Skip to content
2000
Volume 19, Issue 4
  • ISSN: 1574-8871
  • E-ISSN: 1876-1038

Abstract

Finasteride and dutasteride are 5a Reductase Inhibitors (5a-RIs) and comprise the mainstay of treatment for the management of patients with benign prostatic hyperplasia. 5a-RIs are expressed in a variety of tissues, such as adipose tissues and liver, resulting in a reduction of glucocorticoid levels and affecting androgen regulation and metabolic function. As a result, the administration of these regimens may generate adverse metabolic events, such as liver disease, hyperglycemia, hyperlipidemia, and diabetes mellitus. Although several studies have tried to record these adverse metabolic events both in human subjects and animal models, the exact mechanisms of these actions have not been well described yet in the literature. Further well-designed clinical trials are needed to elucidate the exact role of 5a reductase inhibitors in the progression of the metabolic syndrome. The aim of this study was to systematically review the literature concerning the role of dutasteride or finasteride in the progression of metabolic adverse events and further investigate possible pathophysiologic mechanisms.

Loading

Article metrics loading...

/content/journals/rrct/10.2174/0115748871303638240529160610
2024-06-11
2024-11-26
Loading full text...

Full text loading...

References

  1. NikolaouN. HodsonL. TomlinsonJ.W. The role of 5-reduction in physiology and metabolic disease: evidence from cellular, pre-clinical and human studies.J. Steroid Biochem. Mol. Biol.202120710580810.1016/j.jsbmb.2021.10580833418075
    [Google Scholar]
  2. GormleyG.J. Evaluation of men on finasteride.Semin. Urol. Oncol.19961431391448865475
    [Google Scholar]
  3. DjavanB. MilaniS. FongY.K. Dutasteride: A novel dual inhibitor of 5α-reductase for benign prostatic hyperplasia.Expert Opin. Pharmacother.20056231131710.1517/14656566.6.2.31115757426
    [Google Scholar]
  4. WesterbackaJ. JärvinenY.H. VehkavaaraS. HäkkinenA.M. AndrewR. WakeD.J. SecklJ.R. WalkerB.R. Body fat distribution and cortisol metabolism in healthy men: Enhanced 5beta-reductase and lower cortisol/cortisone metabolite ratios in men with fatty liver.J. Clin. Endocrinol. Metab.200388104924493110.1210/jc.2003‑03059614557475
    [Google Scholar]
  5. MansourF.M. PelletierM. TchernofA. Characterization of 5α-reductase activity and isoenzymes in human abdominal adipose tissues.J. Steroid Biochem. Mol. Biol.2016161455310.1016/j.jsbmb.2016.02.00326855069
    [Google Scholar]
  6. AzzouniF. GodoyA. LiY. MohlerJ. The 5 alpha-reductase isozyme family: A review of basic biology and their role in human diseases.Adv. Urol.2012201211810.1155/2012/53012122235201
    [Google Scholar]
  7. StilesA.R. RussellD.W. SRD5A3: A surprising role in glycosylation.Cell2010142219619810.1016/j.cell.2010.07.00320655462
    [Google Scholar]
  8. AggarwalS. TharejaS. VermaA. BhardwajT.R. KumarM. An overview on 5α-reductase inhibitors.Steroids201075210915310.1016/j.steroids.2009.10.00519879888
    [Google Scholar]
  9. OcchiatoE.G. GuarnaA. DanzaG. SerioM. Selective non-steroidal inhibitors of 5α-reductase type 1.J. Steroid Biochem. Mol. Biol.200488111610.1016/j.jsbmb.2003.10.00415026079
    [Google Scholar]
  10. AumüllerG. EichelerW. RennebergH. AdermannK. ViljaP. ForssmannW.G. Immunocytochemical evidence for differential subcellular localization of 5 alpha-reductase isoenzymes in human tissues.Cells Tissues Organs1996156424125210.1159/0001478529078395
    [Google Scholar]
  11. ThigpenA.E. SilverR.I. GuileyardoJ.M. CaseyM.L. McConnellJ.D. RussellD.W. Tissue distribution and ontogeny of steroid 5 alpha-reductase isozyme expression.J. Clin. Invest.199392290391010.1172/JCI1166657688765
    [Google Scholar]
  12. BlouinK. BoivinA. TchernofA. Androgens and body fat distribution.J. Steroid Biochem. Mol. Biol.20081083-527228010.1016/j.jsbmb.2007.09.00117945484
    [Google Scholar]
  13. RodriguezL.M. SchilperoortM. JohanssonI. ErikssonS.E. PalsdottirV. KroonJ. HenricssonM. KooijmanS. EricsonM. BorénJ. OhlssonC. JanssonJ.O. LevinM.C. RensenP.C.N. TivestenÅ. Testosterone reduces metabolic brown fat activity in male mice.J. Endocrinol.20212511839610.1530/JOE‑20‑026334370693
    [Google Scholar]
  14. SamsonM. LabrieF. ZouboulisC.C. Luu-TheV. Biosynthesis of dihydrotestosterone by a pathway that does not require testosterone as an intermediate in the SZ95 sebaceous gland cell line.J. Invest. Dermatol.2010130260260410.1038/jid.2009.22519812596
    [Google Scholar]
  15. ZerradiM. DereumetzJ. BouletM.M. TchernofA. Androgens, body fat Distribution and Adipogenesis.Curr. Obes. Rep.20143439640310.1007/s13679‑014‑0119‑626626916
    [Google Scholar]
  16. LinH.Y. YuI.C. WangR.S. ChenY.T. LiuN.C. AltuwaijriS. HsuC.L. MaW.L. JokinenJ. SparksJ.D. YehS. ChangC. Increased hepatic steatosis and insulin resistance in mice lacking hepatic androgen receptor.Hepatology20084761924193510.1002/hep.2225218449947
    [Google Scholar]
  17. AntinozziC. MaramponF. CorinaldesiC. ViciniE. SgròP. VannelliG.B. LenziA. CrescioliC. Di LuigiL. Testosterone insulin-like effects: An in vitro study on the short-term metabolic effects of testosterone in human skeletal muscle cells.J. Endocrinol. Invest.201740101133114310.1007/s40618‑017‑0686‑y28508346
    [Google Scholar]
  18. MoothaV.K. LindgrenC.M. ErikssonK.F. SubramanianA. SihagS. LeharJ. PuigserverP. CarlssonE. RidderstråleM. LaurilaE. HoustisN. DalyM.J. PattersonN. MesirovJ.P. GolubT.R. TamayoP. SpiegelmanB. LanderE.S. HirschhornJ.N. AltshulerD. GroopL.C. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.Nat. Genet.200334326727310.1038/ng118012808457
    [Google Scholar]
  19. ZhangZ.Y. Protein tyrosine phosphatases: prospects for therapeutics.Curr. Opin. Chem. Biol.20015441642310.1016/S1367‑5931(00)00223‑411470605
    [Google Scholar]
  20. TonksN.K. PTP1B: From the sidelines to the front lines!FEBS Lett.2003546114014810.1016/S0014‑5793(03)00603‑312829250
    [Google Scholar]
  21. LivingstoneD.E.W. BaratP. RolloD.E.M. ReesG.A. WeldinB.A. ZielinskaR.E.A. MacFarlaneD.P. WalkerB.R. AndrewR. 5α-Reductase type 1 deficiency or inhibition predisposes to insulin resistance, hepatic steatosis, and liver fibrosis in rodents.Diabetes201564244745810.2337/db14‑024925239636
    [Google Scholar]
  22. DowmanJ.K. HopkinsL.J. ReynoldsG.M. ArmstrongM.J. NasiriM. NikolaouN. van HoutenE.L.A.F. VisserJ.A. MorganS.A. LaveryG.G. OprescuA. HübscherS.G. NewsomeP.N. TomlinsonJ.W. Loss of 5α-reductase type 1 accelerates the development of hepatic steatosis but protects against hepatocellular carcinoma in male mice.Endocrinology2013154124536454710.1210/en.2013‑159224080367
    [Google Scholar]
  23. MaruyamaS. NagasueN. DharD.K. YamanoiA. AssalE.O.N. SatohK. OkitaK. Preventive effect of FK143, A 5alpha-reductase inhibitor, on chemical hepatocarcinogenesis in rats.Clin. Cancer Res.2001772096210411448929
    [Google Scholar]
  24. MakT.C.S. LivingstoneD.E.W. NixonM. WalkerB.R. AndrewR. Role of hepatic glucocorticoid receptor in metabolism in models of 5αR1 deficiency in male mice.Endocrinology201916092061207310.1210/en.2019‑0023631199473
    [Google Scholar]
  25. HazlehurstJ.M. OprescuA.I. NikolaouN. GuidaD.R. GrinbergsA.E.K. DaviesN.P. FlinthamR.B. ArmstrongM.J. TaylorA.E. HughesB.A. YuJ. HodsonL. DunnW.B. TomlinsonJ.W. Dual-5α-reductase inhibition promotes hepatic lipid accumulation in man.J. Clin. Endocrinol. Metab.2016101110311310.1210/jc.2015‑292826574953
    [Google Scholar]
  26. WeiL. LaiE.C.C. YangK.Y.H. WalkerB.R. MacDonaldT.M. AndrewR. Incidence of type 2 diabetes mellitus in men receiving steroid 5α-reductase inhibitors: Population based cohort study.BMJ2019365l120410.1136/bmj.l120430971393
    [Google Scholar]
  27. TraishA. HaiderK.S. DorosG. HaiderA. Long-term dutasteride therapy in men with benign prostatic hyperplasia alters glucose and lipid profiles and increases severity of erectile dysfunction.Horm. Mol. Biol. Clin. Investig.20173032017001510.1515/hmbci‑2017‑001528632494
    [Google Scholar]
  28. UpretiR. HughesK.A. LivingstoneD.E.W. GrayC.D. MinnsF.C. MacfarlaneD.P. MarshallI. StewartL.H. WalkerB.R. AndrewR. 5α-reductase type 1 modulates insulin sensitivity in men.J. Clin. Endocrinol. Metab.2014998E1397E140610.1210/jc.2014‑139524823464
    [Google Scholar]
  29. OthonosN. MarjotT. WoodsC. HazlehurstJ.M. NikolaouN. PofiR. WhiteS. BonaventuraI. WebsterC. DuffyJ. CornfieldT. MoollaA. IsidoriA.M. HodsonL. TomlinsonJ.W. Co-administration of 5α-reductase inhibitors worsens the adverse metabolic effects of prescribed glucocorticoids.J. Clin. Endocrinol. Metab.20201059e3316e332810.1210/clinem/dgaa40832594135
    [Google Scholar]
  30. LeeS.S. YangY.W. TsaiT.H. KuoY.H. ChuangH.Y. LeeC.C. HsiehT.F. 5-alpha-reductase inhibitors and the risk of diabetes mellitus: A nationwide population-based study.Prostate2016761414710.1002/pros.2309726390988
    [Google Scholar]
  31. AlbertiK.G.M.M. EckelR.H. GrundyS.M. ZimmetP.Z. CleemanJ.I. DonatoK.A. FruchartJ.C. JamesW.P.T. LoriaC.M. SmithS.C.Jr Harmonizing the metabolic syndrome.Circulation2009120161640164510.1161/CIRCULATIONAHA.109.19264419805654
    [Google Scholar]
  32. ZhaoS.C. XiaM. TangJ.C. YanY. Associations between metabolic syndrome and clinical benign prostatic hyperplasia in a northern urban Han Chinese population: A prospective cohort study.Sci. Rep.2016613393310.1038/srep3393327653367
    [Google Scholar]
  33. AbdollahF. BrigantiA. SuardiN. CastiglioneF. GallinaA. CapitanioU. MontorsiF. Metabolic syndrome and benign prostatic hyperplasia: evidence of a potential relationship, hypothesized etiology, and prevention.Korean J. Urol.201152850751610.4111/kju.2011.52.8.50721927696
    [Google Scholar]
  34. NunzioD.C. AronsonW. FreedlandS.J. GiovannucciE. ParsonsJ.K. The correlation between metabolic syndrome and prostatic diseases.Eur. Urol.201261356057010.1016/j.eururo.2011.11.01322119157
    [Google Scholar]
  35. VignozziL. GacciM. MaggiM. Lower urinary tract symptoms, benign prostatic hyperplasia and metabolic syndrome.Nat. Rev. Urol.201613210811910.1038/nrurol.2015.30126754190
    [Google Scholar]
  36. VignozziL. RastrelliG. CoronaG. GacciM. FortiG. MaggiM. Benign prostatic hyperplasia: A new metabolic disease?J. Endocrinol. Invest.201437431332210.1007/s40618‑014‑0051‑324458832
    [Google Scholar]
/content/journals/rrct/10.2174/0115748871303638240529160610
Loading
/content/journals/rrct/10.2174/0115748871303638240529160610
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test