2014
    [Google Scholar]
  53. MalikA.K. BlascoC. PicóY. Liquid chromatography–mass spectrometry in food safety.J. Chromatogr. A20101217254018404010.1016/j.chroma.2010.03.01520392451
    [Google Scholar]
  54. TegliaC.M. PeltzerP.M. SeibS.N. LajmanovichR.C. CulzoniM.J. GoicoecheaH.C. Simultaneous multi-residue determination of twenty one veterinary drugs in poultry litter by modeling three-way liquid chromatography with fluorescence and absorption detection data.Talanta201716744245210.1016/j.talanta.2017.02.03028340744
    [Google Scholar]
  55. MasiáA. Suarez-VarelaM.M. Llopis-GonzalezA. PicóY. Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review.Anal. Chim. Acta2016936406110.1016/j.aca.2016.07.02327566339
    [Google Scholar]
  56. Fang-yangH. Research on detection technology of veterinary drugs residue.J. Beijing Technol. Bus. Univ2012301719
    [Google Scholar]
  57. ZhouJ. XuJ.J. CongJ.M. CaiZ.X. ZhangJ.S. WangJ.L. RenY.P. Optimization for quick, easy, cheap, effective, rugged and safe extraction of mycotoxins and veterinary drugs by response surface methodology for application to egg and milk.J. Chromatogr. A20181532202910.1016/j.chroma.2017.11.05029174133
    [Google Scholar]
  58. KimC. RyuH.D. ChungE.G. KimY. LeeJ. A review of analytical procedures for the simultaneous determination of medically important veterinary antibiotics in environmental water: Sample preparation, liquid chromatography, and mass spectrometry.J. Environ. Manage.201821762964510.1016/j.jenvman.2018.04.00629649735
    [Google Scholar]
  59. LiuR. HeiW. HeP. LiZ. Simultaneous determination of fifteen illegal dyes in animal feeds and poultry products by ultra-high performance liquid chromatography tandem mass spectrometry.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2011879242416242210.1016/j.jchromb.2011.06.03721782530
    [Google Scholar]
  60. SørumH. L’Abée-LundT.M. Antibiotic resistance in food-related bacteria—a result of interfering with the global web of bacterial genetics.Int. J. Food Microbiol.2002781-2435610.1016/S0168‑1605(02)00241‑612222637
    [Google Scholar]
  61. QieM. ZhaoY. YangS. WangW. XuZ. Rapid simultaneous determination of 160 drugs in urine and blood of livestock and poultry by ultra-high-performance liquid chromatography-tandem mass spectrometry.J. Chromatogr. A2019160846042310.1016/j.chroma.2019.46042331445803
    [Google Scholar]
  62. WangS. PengQ. JiaH.M. ZengX.F. ZhuJ.L. HouC.L. LiuX.T. YangF.J. QiaoS.Y. Prevention of Escherichia coli infection in broiler chickens with Lactobacillus plantarum B1.Poult. Sci.20179682576258610.3382/ps/pex06128482103
    [Google Scholar]
  63. SecciaS. FidenteP. MontesanoD. MorricaP. Determination of neonicotinoid insecticides residues in bovine milk samples by solid-phase extraction clean-up and liquid chromatography with diode-array detection.J. Chromatogr. A200812141-211512010.1016/j.chroma.2008.10.08819004450
    [Google Scholar]
  64. MolH.G.J. Plaza-BolañosP. ZomerP. de RijkT.C. StolkerA.A.M. MulderP.P.J. Toward a generic extraction method for simultaneous determination of pesticides, mycotoxins, plant toxins, and veterinary drugs in feed and food matrixes.Anal. Chem.200880249450945910.1021/ac801557f19072261
    [Google Scholar]
  65. XieJ. PengT. ZhuA. HeJ. ChangQ. HuX. ChenH. FanC. JiangW. ChenM. LiJ. DingS. JiangH. Multi-residue analysis of veterinary drugs, pesticides and mycotoxins in dairy products by liquid chromatography–tandem mass spectrometry using low-temperature cleanup and solid phase extraction.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.20151002192910.1016/j.jchromb.2015.08.00526298066
    [Google Scholar]
  66. LiZ. NieJ. YanZ. XuG. LiH. KuangL. PanL. XieH. WangC. LiuC. ZhaoX. GuoY. Risk assessment and ranking of pesticide residues in Chinese pears.J. Integr. Agric.201514112328233910.1016/S2095‑3119(15)61124‑8
    [Google Scholar]
  67. JiaW. ChuX. ChangJ. WangP.G. ChenY. ZhangF. High throughput untargeted screening of veterinary drug residues and metabolites in tilapia using high resolution orbitrap mass spectrometry.Anal. Chim. Acta2017957293910.1016/j.aca.2016.12.03828107831
    [Google Scholar]
  68. FAO.Report of the FAO technical consultation on food allergies.1995Available from: https://openknowledge.fao.org/server/api/core/bitstreams/296d784c-b61b-40d4-8d50-03ca55937caa/content
  69. ZhongW. LiZ. YangJ. LiuC. TianB. WangY. ChenP. Effect of thermal–alkaline pretreatment on the anaerobic digestion of streptomycin bacterial residues for methane production.Bioresour. Technol.201415143644010.1016/j.biortech.2013.10.10024262629
    [Google Scholar]
  70. ZhuX. YangS. WangL. LiuY. QianF. YaoW. ZhangS. ChenJ. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology.Environ. Pollut.2016211202710.1016/j.envpol.2015.12.03226736052
    [Google Scholar]
  71. ChenW. GengY. HongJ. KuaH.W. XuC. YuN. Life cycle assessment of antibiotic mycelial residues management in china.Renew. Sustain. Energy Rev.20177983083810.1016/j.rser.2017.05.120
    [Google Scholar]
  72. CaloniF. CortinovisC. PizzoF. RivoltaM. DavanzoF. Epidemiological study (2006–2012) on the poisoning of small animals by human and veterinary drugs.Vet. Rec.2014174922210.1136/vr.10210724477472
    [Google Scholar]
  73. Principles and methods for the risk assessment of chemicals in food.2009Available from: https://www.who.int/publications/i/item/9789241572408
  74. SiF. ZouR. JiaoS. QiaoX. GuoY. ZhuG. Inner filter effect-based homogeneous immunoassay for rapid detection of imidacloprid residue in environmental and food samples.Ecotoxicol. Environ. Saf.201814886286810.1016/j.ecoenv.2017.11.062
    [Google Scholar]
  75. MacLachlanD.J. MuellerU. A refined approach to estimate exposure for use in calculating the Maximum Residue Limit of veterinary drugs.Regul. Toxicol. Pharmacol.20126219910610.1016/j.yrtph.2011.12.00622203043
    [Google Scholar]
  76. WuD. DuD. LinY. Recent progress on nanomaterial-based biosensors for veterinary drug residues in animal-derived food.Trends Analyt. Chem.2016839510110.1016/j.trac.2016.08.006
    [Google Scholar]
  77. YanL. LuoC. ChengW. MaoW. ZhangD. DingS. A simple and sensitive electrochemical aptasensor for determination of Chloramphenicol in honey based on target-induced strand release.J. Electroanal. Chem.2012687899410.1016/j.jelechem.2012.10.016
    [Google Scholar]
  78. WangJ. ZhangH. ShengW. LiuW. ZhengL. ZhangX. WangS. Determination of streptomycin residues in animal-derived foods by a reliable and accurate enzyme-linked immunosorbent assay.Anal. Methods20135174430443510.1039/c3ay40131f
    [Google Scholar]
  79. HuH. QiuJ. LiR. LiD. WangQ. WangQ. MaY. YangW. XuR. LiuL. SuY. SongH. YangB. Comparative study of the plasma pharmacokinetics and tissue residues of trimethoprim in silky fowls and 817 broilers after single oral administration.Poult. Sci.20231021110306010.1016/j.psj.2023.10306037717479
    [Google Scholar]
  80. TianY. ZhangJ. LiF. WangA. YangZ. LiJ. Dietary supplementation with different alternative to in-feed antibiotic improves growth performance of broilers during specific phases.Poult. Sci.20231021010291910.1016/j.psj.2023.10291937494806
    [Google Scholar]
  81. DréanoE. MiquelD. TaillandierJ.F. LaurentieM. Hurtaud-PesselD. MompelatS. Antimicrobial residues along the broiler feathers: Analysis of sulfadiazine, trimethoprim and oxytetracycline in feather segments over time.Food Control202314810967410.1016/j.foodcont.2023.109674
    [Google Scholar]
  82. LiP.P. ZhangL. WangJ.P. Research note: Study on the residue depletion of febrifugine and isofebrifugine in broiler chicken.Poul. Sci.20211001010139010.1016/j.psj.2021.10139034391965
    [Google Scholar]
  83. BuchbergerW.W. Novel analytical procedures for screening of drug residues in water, waste water, sediment and sludge.Anal. Chim. Acta2007593212913910.1016/j.aca.2007.05.00617543599
    [Google Scholar]
  84. YuF. WuY. YuS. ZhangH. ZhangH. QuL. HarringtonP.B. A competitive chemiluminescence enzyme immunoassay for rapid and sensitive determination of enrofloxacin.Spectrochim. Acta A Mol. Biomol. Spectrosc.20129316416810.1016/j.saa.2012.03.00122472132
    [Google Scholar]
  85. YangH. BeverC.S. ZhangH. MariG.M. LiH. ZhangX. GuoL. WangZ. LuoP. WangZ. Comparison of soybean peroxidase with horseradish peroxidase and alkaline phosphatase used in immunoassays.Anal. Biochem.201958111333610.1016/j.ab.2019.06.00731201790
    [Google Scholar]
  86. GanS.D. PatelK.R. Enzyme immunoassay and enzyme-linked immunosorbent assay.J. Invest. Dermatol.201313391310.1038/jid.2013.28723949770
    [Google Scholar]
  87. SantosS. HenriquesM. DuarteA. EstevesV. Development and application of a capillary electrophoresis based method for the simultaneous screening of six antibiotics in spiked milk samples.Talanta200771273173710.1016/j.talanta.2006.05.04919071366
    [Google Scholar]
  88. Vera-CandiotiL. OlivieriA.C. GoicoecheaH.C. Development of a novel strategy for preconcentration of antibiotic residues in milk and their quantitation by capillary electrophoresis.Talanta201082121322110.1016/j.talanta.2010.04.02320685459
    [Google Scholar]
  89. Herrera-HerreraA.V. Hernández-BorgesJ. AfonsoM.M. PalenzuelaJ.A. Rodríguez-DelgadoM.Á. Comparison between magnetic and non magnetic multi-walled carbon nanotubes-dispersive solid-phase extraction combined with ultra-high performance liquid chromatography for the determination of sulfonamide antibiotics in water samples.Talanta201311669570310.1016/j.talanta.2013.07.06024148463
    [Google Scholar]
  90. YangX. ZhangS. YuW. LiuZ. LeiL. LiN. ZhangH. YuY. Ionic liquid-anionic surfactant based aqueous two-phase extraction for determination of antibiotics in honey by high-performance liquid chromatography.Talanta20141241610.1016/j.talanta.2014.02.03924767438
    [Google Scholar]
  91. Cháfer-PericásC. MaquieiraÁ. PuchadesR. Fast screening methods to detect antibiotic residues in food samples.Trends Analyt. Chem.20102991038104910.1016/j.trac.2010.06.004
    [Google Scholar]
  92. DangP.K. DegandG. DanyiS. PierretG. DelahautP. TonV.D. Maghuin-RogisterG. ScippoM.L. Validation of a two-plate microbiological method for screening antibiotic residues in shrimp tissue.Anal. Chim. Acta20106721-2303910.1016/j.aca.2010.03.05520579486
    [Google Scholar]
  93. SavianoA.M. FranciscoF.L. LourençoF.R. Rational development and validation of a new microbiological assay for linezolid and its measurement uncertainty.Talanta201412722522910.1016/j.talanta.2014.04.01924913880
    [Google Scholar]
  94. ZhaoC.Q. DingS.N. Perspective on signal amplification strategies and sensing protocols in photoelectrochemical immunoassay.Coord. Chem. Rev.201939111410.1016/j.ccr.2019.03.018
    [Google Scholar]
  95. MaiZ. ZhangJ. ChenY. WangJ. HongX. SuQ. LiX. A disposable fiber optic SPR probe for immunoassay.Biosens. Bioelectron.201914411162110.1016/j.bios.2019.11162131518787
    [Google Scholar]
  96. LiY.F. SunY.M. BeierR.C. LeiH.T. GeeS. HammockB.D. WangH. WangZ. SunX. ShenY.D. YangJ.Y. XuZ.L. Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review.Trends Analyt. Chem.201788254010.1016/j.trac.2016.12.010
    [Google Scholar]
  97. WangS. ZhangC. WangJ. ZhangY. Development of colloidal gold-based flow-through and lateral-flow immunoassays for the rapid detection of the insecticide carbaryl.Anal. Chim. Acta2005546216116610.1016/j.aca.2005.04.088
    [Google Scholar]
  98. WangX. NiessnerR. TangD. KnoppD. Nanoparticle-based immunosensors and immunoassays for aflatoxins.Anal. Chim. Acta2016912102310.1016/j.aca.2016.01.04826920768
    [Google Scholar]
  99. ShuM. XuY. LiuX. LiY. HeQ. TuZ. FuJ. GeeS.J. HammockB.D. Anti-idiotypic nanobody-alkaline phosphatase fusion proteins: Development of a one-step competitive enzyme immunoassay for fumonisin B 1 detection in cereal.Anal. Chim. Acta2016924535910.1016/j.aca.2016.03.05327181644
    [Google Scholar]
  100. ShenD. WangK. FathiM.A. LiY. Win-ShweT.T. LiC. A succession of pulmonary microbiota in broilers during the growth cycle.Poult. Sci.2023102910288410.1016/j.psj.2023.10288437423015
    [Google Scholar]
  101. YangX. WangF. SongC. WuS. ZhangG. ZengX. Establishment of a lateral flow colloidal gold immunoassay strip for the rapid detection of estradiol in milk samples.Lebensm. Wiss. Technol.2015641889410.1016/j.lwt.2015.04.022
    [Google Scholar]
  102. HanS. ZhouT. YinB. HeP. A sensitive and semi-quantitative method for determination of multi-drug residues in animal body fluids using multiplex dipstick immunoassay.Anal. Chim. Acta2016927647110.1016/j.aca.2016.05.00427237838
    [Google Scholar]
  103. BilandžićN. KolanovićB.S. VareninaI. ScortichiniG. AnnunziataL. BrstiloM. RudanN. Veterinary drug residues determination in raw milk in Croatia.Food Control201122121941194810.1016/j.foodcont.2011.05.007
    [Google Scholar]
  104. SeoH.D. LeeJ. KimY.J. HantschelO. LeeS.G. KimH.S. Alkaline phosphatase-fused repebody as a new format of immuno-reagent for an immunoassay.Anal. Chim. Acta201795018419110.1016/j.aca.2016.11.01327916124
    [Google Scholar]
  105. GuoJ.B. XuY. HuangZ.B. HeQ.H. LiuS.W. Development of an immunoassay for rapid screening of vardenafil and its potential analogues in herbal products based on a group specific monoclonal antibody.Anal. Chim. Acta2010658219720310.1016/j.aca.2009.11.02120103095
    [Google Scholar]
  106. GeL. LiB. XuH. PuW. KwokH.F. Backfilling rolling cycle amplification with enzyme-DNA conjugates on antibody for portable electrochemical immunoassay with glucometer readout.Biosens. Bioelectron.201913221021610.1016/j.bios.2019.02.05130875633
    [Google Scholar]
  107. LeeH.L. WengY.P. KuW.Y. HuangL.L.H. A nanobead based sandwich immunoassay.J. Taiwan Inst. Chem. Eng.201243191410.1016/j.jtice.2011.07.002
    [Google Scholar]
  108. LeiK.F. YangS.I. TsaiS.W. HsuH.T. Paper-based microfluidic sensing device for label-free immunoassay demonstrated by biotin–avidin binding interaction.Talanta201513426427010.1016/j.talanta.2014.11.03125618666
    [Google Scholar]
  109. XuZ.L. ShenY.D. BeierR.C. YangJ.Y. LeiH.T. WangH. SunY.M. Application of computer-assisted molecular modeling for immunoassay of low molecular weight food contaminants: A review.Anal. Chim. Acta2009647212513610.1016/j.aca.2009.06.00319591697
    [Google Scholar]
  110. ZeckA. WellerM.G. NiessnerR. Multidimensional biochemical detection of microcystins in liquid chromatography.Anal. Chem.200173225509551710.1021/ac015511y11816581
    [Google Scholar]
  111. CervinoC. AsamS. KnoppD. RychlikM. NiessnerR. Use of isotope-labeled aflatoxins for LC-MS/MS stable isotope dilution analysis of foods.J. Agric. Food Chem.20085661873187910.1021/jf073231z18303822
    [Google Scholar]
  112. ZhouH. YangD. IvlevaN.P. MircescuN.E. NiessnerR. HaischC. SERS detection of bacteria in water by in situ coating with Ag nanoparticles.Anal. Chem.20148631525153310.1021/ac402935p24387044
    [Google Scholar]
  113. UhligS. BusmanM. ShaneD.S. RønningH. RiseF. ProctorR. Identification of early fumonisin biosynthetic intermediates by inactivation of the FUM6 gene in Fusarium verticillioides.J. Agric. Food Chem.20126041102931030110.1021/jf302967b22991966
    [Google Scholar]
  114. PulliT. HöyhtyäM. SöderlundH. TakkinenK. One-step homogeneous immunoassay for small analytes.Anal. Chem.20057782637264210.1021/ac048379l15828804
    [Google Scholar]
  115. QiuY.L. HeQ.H. XuY. BhuniaA.K. TuZ. ChenB. LiuY.Y. Deoxynivalenol-mimic nanobody isolated from a naïve phage display nanobody library and its application in immunoassay.Anal. Chim. Acta201588720120810.1016/j.aca.2015.06.03326320803
    [Google Scholar]
  116. HuL. ZuoP. YeB.C. Multicomponent mesofluidic system for the detection of veterinary drug residues based on competitive immunoassay.Anal. Biochem.20104051899510.1016/j.ab.2010.05.03420621709
    [Google Scholar]
  117. HeJ. TaoX. WangK. DingG. LiJ. LiQ.X. GeeS.J. HammockB.D. XuT. One-step immunoassay for the insecticide carbaryl using a chicken single-chain variable fragment (scFv) fused to alkaline phosphatase.Anal. Biochem.201957291510.1016/j.ab.2019.02.02230831096
    [Google Scholar]
  118. QueX. ChenX. FuL. LaiW. ZhuangJ. ChenG. TangD. Platinum-catalyzed hydrogen evolution reaction for sensitive electrochemical immunoassay of tetracycline residues.J. Electroanal. Chem.201370411111710.1016/j.jelechem.2013.06.023
    [Google Scholar]
  119. SongE. YuM. WangY. HuW. ChengD. SwihartM.T. SongY. Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk.Biosens. Bioelectron.20157232032510.1016/j.bios.2015.05.01826002016
    [Google Scholar]
  120. ChenY. ChenQ. HanM. LiuJ. ZhaoP. HeL. ZhangY. NiuY. YangW. ZhangL. Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk.Biosens. Bioelectron.20167943043410.1016/j.bios.2015.12.06226741531
    [Google Scholar]
  121. AhmedS. NingJ. ChengG. AhmadI. LiJ. MingyueL. QuW. IqbalM. ShabbirM.A.B. YuanZ. Receptor-based screening assays for the detection of antibiotics residues A review.Talanta201716617618610.1016/j.talanta.2017.01.05728213220
    [Google Scholar]
  122. KalunkeR.M. GrassoG. OvidioR. DragoneR. FrazzoliC. Detection of criprofloxacin residues in cow milk: A novel and rapid optical β-galactosidase-based screening assay.Microchem. J.201813612813210.1016/j.microc.2016.12.014
    [Google Scholar]
  123. SantosL. RamosF. Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: A review.Trends Food Sci. Technol.201652163010.1016/j.tifs.2016.03.015
    [Google Scholar]
  124. WangX. DongS. GaiP. DuanR. LiF. Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy.Biosens. Bioelectron.201682495410.1016/j.bios.2016.03.05527040941
    [Google Scholar]
  125. XuX. FengL. LiJ. YuanP. FengJ. WeiL. ChengX. Rapid screening detection of fluoroquinolone residues in milk based on turn-on fluorescence of terbium coordination polymer nanosheets.Chin. Chem. Lett.201930354955210.1016/j.cclet.2018.11.026
    [Google Scholar]
  126. ChenY. LiX. YangM. YangL. HanX. JiangX. ZhaoB. High sensitive detection of penicillin G residues in milk by surface-enhanced Raman scattering.Talanta201716723624110.1016/j.talanta.2017.02.02228340716
    [Google Scholar]
  127. LeeI.K. BaeS. GuM.J. YouS.J. KimG. ParkS.M. JeungW.H. KoK.H. ChoK.J. KangJ.S. YunC.H. H9N2-specific IgG and CD4+ CD25+ T cells in broilers fed a diet supplemented with organic acids.Poult. Sci.20179651063107010.3382/ps/pew38228158799
    [Google Scholar]
  128. KokulnathanT. ChenS.M. Robust and selective electrochemical detection of antibiotic residues: The case of integrated lutetium vanadate/graphene sheets architectures.J. Hazard. Mater.202038412130410.1016/j.jhazmat.2019.12130431581009
    [Google Scholar]
  129. WangY. LiZ. LinH. SiddanakoppaluP.N. ZhouJ. ChenG. YuZ. Quantum-dot-based lateral flow immunoassay for the rapid detection of crustacean major allergen tropomyosin.Food Control201910610671410.1016/j.foodcont.2019.106714
    [Google Scholar]
  130. LinX. SuJ. LinH. SunX. LiuB. KankalaR.K. ZhouS.F. Luminescent carbon nanodots based aptasensors for rapid detection of kanamycin residue.Talanta201920245245910.1016/j.talanta.2019.04.07531171207
    [Google Scholar]
  131. LozanoA. HernandoM.D. UclésS. HakmeE. Fernández-AlbaA.R. Identification and measurement of veterinary drug residues in beehive products.Food Chem.2019274617010.1016/j.foodchem.2018.08.05530372985
    [Google Scholar]
  132. CzyrskiA. Analytical methods for determining third and fourth generation fluoroquinolones: A review.Chromatographia201780218120010.1007/s10337‑016‑3224‑828216694
    [Google Scholar]
  133. TuckS. FureyA. CrooksS. DanaherM. A review of methodology for the analysis of pyrethrin and pyrethroid residues in food of animal origin.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.201835591194010.1080/19440049.2017.142091929337656
    [Google Scholar]
  134. DmitrienkoS.G. KochukE.V. ApyariV.V. TolmachevaV.V. ZolotovY.A. Recent advances in sample preparation techniques and methods of sulfonamides detection A review.Anal. Chim. Acta201485062510.1016/j.aca.2014.08.02325441155
    [Google Scholar]
  135. Pérez-RodríguezM. PelleranoR.G. PezzaL. PezzaH.R. An overview of the main foodstuff sample preparation technologies for tetracycline residue determination.Talanta201818212110.1016/j.talanta.2018.01.05829501128
    [Google Scholar]
  136. ZhangW. WangP. SuX. Current advancement in analysis of β-agonists.Trends Analyt. Chem.20168511610.1016/j.trac.2016.08.011
    [Google Scholar]
  137. MehdiY. Létourneau-MontminyM.P. GaucherM.L. ChorfiY. SureshG. RouissiT. BrarS.K. CôtéC. RamirezA.A. GodboutS. Use of antibiotics in broiler production: Global impacts and alternatives.Anim. Nutr.20184217017810.1016/j.aninu.2018.03.00230140756
    [Google Scholar]
  138. ButayeP. DevrieseL.A. HaesebrouckF. Differences in antibiotic resistance patterns of Enterococcus faecalis and Enterococcus faecium strains isolated from farm and pet animals.Antimicrob. Agents Chemother.20014551374137810.1128/AAC.45.5.1374‑1378.200111302798
    [Google Scholar]
  139. PugajevaI. IkkereL.E. JudjalloE. BartkevicsV. Determination of residues and metabolites of more than 140 pharmacologically active substances in meat by liquid chromatography coupled to high resolution Orbitrap mass spectrometry.J. Pharm. Biomed. Anal.201916625226310.1016/j.jpba.2019.01.02430665193
    [Google Scholar]
  140. ToldraF. ReigM. Methods for rapid detection of chemical and veterinary drug residues in animal foods.Trends Food Sci. Technol.200617948248910.1016/j.tifs.2006.02.002
    [Google Scholar]
  141. GaudinV. Advances in biosensor development for the screening of antibiotic residues in food products of animal origin A comprehensive review.Biosens. Bioelectron.20179036337710.1016/j.bios.2016.12.00527940240
    [Google Scholar]
  142. ConzueloF. Ruiz-Valdepeñas MontielV. CampuzanoS. GamellaM. Torrente-RodríguezR.M. ReviejoA.J. PingarrónJ.M. Rapid screening of multiple antibiotic residues in milk using disposable amperometric magnetosensors.Anal. Chim. Acta2014820323810.1016/j.aca.2014.03.00524745735
    [Google Scholar]
  143. HanX. ShengF. KongD. WangY. PanY. ChenM. TaoY. LiuZ. AhmedS. YuanZ. PengD. Broad-spectrum monoclonal antibody and a sensitive multi-residue indirect competitive enzyme-linked immunosorbent assay for the antibacterial synergists in samples of animal origin.Food Chem.2019280202610.1016/j.foodchem.2018.12.04030642487
    [Google Scholar]
  144. SuY. MaX. OuyangZ. Rapid screening of multi-class antimicrobial residues in food of animal origin by paper spray mass spectrometry.Int. J. Mass Spectrom.201843423323910.1016/j.ijms.2018.10.003
    [Google Scholar]
  145. LiousiaM. GousiaP. cV. conomouN.A. SakkasH. PapadopoulouC. Screening for antibiotic residues in swine and poultry tissues using the STAR test.Int. J. Food Saf. Nutr. Public Health20155217318310.1504/IJFSNPH.2015.067572
    [Google Scholar]
  146. YuW. ZhangT. MaM. ChenC. LiangX. WenK. WangZ. ShenJ. Highly sensitive visual detection of amantadine residues in poultry at the ppb level: A colorimetric immunoassay based on a Fenton reaction and gold nanoparticles aggregation.Anal. Chim. Acta2018102713013610.1016/j.aca.2018.04.03529866262
    [Google Scholar]
  147. O’MahonyJ. ClarkeL. WhelanM. O’KennedyR. LehotayS.J. DanaherM. The use of ultra-high pressure liquid chromatography with tandem mass spectrometric detection in the analysis of agrochemical residues and mycotoxins in food Challenges and applications.J. Chromatogr. A20131292839510.1016/j.chroma.2013.01.00723352828
    [Google Scholar]
  148. PengJ. ChengG. HuangL. WangY. HaoH. PengD. LiuZ. YuanZ. Development of a direct ELISA based on carboxy-terminal of penicillin-binding protein BlaR for the detection of β-lactam antibiotics in foods.Anal. Bioanal. Chem.2013405278925893310.1007/s00216‑013‑7311‑524013636
    [Google Scholar]
  149. MoellerN. Mueller-SeitzE. ScholzO. HillenW. BergwerffA.A. PetzM. A new strategy for the analysis of tetracycline residues in foodstuffs by a surface plasmon resonance biosensor.Eur. Food Res. Technol.2006224328529210.1007/s00217‑006‑0392‑z
    [Google Scholar]
  150. LiangX. WangZ. WangC. WenK. MiT. ZhangJ. ZhangS. A proof-of-concept receptor-based assay for sulfonamides.Anal. Biochem.2013438211011610.1016/j.ab.2013.03.02823567760
    [Google Scholar]
  151. LiuN. GaoZ. MaH. SuP. MaX. LiX. OuG. Simultaneous and rapid detection of multiple pesticide and veterinary drug residues by suspension array technology.Biosens. Bioelectron.20134171071610.1016/j.bios.2012.09.05023084755
    [Google Scholar]
  152. NielenM.W.F. HooijerinkH. ClaassenF.C. van EngelenM.C. van BeekT.A. Desorption electrospray ionisation mass spectrometry: A rapid screening tool for veterinary drug preparations and forensic samples from hormone crime investigations.Anal. Chim. Acta20096371-29210010.1016/j.aca.2008.08.03619286017
    [Google Scholar]
  153. BerendsenB.J.A. MeijerT. MolH.G.J. van GinkelL. NielenM.W.F. A global inter-laboratory study to assess acquisition modes for multi-compound confirmatory analysis of veterinary drugs using liquid chromatography coupled to triple quadrupole, time of flight and orbitrap mass spectrometry.Anal. Chim. Acta2017962607210.1016/j.aca.2017.01.04628231881
    [Google Scholar]
  154. DasenakiM.E. MichaliC.S. ThomaidisN.S. Analysis of 76 veterinary pharmaceuticals from 13 classes including aminoglycosides in bovine muscle by hydrophilic interaction liquid chromatography–tandem mass spectrometry.J. Chromatogr. A20161452678010.1016/j.chroma.2016.05.03127215463
    [Google Scholar]
  155. DasenakiM.E. ThomaidisN.S. Multi-residue determination of 115 veterinary drugs and pharmaceutical residues in milk powder, butter, fish tissue and eggs using liquid chromatography–tandem mass spectrometry.Anal. Chim. Acta201588010312110.1016/j.aca.2015.04.01326092343
    [Google Scholar]
  156. ChiangC-H. LeeH.H. ChenB-H. LinY-C. ChaoY-Y. HuangY-L. Using ambient mass spectrometry and LC-MS/MS for the rapid detection and identification of multiple illicit street drugs.Yao Wu Shi Pin Fen Xi201927243945030987715
    [Google Scholar]
  157. VailT.M. JonesP.R. SparkmanO.D. Rapid and unambiguous identification of melamine in contaminated pet food based on mass spectrometry with four degrees of confirmation.J. Anal. Toxicol.200731630431210.1093/jat/31.6.30417725875
    [Google Scholar]
  158. SilvaG.R. LimaJ.A. SouzaL.F. SantosF.A. LanaM.A.G. AssisD.C.S. CançadoS.V. Multiresidue method for identification and quantification of avermectins, benzimidazoles and nitroimidazoles residues in bovine muscle tissue by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) using a QuEChERS approach.Talanta201717130732010.1016/j.talanta.2017.05.01228551144
    [Google Scholar]
  159. JiangY. SunD.W. PuH. WeiQ. Surface enhanced raman spectroscopy (SERS): A novel reliable technique for rapid detection of common harmful chemical residues.Trends Food Sci. Technol.201875102210.1016/j.tifs.2018.02.020
    [Google Scholar]
  160. SreejithS. ShajahanS. PrathiushP.R. AnjanaV.M. MathewJ. AparnaS. AbrahamS.S. RadhakrishnanE.K. Rapid detection of mobile resistance genes tetA and tetB from metaplasmid isolated from healthy broiler feces.Microb. Pathog.202216610550410.1016/j.micpath.2022.10550435341957
    [Google Scholar]
  161. JarquinR. HanningI. AhnS. RickeS.C. Development of rapid detection and genetic characterization of Salmonella in poultry breeder feeds.Sensors2009975308532310.3390/s9070530822346699
    [Google Scholar]
  162. ChiesaL.M. NobileM. PanseriS. ArioliF. Suitability of feathers as control matrix for antimicrobial treatments detection compared to muscle and liver of broilers.Food Control20189126827510.1016/j.foodcont.2018.04.002
    [Google Scholar]
  163. CuiM. XieM. QuZ. ZhaoS. WangJ. WangY. HeT. WangH. ZuoZ. WuC. Prevalence and antimicrobial resistance of Salmonella isolated from an integrated broiler chicken supply chain in qingdao, China.Food Control20166227027610.1016/j.foodcont.2015.10.036
    [Google Scholar]
  164. LandoniM.F. AlbarellosG. The use of antimicrobial agents in broiler chickens.Vet. J.20152051212710.1016/j.tvjl.2015.04.01625981931
    [Google Scholar]
  165. EkimB. CalikA. CeylanA. SaçaklıP. Effects of Paenibacillus xylanexedens on growth performance, intestinal histomorphology, intestinal microflora, and immune response in broiler chickens challenged with Escherichia coli K88.Poult. Sci.202099121422310.3382/ps/pez46032416805
    [Google Scholar]
  166. MarkeyB. LeonardF. ArchambaultM. CullinaneA. MaguireD. Clinical Veterinary Microbiology E-Book.Elsevier Health Sciences2013
    [Google Scholar]
  167. StolkerA.A.M. BrinkmanU.A.T. Analytical strategies for residue analysis of veterinary drugs and growth-promoting agents in food-producing animals—a review.J. Chromatogr. A200510671-2155310.1016/j.chroma.2005.02.03715844509
    [Google Scholar]
  168. SunW. ShahrajabianM.H. ChengQ. Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes.Cogent Biol.201951167368810.1080/23312025.2019.1673688
    [Google Scholar]
  169. XiaoY. JiaM. JiangT. ZhangC. QiX. SunY. GaoJ. ZhouL. LiY. Dietary supplementation with perillartine ameliorates lipid metabolism disorder induced by a high fat diet in broiler chickens.Biochem. Biophys. Res. Commun.2022625667410.1016/j.bbrc.2022.07.11635952609
    [Google Scholar]
  170. YangY. ZhuX. RaoQ. LiuZ. YangJ. ZhaoZ. Toxicokinetics and edible tissues-specific bioaccumulation of decabrominated diphenyl ethers (BDE-209) after exposure to the broilers.Ecotoxicol. Environ. Saf.202224811432410.1016/j.ecoenv.2022.11432436434998
    [Google Scholar]
  171. ZhantengS. HongtingZ. ZhimingX. dechengS. Residue accumulation, distribution, and withdrawal period of sulfamethazine and N-acetylsulfamethazine in poultry waste from broilers.Chemosphere202127813042010.1016/j.chemosphere.2021.13042034126678
    [Google Scholar]
  172. IbrahimN. ChantziarasI. MohsinM. BoyenF. FournieG. IslamSk.S. BergeA.C. CaekebekeN. JoostenP. DewulfJ. Quantiative and qualitative analysis of antimicrobial usage and biosecurity on broiler and Sonali farms in Bangladesh.Prev. Vet. Med.202321710596810.1016/j.prevetmed.2023.10596837453226
    [Google Scholar]
  173. KhanS. ChandN. NazS. AlrefaeiA.F. AlbeshrM.F. LosaccoC. KhanR.U. Response to dietary methionine and organic zinc in broilers against coccidia under Eimeria tenella-challenged condition.Livest. Sci.202327610531710.1016/j.livsci.2023.105317
    [Google Scholar]
  174. TangY.T. YinS.G. PengC.F. TangJ.Y. JiaG. CheL.Q. LiuG.M. TianG. ChenX.L. CaiJ.Y. KangB. ZhaoH. Compound bioengineering protein supplementation improves intestinal health and growth performance of broilers.Poult. Sci.20231021110303710.1016/j.psj.2023.10303737657250
    [Google Scholar]
  175. PirompudP. SivapirunthepP. PunyapornwithayaV. ChaosapC. Preslaughter handling factors affecting dead on arrival, condemnations, and bruising in broiler chickens raised without an antibiotic program.Poult. Sci.2023102810282810.1016/j.psj.2023.10282837354619
    [Google Scholar]
  176. KhanA. AfzalM. RasoolK. AmeenM. QureshiN.A. In-vivo anticoccidial efficacy of green synthesized iron-oxide nanoparticles using Ficus racemosa Linn leaf extract. (Moraceae) against Emeria tenella infection in broiler chicks.Vet. Parasitol.202332111000310.1016/j.vetpar.2023.11000337586136
    [Google Scholar]
  177. IslamR. SultanaN. AymanU. IslamM.R. HashemM.A. Role of steroid growth promoter on growth performance and meat quality traits in broiler.Poult. Sci.2022101710190410.1016/j.psj.2022.10190435523031
    [Google Scholar]
  178. TanH. ZhenW. BaiD. LiuK. HeX. ItoK. LiuY. LiY. ZhangY. ZhangB. MaY. Effects of dietary chlorogenic acid on intestinal barrier function and the inflammatory response in broilers during lipopolysaccharide-induced immune stress.Poult. Sci.2023102510262310.1016/j.psj.2023.10262336972676
    [Google Scholar]
  179. ZhangZ. LiM. TanQ. ChenJ. SunJ. LiJ. SunL. ChenN. SongQ. ZhaoX. LiH. ZhangX. A moderate anticoccidial effect of cedrol on Eimeria tenella in broiler chickens.Parasitol. Int.20239710277910.1016/j.parint.2023.10277937451395
    [Google Scholar]
  180. KalpanaS. AggarwalM. Srinivasa RaoG. MalikJ.K. Effects of aflatoxin B1 on tissue residues of enrofloxacin and its metabolite ciprofloxacin in broiler chickens.Environ. Toxicol. Pharmacol.201233212112610.1016/j.etap.2011.11.00522209724
    [Google Scholar]
  181. ZhangS. ZhuC. XieH. WangL. HuJ. Effect of Gan Cao (Glycyrrhiza uralensis Fisch) polysaccharide on growth performance, immune function, and gut microflora of broiler chickens.Poult. Sci.20221011010206810.1016/j.psj.2022.10206836087472
    [Google Scholar]
  182. WangB. WuQ. YuS. LuQ. LvX. ZhangM. KanY. WangX. ZhuY. WangG. WangQ. Host-derived bacillus spp. As probiotic additives for improved growth performance in broilers.Poult. Sci.2023102110224010.1016/j.psj.2022.10224036334472
    [Google Scholar]
  183. JelvehK. MottaghitalabM. MohammadiM. Effects of green tea phytosome on growth performance and intestinal integrity under coccidiosis infection challenge in broilers.Poult. Sci.2023102510262710.1016/j.psj.2023.10262736996511
    [Google Scholar]
  184. Mohd YusofH. Abdul RahmanN.A. MohamadR. ZaidanU.H. ArshadM.A. SamsudinA.A. Effects of dietary zinc oxide nanoparticles supplementation on broiler growth performance, zinc retention, liver health status, and gastrointestinal microbial load.J Trace Elements Minerals2023410007210.1016/j.jtemin.2023.100072
    [Google Scholar]
  185. ChenJ. WangP. LiuC. YinQ. ChangJ. WangL. JinS. ZhouT. ZhuQ. LuF. Effects of compound feed additive on growth performance and intestinal microbiota of broilers.Poult. Sci.2023102110230210.1016/j.psj.2022.10230236436373
    [Google Scholar]
  186. CervantesH.M. McDougaldL.R. Raising broiler chickens without ionophore anticoccidials.J. Appl. Poult. Res.202332210034710.1016/j.japr.2023.100347
    [Google Scholar]
  187. ZhenW. ZhuT. WangP. GuoF. ZhangK. ZhangT. JalukarS. ZhangY. BaiD. ZhangC. GuoY. WangZ. MaY. Effect of dietary saccharomyces-derived prebiotic refined functional carbohydrates as antibiotic alternative on growth performance and intestinal health of broiler chickens reared in a commercial farm.Poult. Sci.2023102610267110.1016/j.psj.2023.10267137120891
    [Google Scholar]
  188. Muzaffer Denli Ferda Okan Kemal Celik Effect of dietary probiotic, organic acid and antibiotic supplementation to diets on broiler performance and carcass yield.Pak. J. Nutr.200322899110.3923/pjn.2003.89.91
    [Google Scholar]
  189. BuchananN.P. HottJ.M. CutlipS.E. RackA.L. AsamerA. MoritzJ.S. The effects of a natural antibiotic alternative and a natural growth promoter feed additive on broiler performance and carass quality.J. Appl. Poult. Res.200817220221010.3382/japr.2007‑00038
    [Google Scholar]
  190. BrenesA. RouraE. Essential oils in poultry nutrition: Main effects and modes of action.Anim. Feed Sci. Technol.20101581-211410.1016/j.anifeedsci.2010.03.007
    [Google Scholar]
  191. HuZ. GuoY. Effects of dietary sodium butyrate supplementation on the intestinal morphological structure, absorptive function and gut flora in chickens.Anim. Feed Sci. Technol.20071323-424024910.1016/j.anifeedsci.2006.03.017
    [Google Scholar]
  192. TianX. ShaoY. WangZ. GuoY. Effects of dietary yeast β-glucans supplementation on growth performance, gut morphology, intestinal Clostridium perfringens population and immune response of broiler chickens challenged with necrotic enteritis.Anim. Feed Sci. Technol.201621514415510.1016/j.anifeedsci.2016.03.009
    [Google Scholar]
  193. ToghyaniM. ToghyaniM. GheisariA. GhalamkariG. EghbalsaiedS. Evaluation of cinnamon and garlic as antibiotic growth promoter substitutions on performance, immune responses, serum biochemical and haematological parameters in broiler chicks.Livest. Sci.20111381-316717310.1016/j.livsci.2010.12.018
    [Google Scholar]
  194. TimbermontL. LanckrietA. DewulfJ. NolletN. SchwarzerK. HaesebrouckF. DucatelleR. Van ImmerseelF. Control of Clostridium perfringens -induced necrotic enteritis in broilers by target-released butyric acid, fatty acids and essential oils.Avian Pathol.201039211712110.1080/0307945100361058620390546
    [Google Scholar]
  195. Van ImmerseelF. BoyenF. GantoisI. TimbermontL. BohezL. PasmansF. HaesebrouckF. DucatelleR. Supplementation of coated butyric acid in the feed reduces colonization and shedding of Salmonella in poultry.Poult. Sci.200584121851185610.1093/ps/84.12.185116479940
    [Google Scholar]
  196. BalizsG. HewittA. Determination of veterinary drug residues by liquid chromatography and tandem mass spectrometry.Anal. Chim. Acta20034921-210513110.1016/S0003‑2670(03)00890‑0
    [Google Scholar]
  197. BaoH. SheR. LiuT. ZhangY. PengK.S. LuoD. YueZ. DingY. HuY. LiuW. ZhaiL. Effects of pig antibacterial peptides on growth performance and intestine mucosal immune of broiler chickens.Poult. Sci.200988229129710.3382/ps.2008‑0033019151342
    [Google Scholar]
  198. BaurhooB. FerketP.R. ZhaoX. Effects of diets containing different concentrations of mannanoligosaccharide or antibiotics on growth performance, intestinal development, cecal and litter microbial populations, and carcass parameters of broilers.Poult. Sci.200988112262227210.3382/ps.2008‑0056219834074
    [Google Scholar]
  199. ChenX. NarenG.W. WuC.M. WangY. DaiL. XiaL.N. LuoP.J. ZhangQ. ShenJ.Z. Prevalence and antimicrobial resistance of campylobacter isolates in broilers from china.Vet. Microbiol.20101441-213313910.1016/j.vetmic.2009.12.03520116182
    [Google Scholar]
  200. ChenD. PeiX. WuM. XieS. PanY. HuangL. WangX. TaoY. WangY. YuanZ. Development of a networked mass spectral database for veterinary drug residues.Int. J. Mass Spectrom.201943911210.1016/j.ijms.2018.11.014
    [Google Scholar]
  201. ShahrajabianM.H. SunW. ChengQ. Exploring Artemisia annua L., artemisinin and its derivatives, from traditional Chinese wonder medicinal science.Not. Bot. Horti Agrobot. Cluj-Napoca20204841719174110.15835/nbha48412002
    [Google Scholar]
  202. ShahrajabianM.H. SunW. ChengQ. Chemical components and pharmacological benefits of Basil ( Ocimum basilicum ): a review.Int. J. Food Prop.20202311961197010.1080/10942912.2020.1828456
    [Google Scholar]
  203. ShahrajabianM.H. SunW. ChengQ. Traditional herbal medicine for the preventionand treatment of cold and flu in the autumn of 2020, overlapped with covid-19.Nat. Prod. Commun.20201581934578X209514310.1177/1934578X20951431
    [Google Scholar]
  204. ShahrajabianM.H. SunW. SoleymaniA. ChengQ. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses.Phytother. Res.20202020111133350538
    [Google Scholar]
  205. ShahrajabianM.H. Medicinal herbs with anti-inflammatory activities for natural and organic healing.Curr. Org. Chem.202125232885290110.2174/1385272825666211110115656
    [Google Scholar]
  206. ShahrajabianM.H. SunW. ChengQ. Different methods for molecular and rapid detection of human novel coronavirus.Curr. Pharm. Des.202127252893290310.2174/138161282766621060411441134086547
    [Google Scholar]
  207. ShahrajabianM.H. SunW. ChengQ. Molecular breeding and the impacts of some important genes families on agronomic traits, a review.Genet. Resour. Crop Evol.20216851709173010.1007/s10722‑021‑01148‑x
    [Google Scholar]
  208. ShahrajabianM.H. ChaskiC. PolyzosN. PetropoulosS.A. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables.Biomolecules202111569810.3390/biom1105069834067181
    [Google Scholar]
  209. ShahrajabianM.H. ChaskiC. PolyzosN. TzortzakisN. PetropoulosS.A. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants.Biomolecules202111681910.3390/biom1106081934072781
    [Google Scholar]
  210. ShahrajabianM.H. SunW. Medicinal plants, economical and natural agents with antioxidant activity.Curr. Nutr. Food Sci.202319876378410.2174/1573401318666221003110058
    [Google Scholar]
  211. ShahrajabianM.H. ChengQ. SunW. Wonderful natural drugs with surprising nutritional values, rheum species, gifts of the nature.Lett. Org. Chem.2022191081882610.2174/1570178619666220112115918
    [Google Scholar]
  212. ShahrajabianM.H. SunW. ChengQ. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities.Mini Rev. Org. Chem.202219329331810.2174/1570178618666210707161025
    [Google Scholar]
  213. ShahrajabianM.H. SunW. ChengQ. Foliar application of nutrients on medicinal and aromatic plants, the sustainable approaches for higher and better production.Beni. Suef Univ. J. Basic Appl. Sci.20221126110
    [Google Scholar]
  214. ShahrajabianM.H. PetropoulosS.A. SunW. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms.Horticulturae20239219310.3390/horticulturae9020193
    [Google Scholar]
  215. ShahrajabianM.H. KuangY. CuiH. FuL. SunW. Metabolic changes of active components of important medicinal plants on the basis of traditional chinese medicine under different environmental stresses.Curr. Org. Chem.202327978280610.2174/1385272827666230807150910
    [Google Scholar]
  216. ShaoY. WangZ. TianX. GuoY. ZhangH. Yeast β-d-glucans induced antimicrobial peptide expressions against Salmonella infection in broiler chickens.Int. J. Biol. Macromol.20168557358410.1016/j.ijbiomac.2016.01.03126794312
    [Google Scholar]
  217. HassanH.M.A. MohamedM.A. YoussefA.W. HassanE.R. Effect of using organic acids to substitute antibiotic growth promoters on performance and intestinal microflora of broilers.Asian-Australas. J. Anim. Sci.201023101348135310.5713/ajas.2010.10085
    [Google Scholar]
  218. HoY.B. ZakariaM.P. LatifP.A. SaariN. Simultaneous determination of veterinary antibiotics and hormone in broiler manure, soil and manure compost by liquid chromatography–tandem mass spectrometry.J. Chromatogr. A2012126216016810.1016/j.chroma.2012.09.02423026257
    [Google Scholar]
  219. JerzseleA. SzekerK. CsizinszkyR. GereE. JakabC. MalloJ.J. GalfiP. Efficacy of protected sodium butyrate, a protected blend of essential oils, their combination, and Bacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers.Poult. Sci.201291483784310.3382/ps.2011‑0185322399722
    [Google Scholar]
  220. SamliH.E. SenkoyluN. KocF. KanterM. AgmaA. Effects of Enterococcus faecium and dried whey on broiler performance, gut histomorphology and intestinal microbiota.Arch. Anim. Nutr.2007611424910.1080/1745039060110665517361947
    [Google Scholar]
  221. GhasemiH.A. KasaniN. TaherpourK. Effects of black cumin seed (Nigella sativa L.), a probiotic, a prebiotic and a synbiotic on growth performance, immune response and blood characteristics of male broilers.Livest. Sci.201416412813410.1016/j.livsci.2014.03.014
    [Google Scholar]
  222. PopovaT. Effect of probiotics in poultry for improving meat quality.Curr. Opin. Food Sci.201714727710.1016/j.cofs.2017.01.008
    [Google Scholar]
  223. KiarieE. RomeroL.F. NyachotiC.M. The role of added feed enzymes in promoting gut health in swine and poultry.Nutr. Res. Rev.2013261718810.1017/S095442241300004823639548
    [Google Scholar]
  224. NavaG.M. Attene-RamosM.S. GaskinsH.R. RichardsJ.D. Molecular analysis of microbial community structure in the chicken ileum following organic acid supplementation.Vet. Microbiol.20091373-434535310.1016/j.vetmic.2009.01.03719269115
    [Google Scholar]
  225. El-GhorabA.H. The chemical composition of the Menthapulegium L. Essential oil from egypt and its antioxidant activity.J. Essent. Oil-Bear. Plants20069218319510.1080/0972060X.2006.10643491
    [Google Scholar]
  226. JiaoY. ParkJ.H. KimY.M. KimI.H. Effects of dietary methyl sulfonyl methane (MSM) supplementation on growth performance, nutrient digestibility, meat quality, excreta microbiota, excreta gas emission, and blood profiles in broilers.Poult. Sci.20179672168217510.3382/ps/pew48028339708
    [Google Scholar]
  227. Pirali KheirabadiK. Kaboutari KatadjJ. BahadoranS. Teixeira da SilvaJ.A. Dehghani SamaniA. Cheraghchi BashiM. Comparison of the anticoccidial effect of granulated extract of Artemisia sieberi with monensin in experimental coccidiosis in broiler chickens.Exp. Parasitol.201414112913310.1016/j.exppara.2014.03.02224703975
    [Google Scholar]
  228. LeeM.H. LeeH.J. RyuP.D. Public health risks: Chemical and antibiotic residues review.Asian-Australas. J. Anim. Sci.200114340241310.5713/ajas.2001.402
    [Google Scholar]
  229. BacanlıM. BaşaranN. Importance of antibiotic residues in animal food.Food Chem. Toxicol.201912546246610.1016/j.fct.2019.01.03330710599
    [Google Scholar]
  230. DarwishW.S. EldalyE.A. El-AbbasyM.T. IkenakaY. NakayamaS. IshizukaM. Antibiotic residues in food: The African scenario.Jpn. J. Vet. Res.201361Suppl.S13S2223631148
    [Google Scholar]
  231. LiuJ.J. DingL. WeiJ.Z. LiY. Influences of F-strain Mycoplasma gallisepticum vaccine on productive and reproductive performance of commercial parent broiler chicken breeders on a multi-age farm.Poult. Sci.20139261535154210.3382/ps.2012‑0299923687149
    [Google Scholar]
  232. FortuosoB.F. dos ReisJ.H. GebertR.R. BarretaM. GrissL.G. CasagrandeR.A. de CristoT.G. SantianiF. CampigottoG. RampazzoL. StefaniL.M. BoiagoM.M. LopesL.Q. SantosR.C.V. BaldisseraM.D. ZanetteR.A. TomasiT. Da SilvaA.S. Glycerol monolaurate in the diet of broiler chickens replacing conventional antimicrobials: Impact on health, performance and meat quality.Microb. Pathog.201912916116710.1016/j.micpath.2019.02.00530735801
    [Google Scholar]
  233. ChowdhuryS. MandalG.P. PatraA.K. KumarP. SamantaI. PradhanS. SamantaA.K. Different essential oils in diets of broiler chickens: 2. Gut microbes and morphology, immune response, and some blood profile and antioxidant enzymes.Anim. Feed Sci. Technol.2018236394710.1016/j.anifeedsci.2017.12.003
    [Google Scholar]
  234. YangX. XinH. YangC. YangX. Impact of essential oils and organic acids on the growth performance, digestive functions and immunity of broiler chickens.Anim. Nutr.20184438839310.1016/j.aninu.2018.04.00530564758
    [Google Scholar]
  235. ZhangA.W. LeeB.D. LeeS.K. LeeK.W. AnG.H. SongK.B. LeeC.H. Effects of yeast (Saccharomyces cerevisiae) cell components on growth performance, meat quality, and ileal mucosa development of broiler chicks.Poult. Sci.20058471015102110.1093/ps/84.7.101516050118
    [Google Scholar]
  236. ZhangL. ZhangL. ZhanX. ZengX. ZhouL. CaoG. ChenA. YangC. Effects of dietary supplementation of probiotic, Clostridium butyricum, on growth performance, immune response, intestinal barrier function, and digestive enzyme activity in broiler chickens challenged with Escherichia coli K88.J. Anim. Sci. Biotechnol.201671310.1186/s40104‑016‑0061‑426819705
    [Google Scholar]
  237. SheuS.Y. LeiY.C. TaiY.T. ChangT.H. KuoT.F. Screening of salbutamol residues in swine meat and animal feed by an enzyme immunoassay in taiwan.Anal. Chim. Acta2009654214815310.1016/j.aca.2009.09.02619854346
    [Google Scholar]
  238. SmithJ.A. Broiler production without antibiotics: United states field perspectives.Anim. Feed Sci. Technol.2019250939810.1016/j.anifeedsci.2018.04.027
    [Google Scholar]
  239. MoW.Y. ChenZ. LeungH.M. LeungA.O.W. Application of veterinary antibiotics in China’s aquaculture industry and their potential human health risks.Environ. Sci. Pollut. Res. Int.201724108978898910.1007/s11356‑015‑5607‑z26498964
    [Google Scholar]
  240. LuangtongkumT. JeonB. HanJ. PlummerP. LogueC.M. ZhangQ. Antibiotic resistance in Campylobacter: emergence, transmission and persistence.Future Microbiol.20094218920010.2217/17460913.4.2.18919257846
    [Google Scholar]
  241. MahboubiM. HaghiG. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil.J. Ethnopharmacol.2008119232532710.1016/j.jep.2008.07.02318703127
    [Google Scholar]
  242. WuS. LiT. NiuH. ZhuY. LiuY. DuanY. SunQ. YangX. Effects of glucose oxidase on growth performance, gut function, and cecal microbiota of broiler chickens.Poult. Sci.201998282884110.3382/ps/pey39330169708
    [Google Scholar]
  243. RobertsT. WilsonJ. GuthrieA. CooksonK. VancraeynestD. SchaefferJ. MoodyR. ClarkS. New issues and science in broiler chicken intestinal health: Emerging technology and alternative interventions.J. Appl. Poult. Res.201524225726610.3382/japr/pfv023
    [Google Scholar]
  244. SalimH.M. KangH.K. AkterN. KimD.W. KimJ.H. KimM.J. NaJ.C. JongH.B. ChoiH.C. SuhO.S. KimW.K. Supplementation of direct-fed microbials as an alternative to antibiotic on growth performance, immune response, cecal microbial population, and ileal morphology of broiler chickens.Poult. Sci.20139282084209010.3382/ps.2012‑0294723873556
    [Google Scholar]
  245. WangZ. ShiZ. XiC. WangG. CaoS. ZhangL. TangB. MuZ. Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: a review, Food Addit.Contam. A Chem. Anal. Contrpl Expo. Risk Assess20173410.3382/japr/pfv023
    [Google Scholar]
  246. WindischW. SchedleK. PlitznerC. KroismayrA. Use of phytogenic products as feed additives for swine and poultry1.J. Anim. Sci.20088614Suppl. 14E140E14810.2527/jas.2007‑045918073277
    [Google Scholar]
  247. PiatkowskaM. JedziniakP. ZmudzkiJ. Multiresidue method for the simultaneous determination of veterinary medicinal products, feed additives and illegal dyes in eggs using liquid chromatography–tandem mass spectrometry.Food Chem.2016197Pt A57158010.1016/j.foodchem.2015.10.07626616990
    [Google Scholar]
  248. PirgozlievV. BravoD. MirzaM.W. RoseS.P. Growth performance and endogenous losses of broilers fed wheat-based diets with and without essential oils and xylanase supplementation.Poult. Sci.20159461227123210.3382/ps/peu01725650434
    [Google Scholar]
  249. PengQ.Y. LiJ.D. LiZ. DuanZ.Y. WuY.P. Effects of dietary supplementation with oregano essential oil on growth performance, carcass traits and jejunal morphology in broiler chickens.Anim. Feed Sci. Technol.201621414815310.1016/j.anifeedsci.2016.02.010
    [Google Scholar]
  250. YangY. IjiP.A. ChoctM. Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics.Worlds Poult. Sci. J.20096519711410.1017/S0043933909000087
    [Google Scholar]
  251. Morales-LópezR. AuclairE. GarcíaF. Esteve-GarciaE. BrufauJ. Use of yeast cell walls; β-1, 3/1, 6-glucans; and mannoproteins in broiler chicken diets.Poult. Sci.200988360160710.3382/ps.2008‑0029819211531
    [Google Scholar]
  252. MountzourisK.C. ParaskevasV. TsirtsikosP. PalamidiI. SteinerT. SchatzmayrG. FegerosK. Assessment of a phytogenic feed additive effect on broiler growth performance, nutrient digestibility and caecal microflora composition.Anim. Feed Sci. Technol.20111683-422323110.1016/j.anifeedsci.2011.03.020
    [Google Scholar]
  253. YuanL. ChouW.C. RichardsE.D. TellL.A. BaynesR.E. DavisJ.L. RiviereJ.E. LinZ. A web-based interactive physiologically based pharmacokinetic (iPBPK) model for meloxicam in broiler chickens and laying hens.Food Chem. Toxicol.202216811333210.1016/j.fct.2022.11333235940329
    [Google Scholar]
  254. HanC. CuiY. GuoY. ZhangD. WangX. GengY. ShiW. BaoY. Proteome and transcriptome analysis revealed florfenicol via affected drug metabolism and lipid metabolism induce liver injury of broilers.Poult. Sci.2021100910122810.1016/j.psj.2021.10122834293615
    [Google Scholar]
  255. ZhaoJ. DuanX. YanS. LiuY. WangK. HuM. ChaiQ. LiuL. GeC. JiaJ. DouT. Transcriptomics reveals the molecular regulation of Chinese medicine formula on improving bone quality in broiler.Poult. Sci.20231021110304410.1016/j.psj.2023.103044
    [Google Scholar]
  256. LiuW. ZhaP. GuoL. ChenY. ZhouY. Effects of different levels of dietary chlorogenic acid supplementation on growth performance, intestinal integrity, and antioxidant status of broiler chickens at an early age.Anim. Feed Sci. Technol.202329711557010.1016/j.anifeedsci.2023.115570
    [Google Scholar]
  257. SongW.J. SongQ.L. ChenX.L. LiuG.H. ZouZ.H. TanJ. LiuL.X. ZengY.B. Effects of honeycomb extract on the growth performance, carcass traits, immunity, antioxidant function and intestinal microorganisms of yellow bantam broilers.Poult. Sci.2022101810181110.1016/j.psj.2022.10181135709681
    [Google Scholar]
  258. PokrantE. TrincadoL. YévenesK. TerrazaG. MaddalenoA. MartínB.S. ZavalaS. HidalgoH. LapierreL. CornejoJ. Determination of five antimicrobial families in droppings of therapeutically treated broiler chicken by high-performance liquid chromatography-tandem mass spectrometry.Poult. Sci.2021100910131310.1016/j.psj.2021.10131334298383
    [Google Scholar]
  259. SongD. LiA. WangY. SongG. ChengJ. WangL. LiuK. MinY. WangW. Effects of synbiotic on growth, digestibility, immune and antioxidant performance in broilers.Animal202216410049710.1016/j.animal.2022.10049735338905
    [Google Scholar]
  260. FanY. ZhaoL. MaQ. LiX. ShiH. ZhouT. ZhangJ. JiC. Effects of Bacillus subtilis ANSB060 on growth performance, meat quality and aflatoxin residues in broilers fed moldy peanut meal naturally contaminated with aflatoxins.Food Chem. Toxicol.20135974875310.1016/j.fct.2013.07.01023872125
    [Google Scholar]
  261. DingY. HuY. YaoX. HeY. ChenJ. WuJ. WuS. ZhangH. HeX. SongZ. Dietary essential oils improves the growth performance, antioxidant properties and intestinal permeability by inhibiting bacterial proliferation and altering the gut microbiota of yellow-feather broilers.Poult. Sci.20221011110208710.1016/j.psj.2022.102087
    [Google Scholar]
  262. SheikhG.G. MalikN.A. SheikhA.A. GanaiA.M. KhanA.A. HaqZ. FarooqJ. RatherA.M. Saffron petals (Crocus sativus L.) enhance productive performance and carcass quality in broiler birds by improving their immunity, antioxidant status and biochemical profile.J Agricul Food Res20231210056210.1016/j.jafr.2023.100562
    [Google Scholar]
  263. ValipouriA.R. RahimiS. KarkhaneA.A. TorshiziM.A.K. MobarezA.M. GrimesJ.L. Immunization of broiler chickens with recombinant alpha-toxin protein for protection against Necrotic enteritis.J. Appl. Poult. Res.202231410029910.1016/j.japr.2022.100299
    [Google Scholar]
  264. CuiY. HanC. LiS. GengY. WeiY. ShiW. BaoY. High-throughput sequencing–based analysis of the intestinal microbiota of broiler chickens fed with compound small peptides of Chinese medicine.Poult. Sci.2021100310089710.1016/j.psj.2020.11.06633518313
    [Google Scholar]
  265. ZhangL.Y. PengQ.Y. LiuY.R. MaQ.G. ZhangJ.Y. GuoY.P. XueZ. ZhaoL.H. Effects of oregano essential oil as an antibiotic growth promoter alternative on growth performance, antioxidant status, and intestinal health of broilers.Poult. Sci.2021100710116310.1016/j.psj.2021.10116334082177
    [Google Scholar]
  266. SreejithS. ShajahanS. PrathiushP.R. AnjanaV.M. ViswanathanA. ChandranV. Ajith KumarG.S. JayachandranR. MathewJ. RadhakrishnanE.K. Healthy broilers disseminate antibiotic resistance in response to tetracycline input in feed concentrates.Microb. Pathog.202014910456210.1016/j.micpath.2020.10456233039593
    [Google Scholar]
  267. LiuS.J. WangJ. HeT.F. LiuH.S. PiaoX.S. Effects of natural capsicum extract on growth performance, nutrient utilization, antioxidant status, immune function, and meat quality in broilers.Poult. Sci.2021100910130110.1016/j.psj.2021.10130134273651
    [Google Scholar]
  268. ChenY. ZhaP. XuH. ZhouY. An evaluation of the protective effects of chlorogenic acid on broiler chickens in a dextran sodium sulfate model: A preliminary investigation.Poult. Sci.2023102110225710.1016/j.psj.2022.10225736399933
    [Google Scholar]
  269. UmayaS.R. VijayalakshmiY.C. SejianV. Exploration of plant products and phytochemicals against aflatoxin toxicity in broiler chicken production: Present status.Toxicon2021200556810.1016/j.toxicon.2021.06.01734228958
    [Google Scholar]
  270. LiuC. RadebeS.M. ZhangH. JiaJ. XieS. ShiM. YuQ. Effect of Bacillus coagulans on maintaining the integrity intestinal mucosal barrier in broilers.Vet. Microbiol.202226610935710.1016/j.vetmic.2022.10935735101712
    [Google Scholar]
  271. LiuX. ChenY.B. TangS.G. DengY.Y. XiaoB. HeC.Q. GuoS.C. ZhouX.B. QuX.Y. Dietary encapsulated Bacillus subtilis and essential oil supplementation improves reproductive performance and hormone concentrations of broiler breeders during the late laying period.Livest. Sci.202124510442210.1016/j.livsci.2021.104422
    [Google Scholar]
  272. RacinesM.P. SolisM.N. ŠefcováM.A. HerichR. Larrea-ÁlvarezM. RevajováV. An overview of the use and application of Limosilactobacillus fermentum in broiler chickens.Microorganisms2023118194410.3390/microorganisms1108194437630504
    [Google Scholar]
  273. ChenM. YangY. YingY. HuangJ. SunM. HongM. WangH. XieS. ChenD. ABC transporters and CYP3A4 mediate drug interactions between enrofloxacin and salinomycin leading to increased risk of drug residues and resistance.Antibiotics202312240310.3390/antibiotics1202040336830313
    [Google Scholar]
  274. CuiH. ShahrajabianM.H. KuangY. ZhangH.Y. SunW. Heterologous expression and function of cholesterol oxidase: A review.Protein Pept. Lett.202330753154010.2174/092986653066623052516254537231716
    [Google Scholar]
  275. KimJ.H. ChoiH.S. GooD. ParkG.H. HanG.P. Delos ReyesJ.B. KilD.Y. Effect of dietary melamine concentrations on growth performance, excreta characteristics, plasma measurements, and melamine residue in the tissue of male and female broiler chickens.Poult. Sci.20199883204321110.3382/ps/pez05030850838
    [Google Scholar]
  276. MavrommatisA. GiamouriE. MyrtsiE.D. EvergetisE. FilippiK. PapapostolouH. KoulocheriS.D. ZoidisE. PappasA.C. KoutinasA. HaroutounianS.A. TsiplakouE. Antioxidant status of broiler chickens fed diets supplemented with vinification by-products: A valorization approach.Antioxidants2021108125010.3390/antiox1008125034439498
    [Google Scholar]
  277. SunW. ShahrajabianM.H. ChengQ. Barberry (Berberis vulgaris), a medicinal fruit and food with traditional and modern pharmaceutical uses.Isr. J. Plant Sci.2021681-2617110.1163/22238980‑bja10019
    [Google Scholar]
  278. SunW. ShahrajabianM.H. ChengQ. Natural dietary and medicinal plants with anti-obesity therapeutics activities for treatment and prevention of obesity during lock down and in post-covid-19 era.Appl. Sci.20211117788910.3390/app11177889
    [Google Scholar]
  279. SunW. ShahrajabianM.H. ChengQ. Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science.Mini Rev. Med. Chem.202121672473010.2174/18755607MTEx4OTAn533245271
    [Google Scholar]
  280. SunW. ShahrajabianM.H. LinM. Research progress of fermented functional foods and protein factory-microbial fermentation technology.Fermentation202281268810.3390/fermentation8120688
    [Google Scholar]
  281. SunW. ShahrajabianM.H. PetropoulosS.A. ShahrajabianN. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants.Plants20231213246910.3390/plants1213246937447031
    [Google Scholar]
  282. SunW. ShahrajabianM.H. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture.Plants20231217310110.3390/plants1217310137687348
    [Google Scholar]
  283. YévenesK. PokrantE. TrincadoL. LapierreL. GalarceN. MartínB.S. MaddalenoA. HidalgoH. CornejoJ. Detection of antimicrobial residues in poultry litter: Monitoring a risk through a selective and sensitive HPLC-MS/MS method.Animals2021115139910.3390/ani1105139934069030
    [Google Scholar]
  284. ZhengC. ChenZ. YanX. XiaoG. QiuT. OuJ. CenM. LiW. HuangY. CaoY. ZhangH. Effects of a combination of lauric acid monoglyceride and cinnamaldehyde on growth performance, gut morphology, and gut microbiota of yellow-feathered broilers.Poult. Sci.2023102810282510.1016/j.psj.2023.10282537356297
    [Google Scholar]
  285. ShahrajabianM.H. SunW. The significance and importance of dPCR, qPCR, and SYBR Green PCR Kit in the detection of numerous diseases.Curr. Pharm. Des.202430316917910.2174/011381612827656023121809043638243947
    [Google Scholar]
  286. SunW. ShahrajabianM.H. KuangY. WangN. Amino acids biostimulants and protein hydrolysates in agricultural sciences.Plants202413221010.3390/plants1302021038256763
    [Google Scholar]
  287. JammoulA. El DarraN. Evaluation of antibiotics residues in chicken meat samples in Lebanon.Antibiotics2019826910.3390/antibiotics802006931141997
    [Google Scholar]
  288. SaniA.A. RafiqK. HossainM.T. SuhermanF.A. HaqueA. HasanM.I. SachiS. MustariA. IslamM.Z. AlamM.M. Screening and quantification of antibiotic residues in poultry products and feed in selected areas of Bangladesh.Vet. World20231681747175410.14202/vetworld.2023.1747‑175437766715
    [Google Scholar]
  289. ChandrakarC. ShakyaS. PatyalA. BhonsleD. PandeyA.K. Detection of antibiotic residues in chicken meat from different agro-climatic zones of Chhattisgarh, India by HPLC-PDA and human exposure assessment and risk characterization.Food Control202314810966710.1016/j.foodcont.2023.109667
    [Google Scholar]
  290. MuazK. RiazM. AkhtarS. ParkS. IsmailA. Antibiotics residues in chicken meat: Global prevalence, threats, and decontamination strategies: A review.J. Food Prot.201881461962710.4315/0362‑028X.JFP‑17‑08629537307
    [Google Scholar]
  291. MundM.D. KhanU.H. TahirU. MustafaB.E. FayyazA. Antimicrobial drug residues in poultry products and implications on public health: A review.Int. J. Food Prop.20172071433144610.1080/10942912.2016.1212874
    [Google Scholar]
  292. NongaH.E. SimonC. KarimuriboE.D. MdegelaR.H. Assessment of antimicrobial usage and residues in commercial chicken eggs from smallholder poultry keepers in Morogoro municipality, Tanzania.Zoonoses Public Health200957533934410.1111/j.1863‑2378.2008.01226.x19486498
    [Google Scholar]
  293. RawatN. Anjali Shreyata SabuB. BandyopadhyayA. RajagopalR. Assessment of antibiotics resistance in chicken meat labeled as antibiotic-free: A focus on Escherichia coli and horizontally transmissible antibiotic resistance genes.Lebensm. Wiss. Technol.202419411575110.1016/j.lwt.2024.115751
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871305331240724104132
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test