Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1574-8871
  • E-ISSN: 1876-1038

Abstract

Background

β-thalassemia imposes significant complications on affected patients. Silymarin, a natural flavonoid complex, has potential therapeutic properties.

Objective

This systematic review aims to comprehensively evaluate the literature on the mechanistic effects of Silymarin on β-thalassemia outcomes in children and adolescents.

Methods

A systematic search of electronic databases, including MEDLINE/PubMed, Embase, Scopus, Cochrane Library, and Web of Science (WOS), was done to identify relevant clinical trials before January 2024. Various data were extracted, including study characteristics, outcomes measured (hematological parameters, oxidative stress markers, iron metabolism, and other outcomes), proposed mechanisms, and safety.

Results

By iron chelation effects, Silymarin can reduce reactive oxygen species (ROS) production, increase intracellular antioxidant enzyme glutathione (GSH), and insert antioxidant effects. It also attenuated inflammation through reduced tumor necrosis factor-alpha (TNF-α), transforming growth factor-β1 (TGF-β1), interferon-gamma (IFNγ), C-reactive protein (CRP), interleukin 6 (IL-6), IL-17, and IL-23 levels and increase in IL-4 and IL-10 levels. By reducing iron overload conditions, Silymarin indicates modulatory effects on immune abnormalities, inhibits red blood cell (RBC) hemolysis, increases RBC count, and minimizes the need for a transfusion. Moreover, it reduces myocardial and hepatic siderosis, improves liver function tests, and modifies abnormal enzymes, particularly for aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total bilirubin, and total protein levels. Silymarin also reduces iron overload, increases antioxidant and anti-inflammatory capacity in cardiomyocytes, and reveals antioxidant effects.

Conclusion

Silymarin indicates promising effects on various aspects of children and adolescents with β-thalassemia and has no serious side effects on the investigated dosage.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871305325240511122602
2024-05-30
2024-11-26
Loading full text...

Full text loading...

References

  1. BajwaH. BasitH. Thalassemia.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  2. KattamisA. ForniG.L. AydinokY. ViprakasitV. Changing patterns in the epidemiology of β-thalassemia.Eur. J. Haematol.2020105669270310.1111/ejh.1351232886826
    [Google Scholar]
  3. Sanchez-VillalobosM. BlanquerM. MoraledaJ.M. SalidoE.J. Perez-OlivaA.B. New insights into pathophysiology of β-thalassemia.Front. Med.2022988075210.3389/fmed.2022.88075235492364
    [Google Scholar]
  4. NienhuisA.W. NathanD.G. Pathophysiology and clinical manifestations of the -thalassemias.Cold Spring Harb. Perspect. Med.2012212a01172610.1101/cshperspect.a01172623209183
    [Google Scholar]
  5. HossainM.J. IslamM.W. MunniU.R. GulshanR. MuktaS.A. MiahM.S. SultanaS. KarmakarM. FerdousJ. IslamM.A. Health-related quality of life among thalassemia patients in Bangladesh using the SF-36 questionnaire.Sci. Rep.2023131773410.1038/s41598‑023‑34205‑937173392
    [Google Scholar]
  6. EziefulaC. ShahF.T. AnieK.A. Promoting adherence to iron chelation treatment in beta-thalassemia patients.Patient Prefer. Adherence2022161423143710.2147/PPA.S26935235698633
    [Google Scholar]
  7. AliS. MumtazS. ShakirH.A. KhanM. TahirH.M. MumtazS. MughalT.A. HassanA. KazmiS.A.R. Sadia IrfanM. KhanM.A. Current status of beta-thalassemia and its treatment strategies.Mol. Genet. Genomic Med.2021912e178810.1002/mgg3.178834738740
    [Google Scholar]
  8. TaherA.T. CappelliniM.D. How I manage medical complications of β-thalassemia in adults.Blood2018132171781179110.1182/blood‑2018‑06‑81818730206117
    [Google Scholar]
  9. FarmakisD. PorterJ. TaherA. Domenica CappelliniM. AngastiniotisM. EleftheriouA. 2021 thalassaemia international federation guidelines for the management of transfusion-dependent thalassemia.HemaSphere202268e73210.1097/HS9.000000000000073235928543
    [Google Scholar]
  10. Di NicolaM. BarteselliG. Dell’ArtiL. RatigliaR. ViolaF. Functional and structural abnormalities in deferoxamine retinopathy: A review of the literature.BioMed Res. Int.2015201511210.1155/2015/24961726167477
    [Google Scholar]
  11. AdibiA. AzinS. BehjatS. Therapeutic effects of deferoxamine and silymarin versus deferoxamine alone in β-thalassemia major based on findings of liver MRI.J. Res. Med. Sci.201217378
    [Google Scholar]
  12. IgbokweI.O. IgwenaguE. IgbokweN.A. Aluminium toxicosis: A review of toxic actions and effects.Interdiscip. Toxicol.2019122457010.2478/intox‑2019‑000732206026
    [Google Scholar]
  13. TanakaN. KashiwadaY. Phytochemical studies on traditional herbal medicines based on the ethnopharmacological information obtained by field studies.J. Nat. Med.202175476278310.1007/s11418‑021‑01545‑734255289
    [Google Scholar]
  14. EkorM. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety.Front. Pharmacol.2014417710.3389/fphar.2013.0017724454289
    [Google Scholar]
  15. SatariA. AminiS.A. RaeisiE. LemoigneY. HeidarianE. Synergetic impact of combined 5-fluorouracil and rutin on apoptosis in PC3 cancer cells through the modulation of P53 gene expression.Adv. Pharm. Bull.20199346246910.15171/apb.2019.05531592435
    [Google Scholar]
  16. AlidoostF. GharagozlooM. BagherpourB. JafarianA. SajjadiS.E. HourfarH. MoayediB. Effects of silymarin on the proliferation and glutathione levels of peripheral blood mononuclear cells from β-thalassemia major patients.Int. Immunopharmacol.2006681305131010.1016/j.intimp.2006.04.00416782543
    [Google Scholar]
  17. Bencze-NagyJ. StriflerP. HorváthB. SuchN. FarkasV. DubleczK. PálL. Effects of dietary milk thistle (Silybum marianum) supplementation in ducks fed mycotoxin-contaminated diets.Vet. Sci.202310210010.3390/vetsci1002010036851404
    [Google Scholar]
  18. BaiZ.L. TayV. GuoS.Z. RenJ. ShuM.G. Silibinin induced human glioblastoma cell apoptosis concomitant with autophagy through simultaneous inhibition of mTOR and YAP.BioMed Res. Int.2018201811010.1155/2018/616519229780826
    [Google Scholar]
  19. Darvishi-KhezriH. KosaryanM. KaramiH. SalehifarE. MahdaviM. AlipourA. AliasgharianA. Can use of silymarin improve inflammatory status in patients with β-thalassemia major? A crossover, randomized controlled trial.Complement. Med. Res.202128212313010.1159/00050982932971524
    [Google Scholar]
  20. Darvishi-KhezriH. SalehifarE. KosaryanM. KaramiH. AlipourA. ShakiF. AliasgharianA. The impact of silymarin on antioxidant and oxidative status in patients with β-thalassemia major: A crossover, randomized controlled trial.Complement. Ther. Med.201735253210.1016/j.ctim.2017.08.00729154063
    [Google Scholar]
  21. GharagozlooM. KarimiM. AmirghofranZ. Immunomodulatory effects of silymarin in patients with β-thalassemia major.Int. Immunopharmacol.201316224324710.1016/j.intimp.2013.04.01623624215
    [Google Scholar]
  22. SalehifarE. KhezriH.D. KosaryanM. Silymarin therapy and improvement of cardiac outcome in patients with β-thalassemia major.J. Res. Pharm. Pract.201651747510.4103/2279‑042X.17655526985440
    [Google Scholar]
  23. Darvishi-KhezriH. Can silymarin ameliorate β-thalassemia major-induced osteopenia/osteoporosis?J. Complement. Integr. Med.202219247147210.1515/jcim‑2020‑011134036762
    [Google Scholar]
  24. Moayedi EsfahaniB.A.S. ReisiN. MirmoghtadaeiM. Evaluating the safety and efficacy of silymarin in β-thalassemia patients: A review.Hemoglobin2015392758010.3109/03630269.2014.100322425643967
    [Google Scholar]
  25. Darvishi KhezriH. SalehifarE. KosaryanM. AliasgharianA. JalaliH. Hadian AmreeA. Potential effects of silymarin and its flavonolignan components in patients with β -thalassemia major: A comprehensive review in 2015.Adv. Pharmacol. Sci.201620161810.1155/2016/304637326997953
    [Google Scholar]
  26. HagagA. ElfatahM. Therapeutic value of silymarin as iron chelator in children with beta thalassemia with iron overload.J. Leuk.2014212610.4172/2329‑6917.1000130
    [Google Scholar]
  27. GharagozlooM. MoayediB. ZakeriniaM. HamidiM. KarimiM. MaracyM. AmirghofranZ. Combined therapy of silymarin and desferrioxamine in patients with β-thalassemia major: A randomized double-blind clinical trial.Fundam. Clin. Pharmacol.200923335936510.1111/j.1472‑8206.2009.00681.x19453758
    [Google Scholar]
  28. HagagA.A. ElfrargyM.S. GazarR.A. El-LateefA.E. Therapeutic value of combined therapy with deferasirox and silymarin on iron overload in children with Beta thalassemia.Mediterr. J. Hematol. Infect. Dis.201351e201306510.4084/mjhid.2013.06524363880
    [Google Scholar]
  29. MoayediB. GharagozlooM. EsmaeilN. MaracyM.R. HoorfarH. JalaeikarM. A randomized double-blind, placebo-controlled study of therapeutic effects of silymarin in β-thalassemia major patients receiving desferrioxamine.Eur. J. Haematol.201390320220910.1111/ejh.1206123278124
    [Google Scholar]
  30. BalouchiS. GharagozlooM. EsmaeilN. MirmoghtadaeiM. MoayediB. Serum levels of TGFβ, IL-10, IL-17, and IL-23 cytokines in β-thalassemia major patients: The impact of silymarin therapy.Immunopharmacol. Immunotoxicol.201436427127410.3109/08923973.2014.92691624945737
    [Google Scholar]
  31. HagagA. ElfaragyM. ElrifaeyS. Abd El-LateefA. Therapeutic value of combined therapy with deferiprone and silymarin as iron chelators in Egyptian children with beta thalassemia major.Infect. Disord. Drug Targets201515318919510.2174/187152651566615073111330526239735
    [Google Scholar]
  32. Darvishi-KhezriH. SalehifarE. KosaryanM. KaramiH. MahdaviM. AlipourA. AliasgharianA. Iron-chelating effect of silymarin in patients with β-thalassemia major: A crossover randomised control trial.Phytother. Res.201832349650310.1002/ptr.599529235162
    [Google Scholar]
  33. HamedE.M. MeabedM.H. HusseinR.R.S. AlyU.F. Recent insight on improving the iron chelation efficacy of deferasirox by adjuvant therapy in transfusion dependent beta thalassemia children with sluggish response.Expert Opin. Drug Metab. Toxicol.202016317919310.1080/17425255.2020.172935332067512
    [Google Scholar]
  34. EghbaliA. Rahimi AfzalR. HashemiM. EghbaliA. TaherkhanchiB. BagheriB. A randomized, controlled study evaluating the effects of silymarin addition to deferasirox on the liver function of children with transfusion-dependent thalassemia.Iran. J. Ped. Hematol. Oncol.2021114716910.18502/ijpho.v11i4.7169
    [Google Scholar]
  35. ReisiN. EsmaeilN. GharagozlooM. MoayediB. Therapeutic potential of silymarin as a natural iron-chelating agent in β-thalassemia intermedia.Clin. Case Rep.2022101e0529310.1002/ccr3.529335106163
    [Google Scholar]
  36. NeedsT. Gonzalez-MosqueraL.F. LynchD.T. Beta Thalassemia.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  37. VoonH.P.J. VadolasJ. Controlling -globin: A review of -globin expression and its impact on -thalassemia.Haematologica200893121868187610.3324/haematol.1349018768527
    [Google Scholar]
  38. MettanandaS. GibbonsR.J. HiggsD.R. α-Globin as a molecular target in the treatment of β-thalassemia.Blood2015125243694370110.1182/blood‑2015‑03‑63359425869286
    [Google Scholar]
  39. OikonomidouP.R. RivellaS. What can we learn from ineffective erythropoiesis in thalassemia?Blood Rev.201832213014310.1016/j.blre.2017.10.00129054350
    [Google Scholar]
  40. WontakalS.N. GuoX. SmithC. MacCarthyT. BresnickE.H. BergmanA. SnyderM.P. WeissmanS.M. ZhengD. SkoultchiA.I. A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation.Proc. Natl. Acad. Sci. USA2012109103832383710.1073/pnas.112101910922357756
    [Google Scholar]
  41. AbdallaM.Y. FawziM. Al-MaloulS.R. El-BannaN. TayyemR.F. AhmadI.M. Increased oxidative stress and iron overload in Jordanian β-thalassemic children.Hemoglobin2011351677910.3109/03630269.2010.54462421250883
    [Google Scholar]
  42. VoskouS. AslanM. FanisP. PhylactidesM. KleanthousM. Oxidative stress in β-thalassaemia and sickle cell disease.Redox Biol.2015622623910.1016/j.redox.2015.07.01826285072
    [Google Scholar]
  43. FibachE. DanaM. Oxidative stress in β-thalassemia.Mol. Diagn. Ther.201923224526110.1007/s40291‑018‑0373‑530484264
    [Google Scholar]
  44. HaghpanahS. Hosseini-BensenjanM. SayadiM. NozariF. RamziM. CohanN. RezaeiN. Cytokine levels in patients with β-thalassemia major and healthy individuals: A systematic review and meta-analysis.Clin. Lab.20226811/202210.7754/Clin.Lab.2022.22014236378002
    [Google Scholar]
  45. CaprariP. ProfumoE. MassimiS. ButtariB. RiganòR. RegineV. GabbianelliM. RossiS. RisolutiR. MaterazziS. GullifaG. MaffeiL. SorrentinoF. Hemorheological profiles and chronic inflammation markers in transfusion-dependent and non-transfusion- dependent thalassemia.Front. Mol. Biosci.20239110889610.3389/fmolb.2022.110889636699704
    [Google Scholar]
  46. WagenerF.A.D.T.G. FeldmanE. de WitteT. AbrahamN.G. Heme induces the expression of adhesion molecules ICAM-1, VCAM-1, and E selectin in vascular endothelial cells.Exp. Biol. Med.1997216345646310.3181/00379727‑216‑441979402154
    [Google Scholar]
  47. PengH.B. LibbyP. LiaoJ.K. Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B.J. Biol. Chem.199527023142141421910.1074/jbc.270.23.142147775482
    [Google Scholar]
  48. MartinelliT. WhittakerA. BenedettelliS. CarboniA. AndrzejewskaJ. The study of flavonolignan association patterns in fruits of diverging Silybum marianum (L.) Gaertn. chemotypes provides new insights into the silymarin biosynthetic pathway.Phytochemistry201714491810.1016/j.phytochem.2017.08.01328863306
    [Google Scholar]
  49. KoltaiT FliegelL. Role of silymarin in cancer treatment: Facts, hypotheses, and questions.J Evid Based Integr Med2022272515690x211068826
    [Google Scholar]
  50. XuF. HanC. LiY. ZhengM. XiX. HuC. CuiX. CaoH. The chemical constituents and pharmacological actions of Silybum marianum.Curr. Nutr. Food Sci.201915543044010.2174/1573401314666180327155745
    [Google Scholar]
  51. GillessenA. SchmidtH.H.J. Silymarin as supportive treatment in liver diseases: A narrative review.Adv. Ther.20203741279130110.1007/s12325‑020‑01251‑y32065376
    [Google Scholar]
  52. WadhwaK. PahwaR. KumarM. KumarS. SharmaP.C. SinghG. VermaR. MittalV. SinghI. KaushikD. JeandetP. Mechanistic insights into the pharmacological significance of silymarin.Molecules20222716532710.3390/molecules2716532736014565
    [Google Scholar]
  53. BiedermannD. VavříkováE. CvakL. KřenV. Chemistry of silybin.Nat. Prod. Rep.20143191138115710.1039/C3NP70122K24977260
    [Google Scholar]
  54. FatimaT. KhanS. KhanM.M. KamranR. UddinM.W. SohrabS. Oxidative stress in beta-thalassemia patients: Role of enzymatic and non-enzymatic modulators.Protein Pept. Lett.202330121030103710.2174/010929866524627023102006204837953620
    [Google Scholar]
  55. HirschR.E. SibmoohN. FucharoenS. FriedmanJ.M. HbE/β-thalassemia and oxidative stress: The key to pathophysiological mechanisms and novel therapeutics.Antioxid. Redox Signal.2017261479481310.1089/ars.2016.680627650096
    [Google Scholar]
  56. SuraiP. Silymarin as a natural antioxidant: An overview of the current evidence and perspectives.Antioxidants20154120424710.3390/antiox401020426785346
    [Google Scholar]
  57. ZholobenkoA. ModrianskyM. Silymarin and its constituents in cardiac preconditioning.Fitoterapia20149712213210.1016/j.fitote.2014.05.01624879900
    [Google Scholar]
  58. AnthonyK. SalehM. Free radical scavenging and antioxidant activities of silymarin components.Antioxidants20132439840710.3390/antiox204039826784472
    [Google Scholar]
  59. SerçeA. ToptancıB.Ç. TanrıkutS.E. AltaşS. KızılG. KızılS. KızılM. Assessment of the antioxidant activity of silybum marianum extract and its protective effect against DNA oxidation, protein damage and lipid peroxidation.Food Technol. Biotechnol.201654445546110.17113/ftb.54.04.16.432328115903
    [Google Scholar]
  60. Vargas-MendozaN. Morales-GonzálezÁ. Morales-MartínezM. Soriano-UrsúaM.A. Delgado-OlivaresL. Sandoval-GallegosE.M. Madrigal-BujaidarE. Álvarez-GonzálezI. Madrigal-SantillánE. Morales-GonzalezJ.A. Flavolignans from silymarin as Nrf2 bioactivators and their therapeutic applications.Biomedicines20208512210.3390/biomedicines805012232423098
    [Google Scholar]
  61. RoubalováL. Dinkova-KostovaA.T. BiedermannD. KřenV. UlrichováJ. VrbaJ. Flavonolignan 2,3-dehydrosilydianin activates Nrf2 and upregulates NAD(P)H: quinone oxidoreductase 1 in Hepa1c1c7 cells.Fitoterapia201711911512010.1016/j.fitote.2017.04.01228450126
    [Google Scholar]
  62. VeisiS. JohariS.A. TylerC.R. MansouriB. EsmaeilbeigiM. Antioxidant properties of dietary supplements of free and nanoencapsulated silymarin and their ameliorative effects on silver nanoparticles induced oxidative stress in Nile tilapia (Oreochromis niloticus).Environ. Sci. Pollut. Res. Int.20212820260552606310.1007/s11356‑021‑12568‑833483926
    [Google Scholar]
  63. BanaeeM. ImpellitteriF. MultisantiC.R. SuredaA. ArfusoF. PiccioneG. FaggioC. Evaluating silymarin extract as a potent antioxidant supplement in diazinon-exposed rainbow trout: Oxidative stress and biochemical parameter analysis.Toxics202311973710.3390/toxics1109073737755747
    [Google Scholar]
  64. BresgenN. EcklP. Oxidative stress and the homeodynamics of iron metabolism.Biomolecules20155280884710.3390/biom502080825970586
    [Google Scholar]
  65. JainM. RiveraS. MonclusE.A. SynenkiL. ZirkA. EisenbartJ. Feghali-BostwickC. MutluG.M. BudingerG.R.S. ChandelN.S. Mitochondrial reactive oxygen species regulate transforming growth factor-β signaling.J. Biol. Chem.2013288277077710.1074/jbc.M112.43197323204521
    [Google Scholar]
  66. KhazaeiR. SeidaviA. BouyehM. A review on the mechanisms of the effect of silymarin in milk thistle ( Silybum marianum ) on some laboratory animals.Vet. Med. Sci.20228128930110.1002/vms3.64134599793
    [Google Scholar]
  67. ShahidiM. VaziriF. HaerianA. FarzaneganA. JafariS. SharifiR. ShiraziF.S. Proliferative and anti-inflammatory effects of resveratrol and silymarin on human gingival fibroblasts: A view to the future.J. Dent.201714420321129285030
    [Google Scholar]
  68. KimB.R. SeoH.S. KuJ.M. KimG.J. JeonC.Y. ParkJ.H. JangB.H. ParkS.J. ShinY.C. KoS.G. Silibinin inhibits the production of pro-inflammatory cytokines through inhibition of NF-κB signaling pathway in HMC-1 human mast cells.Inflamm. Res.2013621194195010.1007/s00011‑013‑0640‑124045679
    [Google Scholar]
  69. KangJ.S. JeonY.J. KimH.M. HanS.H. YangK.H. Inhibition of inducible nitric-oxide synthase expression by silymarin in lipopolysaccharide-stimulated macrophages.J. Pharmacol. Exp. Ther.2002302113814410.1124/jpet.302.1.13812065710
    [Google Scholar]
  70. ZhengW. FengZ. LouY. ChenC. ZhangC. TaoZ. LiH. ChengL. YingX. Silibinin protects against osteoarthritis through inhibiting the inflammatory response and cartilage matrix degradation in vitro and in vivo.Oncotarget2017859996499966510.18632/oncotarget.2058729245931
    [Google Scholar]
  71. RanjanS. GautamA. Pharmaceutical prospects of Silymarin for the treatment of neurological patients: An updated insight.Front. Neurosci.202317115980610.3389/fnins.2023.115980637274201
    [Google Scholar]
  72. FarmakisD. GiakoumisA. PolymeropoulosE. AessoposA. Pathogenetic aspects of immune deficiency associated with beta-thalassemia.Med. Sci. Monit.200391RA19RA2212552254
    [Google Scholar]
  73. Gluba-BrzózkaA. FranczykB. Rysz-GórzyńskaM. RokickiR. Koziarska-RościszewskaM. RyszJ. Pathomechanisms of immunological disturbances in β-thalassemia.Int. J. Mol. Sci.20212218967710.3390/ijms2218967734575839
    [Google Scholar]
  74. WalkerE.M.Jr WalkerS.M. Effects of iron overload on the immune system.Ann. Clin. Lab. Sci.200030435436511045759
    [Google Scholar]
  75. TyrkalskaS.D. Pérez-OlivaA.B. Rodríguez-RuizL. Martínez-MorcilloF.J. Alcaraz-PérezF. Martínez-NavarroF.J. LachaudC. AhmedN. SchroederT. Pardo-SánchezI. CandelS. López-MuñozA. ChoudhuriA. RossmannM.P. ZonL.I. CayuelaM.L. García-MorenoD. MuleroV. Inflammasome regulates hematopoiesis through cleavage of the master erythroid transcription factor GATA1.Immunity20195115063.e510.1016/j.immuni.2019.05.00531174991
    [Google Scholar]
  76. MishraA.K. TiwariA. Iron overload in Beta thalassaemia major and intermedia patients.Maedica20138432833224790662
    [Google Scholar]
  77. RivellaS. Ineffective erythropoiesis and thalassemias.Curr. Opin. Hematol.200916318719410.1097/MOH.0b013e32832990a419318943
    [Google Scholar]
  78. EidR. ArabN.T.T. GreenwoodM.T. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms.Biochim. Biophys. Acta Mol. Cell Res.20171864239943010.1016/j.bbamcr.2016.12.00227939167
    [Google Scholar]
  79. AkhtarM.N. SaeedR. SaeedF. AsgharA. GhaniS. AteeqH. AhmedA. RasheedA. AfzaalM. WaheedM. HussainB. Asif ShahM. Silymarin: a review on paving the way towards promising pharmacological agent.Int. J. Food Prop.20232612256227210.1080/10942912.2023.2244685
    [Google Scholar]
  80. ImamM. ZhangS. MaJ. WangH. WangF. Antioxidants mediate both iron homeostasis and oxidative stress.Nutrients20179767110.3390/nu907067128657578
    [Google Scholar]
  81. RazaviB.M. KarimiG. Protective effect of silymarin against chemical-induced cardiotoxicity.Iran. J. Basic Med. Sci.201619991692327803777
    [Google Scholar]
  82. ChaichompooP. QillahA. SirankaprachaP. KaewchuchuenJ. RimthongP. PaiboonsukwongK. FucharoenS. SvastiS. WorawichawongS. Abnormal red blood cell morphological changes in thalassaemia associated with iron overload and oxidative stress.J. Clin. Pathol.201972852052410.1136/jclinpath‑2019‑20577531010830
    [Google Scholar]
  83. AltorjayI. DalmiL. SáriB. ImreS. BallaG. The effect of silibinin (Legalon) on the the free radical scavenger mechanisms of human erythrocytes in vitro.Acta Physiol. Hung.1992801-43753801345204
    [Google Scholar]
  84. ZouC.G. AgarN.S. JonesG.L. Oxidative insult to human red blood cells induced by free radical initiator AAPH and its inhibition by a commercial antioxidant mixture.Life Sci.2001691758610.1016/S0024‑3205(01)01112‑211411807
    [Google Scholar]
  85. SoltanianA. MosallanejadB. Razi JalaliM. Najafzadeh VarziH. GhorbanpourM. Comparative evaluation of therapeutic effects of silymarin and hydrocortisone on clinical and hematological alterations, and organ injury (liver and heart) in a low-dose canine lipopolysaccharide-induced sepsis model.Vet. Res. Forum202011323524133133460
    [Google Scholar]
  86. PadeniyaP. EdiriweeraD. De SilvaA.P. NiriellaM. PremawardhenaA. The association between steatosis and liver damage in transfusion-dependent beta thalassaemia patients.Br. J. Haematol.2023200451752310.1111/bjh.1849236194160
    [Google Scholar]
  87. CappelliniM.D. CohenA. EleftheriouA. Guidelines for the clinical management of thalassaemia.2nd edThalassaemia International FederationNicosia (CY)The Liver in Thalassaemia. 2008
    [Google Scholar]
  88. PinyopornpanishK. TantiworawitA. LeerapunA. SoontornpunA. ThongsawatS. Secondary iron overload and the liver: A comprehensive review.J. Clin. Transl. Hepatol.202311493294110.14218/JCTH.2022.0042037408825
    [Google Scholar]
  89. LeeY.Y. TeeV. Role of silymarin in the management of deranged liver function in non-alcoholic steatohepatitis: A case report.Drugs Context2023121510.7573/dic.2023‑2‑1037342459
    [Google Scholar]
  90. PennellD.J. UdelsonJ.E. AraiA.E. BozkurtB. CohenA.R. GalanelloR. HoffmanT.M. KiernanM.S. LerakisS. PigaA. PorterJ.B. WalkerJ.M. WoodJ. American Heart Association Committee on Heart Failure and Transplantation of the Council on Clinical Cardiology and Council on Cardiovascular Radiology and Imaging Cardiovascular function and treatment in β-thalassemia major: A consensus statement from the American Heart Association.Circulation2013128328130810.1161/CIR.0b013e31829b2be623775258
    [Google Scholar]
  91. RussoV. MelilloE. PapaA.A. RagoA. ChamberlandC. NigroG. Arrhythmias and sudden cardiac death in beta-thalassemia major patients: Noninvasive diagnostic tools and early markers.Cardiol. Res. Pract.201920191810.1155/2019/931983231885907
    [Google Scholar]
  92. WalkerM. WoodJ. Cardiac complications in thalassaemia major.Guidelines for the Management of Transfusion Dependent Thalassaemia (TDT) 3rd edNicosia (CY)Thalassaemia International Federation2014
    [Google Scholar]
  93. KumfuS. ChattipakornS.C. ChattipakornN. Iron overload cardiomyopathy: Using the latest evidence to inform future applications.Exp. Biol. Med.2022247757458310.1177/1535370222107639735130741
    [Google Scholar]
  94. KadoglouN.P.E. PanayiotouC. VardasM. BalaskasN. KostomitsopoulosN.G. TsarouchaA.K. ValsamiG. A comprehensive review of the cardiovascular protective properties of silibinin/silymarin: A new kid on the block.Pharmaceuticals202215553810.3390/ph1505053835631363
    [Google Scholar]
  95. ChungW.S. LinC.L. LinC.L. KaoC.H. Thalassaemia and risk of cancer: A population-based cohort study.J. Epidemiol. Community Health201569111066107010.1136/jech‑2014‑20507525922472
    [Google Scholar]
  96. MarsellaM. RicchiP. Thalassemia and hepatocellular carcinoma: Links and risks.J. Blood Med.20191032333410.2147/JBM.S18636231572038
    [Google Scholar]
  97. De SanctisV. SolimanA.T. DaarS. AlansaryN. KattamisA. SkafidaM. GalatiM.C. ChristouS. CampisiS. MessinaG. YassinM.A. CanatanD. Di MaioS. Al JaouniS. RaiolaG. KarimiM. KalevaV. KakkarS. MariannisD. KattamisC. A concise review on the frequency, major risk factors and surveillance of hepatocellular carcinoma (HCC) in β-thalassemias: Past, present and future perspectives and the ICET-A experience.Mediterr. J. Hematol. Infect. Dis.2020121e202000610.4084/mjhid.2020.00631934316
    [Google Scholar]
  98. FargionS. ValentiL. FracanzaniA.L. Role of iron in hepatocellular carcinoma.Clin. Liver Dis.20143510811010.1002/cld.35030992900
    [Google Scholar]
  99. PaganoniR. LechelA. Vujic SpasicM. Iron at the interface of hepatocellular carcinoma.Int. J. Mol. Sci.2021228409710.3390/ijms2208409733921027
    [Google Scholar]
  100. ZhangC. LiH. LiJ. HuJ. YangK. TaoL. Oxidative stress: A common pathological state in a high-risk population for osteoporosis.Biomed. Pharmacother.202316311483410.1016/j.biopha.2023.11483437163779
    [Google Scholar]
  101. GaudioA. MorabitoN. CatalanoA. RapisardaR. XourafaA. LascoA. Pathogenesis of thalassemia major-associated osteoporosis: A review with insights from clinical experience.J. Clin. Res. Pediatr. Endocrinol.201911211011710.4274/jcrpe.galenos.2018.2018.007429991466
    [Google Scholar]
  102. VoskaridouE. TerposE. Pathogenesis and management of osteoporosis in thalassemia.Pediatr. Endocrinol. Rev.20086Suppl. 1869319337161
    [Google Scholar]
  103. ValizadehN. FarrokhiF. AlinejadV. Said MardaniS. ValizadehN. HejaziS. NorooziM. Bone density in transfusion dependent thalassemia patients in Urmia, Iran.Iran. J. Ped. Hematol. Oncol.201442687125002928
    [Google Scholar]
  104. KimJ.L. KangS.W. KangM.K. GongJ.H. LeeE.S. HanS.J. KangY.H. Osteoblastogenesis and osteoprotection enhanced by flavonolignan silibinin in osteoblasts and osteoclasts.J. Cell. Biochem.2012113124725910.1002/jcb.2335121898547
    [Google Scholar]
  105. KimJ.H. KimK. JinH.M. SongI. YounB.U. LeeJ. KimN. Silibinin inhibits osteoclast differentiation mediated by TNF family members.Mol. Cells200928320120810.1007/s10059‑009‑0123‑y19756392
    [Google Scholar]
  106. Seidlová-WuttkeD. BeckerT. ChristoffelV. JarryH. WuttkeW. Silymarin is a selective estrogen receptor β (ERβ) agonist and has estrogenic effects in the metaphysis of the femur but no or antiestrogenic effects in the uterus of ovariectomized (ovx) rats.J. Steroid Biochem. Mol. Biol.200386217918810.1016/S0960‑0760(03)00270‑X14568570
    [Google Scholar]
  107. El-ShitanyN.A. HegazyS. El-desokyK. Evidences for antiosteoporotic and selective estrogen receptor modulator activity of silymarin compared with ethinylestradiol in ovariectomized rats.Phytomedicine201017211612510.1016/j.phymed.2009.05.01219577454
    [Google Scholar]
  108. MulrowC. LawrenceV. JacobsB. Milk thistle: Effects on liver disease and cirrhosis and clinical adverse effects: Summary. AHRQ Evidence Report Summaries.Agency for Healthcare Research and Quality (US); 1998-2005Rockville (MD)200021
    [Google Scholar]
  109. SoleimaniV. DelghandiP.S. MoallemS.A. KarimiG. Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review.Phytother. Res.20193361627163810.1002/ptr.636131069872
    [Google Scholar]
  110. HawkeR.L. SchrieberS.J. SouleT.A. WenZ. SmithP.C. ReddyK.R. WahedA.S. BelleS.H. AfdhalN.H. NavarroV.J. BermanJ. LiuQ.Y. DooE. FriedM.W. SyNCH Trial Group Silymarin ascending multiple oral dosing phase I study in noncirrhotic patients with chronic hepatitis C.J. Clin. Pharmacol.201050443444910.1177/009127000934747519841158
    [Google Scholar]
  111. DoehmerJ. TewesB. KleinK.U. GritzkoK. MuschickH. MengsU. Assessment of drug–drug interaction for silymarin.Toxicol. In Vitro200822361061710.1016/j.tiv.2007.11.02018249085
    [Google Scholar]
  112. ZhangW. ZhangY. WenC. JiangX. WangL. In vitro assessment of the effects of silybin on CYP2B6-mediated metabolism.Planta Med.202389131195120310.1055/a‑2102‑064837236224
    [Google Scholar]
  113. FaisalZ. MohosV. Fliszár-NyúlE. ValentováK. KáňováK. LemliB. Kunsági-MátéS. PoórM. Interaction of silymarin components and their sulfate metabolites with human serum albumin and cytochrome P450 (2C9, 2C19, 2D6, and 3A4) enzymes.Biomed. Pharmacother.202113811145910.1016/j.biopha.2021.11145933706132
    [Google Scholar]
  114. JančováP. AnzenbacherováE. PapouškováB. LemrK. LužnáP. VeinlichováA. AnzenbacherP. ŠimánekV. Silybin is metabolized by cytochrome P450 2C8 in vitro.Drug Metab. Dispos.200735112035203910.1124/dmd.107.01641017670841
    [Google Scholar]
  115. Kawaguchi-SuzukiM. FryeR.F. ZhuH.J. BrindaB.J. ChavinK.D. BernsteinH.J. MarkowitzJ.S. The effects of milk thistle (Silybum marianum) on human cytochrome P450 activity.Drug Metab. Dispos.201442101611161610.1124/dmd.114.05723225028567
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871305325240511122602
Loading
/content/journals/rrct/10.2174/0115748871305325240511122602
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test