Skip to content
2000
image of Bio-Adsorbent for Elimination of Reactive Dye from Aqueous 
Solution: Kinetic and Statistical Modelling Study

Abstract

Introduction
Background

The use of various dyes to colour products is a general practice in various industries. The occurrence of these dyes in water, even at small concentrations, is highly noticeable and aesthetically objectionable. In the present study, the applicability of inexpensive and eco-friendly bio-adsorbent has been tested as an alternative substitution of the commercially available activated carbon for the removal of reactive dye from the aqueous solution.

Materials and Methods

Bio-adsorbent prepared from pomegranate peel was successfully used to remove the reactive dye (Reactive Black 5) from the aqueous solution. The effects of major parameters such as pH, adsorbent dosage, and contact time on dye removal efficiency were studied. Statistical models were articulated based on selected variables to optimize the decolourisation efficiency of the adsorption process using a full factorial central composite design.

Results

Dye removal efficiency of close to 100% was observed at a pH 12 using 1 g adsorbent/200 mL dye solution within a contact time of 60 min., yielding a virtually colourless solution. A fixed-bed column study with an initial dye concentration of 100 mg/L at bed depths of 4 cm, 8 cm, and 12 cm yielded a breakthrough time of 300 min, 570 min, and 780 min, respectively.

Discussion

Langmuir, Freundlich, and Temkin isotherm models were applied to analyze the sorption equilibrium parameters. The experimental results of the analysis revealed that the Langmuir isotherm fits better than the other isotherms with a linear regression coefficient (R2) of 0.99. The high correlation coefficient (R2 > 0.95) and low p-values (< 0.0001) indicate that the model and its terms are significant, making it effective for optimizing operational parameters and accurately predicting the response.

Conclusion

The breakthrough curve serves as a tool to evaluate the effectiveness of the prepared adsorbent in real-world applications. The present work not only provides an alternative to commercially available activated carbon for dye wastewater colour removal but also emphasizes the importance of repurposing fruit residues, which could otherwise become environmental pollutants if improperly disposed of.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204346559241007110823
2024-10-11
2024-11-19
Loading full text...

Full text loading...

References

  1. Shami S. Dash R.R. Verma A.K. Dash A.K. Pradhan A. Adsorptive removal of surfactant using dolochar: A kinetic and statistical modeling approach. Water Environ. Res. 2020 a 92 2 222 235 10.1002/wer.1193 31368608
    [Google Scholar]
  2. Hossain L. Khan M.S. Water footprint management for sustainable growth in the Bangladesh apparel sector. Water 2020 12 10 2760 10.3390/w12102760
    [Google Scholar]
  3. Yu L. Han M. He F. Chen Y. Current patents on dye wastewater treatment. Recent Pat. Chem. Eng. 2014 6 3 167 175 10.2174/2211334707999140221165350
    [Google Scholar]
  4. Verma A.K. Bhunia P. Dash R.R. Effectiveness of aluminum chlorohydrate (ACH) for decolorization of silk dyebath effluents. Ind. Eng. Chem. Res. 2012 a 51 25 8646 8651 10.1021/ie301201r
    [Google Scholar]
  5. Yadav U. Gonsalves G. Paul R. Shankarling G. Recent Developments in Textile Dyes, Pigments and Pollution Abatement. Recent Pat. Mater. Sci. 2013 6 2 120 139 10.2174/1874464811306020002
    [Google Scholar]
  6. Verma A.K. Dash R.R. Bhunia P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manage. 2012 b 93 1 154 168 10.1016/j.jenvman.2011.09.012 22054582
    [Google Scholar]
  7. Verma A.K. Bhunia P. Dash R.R. Supremacy of magnesium chloride for decolourisation of textile wastewater: a comparative study on the use of different coagulants. Int. J. Environ. Sci. Dev. 2012 c 3 2 118 123 10.7763/IJESD.2012.V3.200
    [Google Scholar]
  8. Suresh S. Treatment of textile dye containing effluents. Curr. Environ. Eng. 2015 1 3 162 184 10.2174/2212717801666141021235246
    [Google Scholar]
  9. Wong S. Ghafar N.A. Ngadi N. Razmi F.A. Inuwa I.M. Mat R. Amin N.A.S. Effective removal of anionic textile dyes using adsorbent synthesized from coffee waste. Sci. Rep. 2020 10 1 2928 10.1038/s41598‑020‑60021‑6 32076087
    [Google Scholar]
  10. Senthil Kumar P. Varjani S.J. Suganya S. Treatment of dye wastewater using an ultrasonic aided nanoparticle stacked activated carbon: Kinetic and isotherm modelling. Bioresour. Technol. 2018 250 716 722 10.1016/j.biortech.2017.11.097 29223092
    [Google Scholar]
  11. Sarvestani M.R.J. Doroudi Z. Removal of reactive black 5 from waste waters by adsorption: a comprehensive review. Journal of Water and Environmental Nanotechnology 2020 5 2 180 190 10.22090/jwent.2020.02.008
    [Google Scholar]
  12. Manimaran D. Sulthana A.S. Elangovan N. Reactive black 5 induced developmental defects via potentiating apoptotic cell death in Zebrafish (Danio rerio) embryos. Pharm. Pharmacol. Int. J. 2018 6 449 452
    [Google Scholar]
  13. Cunico P. Kumar A. Alcantara R.R. Fungaro D.A. Kumar, Anu.; Alcantara, R.R.; Fungaro, A.D. Adsorption of solophenyl dyes from aqueous solution by modified nanozeolite from bottom ash and its toxicity to C. dubia. Curr. Nanomater. 2018 2 2 95 103 10.2174/2405461503666180201152351
    [Google Scholar]
  14. Verma A.K. Treatment of textile wastewaters by electrocoagulation employing Fe-Al composite electrode. J. Water Process Eng. 2017 20 168 172 10.1016/j.jwpe.2017.11.001
    [Google Scholar]
  15. Bayramoglu G. Yilmaz M. Azo dye removal using free and immobilized fungal biomasses: isotherms, kinetics and thermodynamic studies. Fibers Polym. 2018 19 4 877 886 10.1007/s12221‑018‑7875‑y
    [Google Scholar]
  16. Yuliasni R. Marlena B. Indah Setianingsih N. Kadier A. Budi Kurniawan S. Song D. Ma P.C. Potential application of biological treatment methods in textile dyes removal. Bioremediation for Environmental Pollutants Sustainable Materials 2023 1 137 180 10.2174/9789815123494123010008
    [Google Scholar]
  17. Sellaoui L. Dhaouadi F. Li Z. Cadaval T.R.S. Jr Igansi A.V. Pinto L.A.A. Dotto G.L. Bonilla-Petriciolet A. Pinto D. Chen Z. Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film. J. Environ. Chem. Eng. 2021 9 4 105516 10.1016/j.jece.2021.105516
    [Google Scholar]
  18. Zhang L. Yang L. Chen J. Yin W. Zhang Y. Zhou X. Gao F. Zhao J. Adsorption of Congo Red and Methylene Blue onto Nanopore-Structured Ashitaba Waste and Walnut Shell-Based Activated Carbons: Statistical Thermodynamic Investigations, Pore Size and Site Energy Distribution Studies. Nanomaterials (Basel) 2022 12 21 3831 10.3390/nano12213831 36364607
    [Google Scholar]
  19. Abin-Bazaine A. Campos Trujillo A. Olmos-Marquez M. Adsorption isotherms: enlightenment of the phenomenon of adsorption. IntechOpen 2022 1 15 10.5772/intechopen.104260
    [Google Scholar]
  20. Dhaouadi F. Sellaoui L. Badawi M. Reynel-Ávila H.E. Mendoza-Castillo D.I. Jaime-Leal J.E. Bonilla-Petriciolet A. Lamine A.B. Statistical physics interpretation of the adsorption mechanism of Pb2+, Cd2+ and Ni2+ on chicken feathers. J. Mol. Liq. 2020 319 114168 10.1016/j.molliq.2020.114168
    [Google Scholar]
  21. Rahman N. Ahmad I. Insights into the statistical physics modeling and fractal like kinetic approach for the adsorption of As(III) on coordination polymer gel based on zirconium(IV) and 2-thiobarbituric acid. J. Hazard. Mater. 2023 457 131783 10.1016/j.jhazmat.2023.131783 37327609
    [Google Scholar]
  22. Brahmi L. Kaouah F. Boumaza S. Trari M. Response surface methodology for the optimization of acid dye adsorption onto activated carbon prepared from wild date stones. Appl. Water Sci. 2019 9 8 171 10.1007/s13201‑019‑1053‑2
    [Google Scholar]
  23. Bakshi A. Verma A.K. Dash A.K. Electrocoagulation for removal of phosphate from aqueous solution: Statistical modeling and techno-economic study. J. Clean. Prod. 2020 246 118988 10.1016/j.jclepro.2019.118988
    [Google Scholar]
  24. Ahamed A.J. Ahamed K.R. Preparation and characterization of activated carbon from the Prosopis juliflora plant. Asian J. Chem. 2008 20 3 1702 1706
    [Google Scholar]
  25. Zięzio M. Charmas B. Jedynak K. Hawryluk M. Kucio K. Preparation and characterization of activated carbons obtained from the waste materials impregnated with phosphoric acid(V). Appl. Nanosci. 2020 10 12 4703 4716 10.1007/s13204‑020‑01419‑6
    [Google Scholar]
  26. Verma A.K. Bhunia P. Dash R.R. Tyagi R.D. Surampalli R.Y. Zhang T.C. Effects of physico‐chemical pre‐treatment on the performance of an upflow anaerobic sludge blanket (UASB) reactor treating textile wastewater: application of full factorial central composite design. Can. J. Chem. Eng. 2015 93 5 808 818 10.1002/cjce.22168
    [Google Scholar]
  27. Jayaseelan A. Panchamoorthy G.K. Nithianantharaj V. An eco-friendly and economical approach for removal of Remazol Blue, Malachite Green and Rhodamine B dyes from wastewater using bio-char derived from chlorella vulgaris biomass. Curr. Anal. Chem. 2021 18 3 370 382 10.2174/1573411016999201103230445
    [Google Scholar]
  28. Barka N. Qourzal S. Assabbane A. Nounah A. Ait-Ichou Y. Removal of Reactive Yellow 84 from aqueous solutions by adsorption onto hydroxyapatite. J. Saudi Chem. Soc. 2011 15 3 263 267 10.1016/j.jscs.2010.10.002
    [Google Scholar]
  29. Djama C. Bouguettoucha A. Chebli D. Amrane A. Tahraoui H. Zhang J. Mouni L. Experimental and Theoretical Study of Methylene Blue Adsorption on a New Raw Material, Cynara scolymus—A Statistical Physics Assessment. Sustainability (Basel) 2023 15 13 10364 10.3390/su151310364
    [Google Scholar]
  30. Hussain Gardazi S.M. Ali M. Rehman S. Ashfaq T. Bilal M. Process optimization of hazardous Malachite Green (MG) adsorption onto white cedar waste: isotherms, kinetics and thermodynamic studies. Curr. Anal. Chem. 2017 13 4 4 10.2174/1573411012666160601170153
    [Google Scholar]
  31. Munagapati V.S. Yarramuthi V. Kim Y. Lee K.M. Kim D.S. Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent. Ecotoxicol. Environ. Saf. 2018 148 601 607 10.1016/j.ecoenv.2017.10.075 29127823
    [Google Scholar]
  32. Yagub M.T. Sen T.K. Afroze S. Ang H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014 209 172 184 10.1016/j.cis.2014.04.002 24780401
    [Google Scholar]
  33. Rout P.R. Bhunia P. Dash R.R. Evaluation of kinetic and statistical models for predicting breakthrough curves of phosphate removal using dolochar-packed columns. J. Water Process Eng. 2017 17 168 180 10.1016/j.jwpe.2017.04.003
    [Google Scholar]
  34. Kasiri M.B. Khataee A.R. Photooxidative decolorization of two organic dyes with different chemical structures by UV/H2O2 process: Experimental design. Desalination 2011 270 1-3 151 159 10.1016/j.desal.2010.11.039
    [Google Scholar]
  35. Khataee A.R. Zarei M. Fathinia M. Jafari M.K. Photocatalytic degradation of an anthraquinone dye on immobilized TiO2 nanoparticles in a rectangular reactor: Destruction pathway and response surface approach. Desalination 2011 268 1-3 126 133 10.1016/j.desal.2010.10.008
    [Google Scholar]
  36. Montgomery D.C. Design and Analysis of Experiments. 5th ed New York John Wiley and Sons 2001
    [Google Scholar]
  37. Mazaheri H. Ghaedi M. Asfaram A. Hajati S. Performance of CuS nanoparticle loaded on activated carbon in the adsorption of methylene blue and bromophenol blue dyes in binary aqueous solutions: Using ultrasound power and optimization by central composite design. J. Mol. Liq. 2016 219 667 676 10.1016/j.molliq.2016.03.050
    [Google Scholar]
  38. Sellaoui L. Guedidi H. Knani S. Reinert L. Duclaux L. Ben Lamine A. Application of statistical physics formalism to the modeling of adsorption isotherms of ibuprofen on activated carbon. Fluid Phase Equilib. 2015 387 103 110 10.1016/j.fluid.2014.12.018
    [Google Scholar]
  39. Bouaziz N. Ben Manaa M. Aouaini F. Ben Lamine A. Investigation of hydrogen adsorption on zeolites A, X and Y using statistical physics formalism. Mater. Chem. Phys. 2019 225 111 121 10.1016/j.matchemphys.2018.12.024
    [Google Scholar]
  40. Manaa M.B. Issaoui N. Bouaziz N. Lamine A.B. Combined statistical physics models and DFT theory to study the adsorption process of paprika dye On TiO2 for dye sensitized solar cells. J. Mater. Res. Technol. 2020 9 2 1175 1188 10.1016/j.jmrt.2019.11.045
    [Google Scholar]
  41. Kharat D.S. Adsorption of Reactive Blue 19 Dye by Sugarcane Bagasse and the Proposed Modelling. Curr. Environ. Eng. 2018 5 2 155 165 10.2174/2212717804666171013153134
    [Google Scholar]
  42. Fytianos K. Voudrias E. Kokkalis E. Sorption–desorption behaviour of 2,4-dichlorophenol by marine sediments. Chemosphere 2000 40 1 3 6 10.1016/S0045‑6535(99)00214‑3 10665437
    [Google Scholar]
  43. Krishnappa B. Saravu S. Shivanna J.M. Naik M. Hegde G. Fast and effective removal of textile dyes from the wastewater using reusable porous nano-carbons: a study on adsorptive parameters and isotherms. Environ. Sci. Pollut. Res. Int. 2022 29 52 79067 79081 10.1007/s11356‑022‑21251‑5 35704233
    [Google Scholar]
  44. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918 40 9 1361 1403 10.1021/ja02242a004
    [Google Scholar]
  45. Zhai Q.Z. Li X.D. Study on adsorption of Ag+ by waste tea: adsorption kinetics, thermodynamics, isotherm properties. Recent Innov. Chem. Eng. 2023 16 1 69 85 10.2174/2405520416666230214100228
    [Google Scholar]
  46. Freundlich H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906 57 385 470
    [Google Scholar]
  47. Saruchi Kumar V. Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb+2 ions from aqueous solutions by a hybrid ion-exchanger. Arab. J. Chem. 2019 12 3 316 329 10.1016/j.arabjc.2016.11.009
    [Google Scholar]
  48. Wang X. Qin Y. Equilibrium sorption isotherms for of Cu2+ on rice bran. Process Biochem. 2005 40 2 677 680 10.1016/j.procbio.2004.01.043
    [Google Scholar]
  49. Tan I.A.W. Ahmad A.L. Hameed B.H. Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination 2008 225 1-3 13 28 10.1016/j.desal.2007.07.005
    [Google Scholar]
  50. Shami S. Dash R.R. Verma A.K. Dash A.K. Pradhan A. Mechanistic modeling and process design for removal of anionic surfactant using dolochar. J. Hazard. Toxic Radioact. Waste 2020 24 3 04020008 10.1061/(ASCE)HZ.2153‑5515.0000492
    [Google Scholar]
  51. Orozco S. Montiel E. Valencia J.E. González R.G. del Carmen Chávez Parga M. Cortés J.A. Rivero M. Effective RhB dye removal using sustainable natural bio-adsorbents synthesized from avocado seed and skin. Water Air Soil Pollut. 2024 235 2 155 10.1007/s11270‑024‑06952‑6
    [Google Scholar]
  52. Flores Alarcón M.A.D. Revilla Pacheco C. Garcia Bustos K. Tejada Meza K. Terán-Hilares F. Pacheco Tanaka D.A. Colina Andrade G.J. Terán-Hilares R. Efficient dye removal from real textile wastewater using orange seed powder as suitable bio-adsorbent and membrane technology. Water 2022 14 24 4104 10.3390/w14244104
    [Google Scholar]
  53. Shokry H. Elkady M. Hamad H. Nano activated carbon from industrial mine coal as adsorbents for removal of dye from simulated textile wastewater: operational parameters and mechanism study. J. Mater. Res. Technol. 2019 8 5 4477 4488 10.1016/j.jmrt.2019.07.061
    [Google Scholar]
  54. Shu J. Cheng S. Xia H. Zhang L. Peng J. Li C. Zhang S. Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue. RSC Advances 2017 7 24 14395 14405 10.1039/C7RA00287D
    [Google Scholar]
  55. Ahmad M.A. Afandi N.S. Bello O.S. Optimization of process variables by response surface methodology for malachite green dye removal using lime peel activated carbon. Appl. Water Sci. 2017 7 2 717 727 10.1007/s13201‑015‑0284‑0
    [Google Scholar]
  56. Astuti W. Sulistyaningsih T. Kusumastuti E. Thomas G.Y.R.S. Kusnadi R.Y. Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal. Bioresour. Technol. 2019 287 121426 10.1016/j.biortech.2019.121426 31103938
    [Google Scholar]
  57. Streit A.F.M. Côrtes L.N. Druzian S.P. Godinho M. Collazzo G.C. Perondi D. Dotto G.L. Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions. Sci. Total Environ. 2019 660 277 287 10.1016/j.scitotenv.2019.01.027 30640096
    [Google Scholar]
  58. Mahmoud M.S. Mostafa M.K. Mohamed S.A. Sobhy N.A. Nasr M. Bioremediation of red azo dye from aqueous solutions by A spergillus niger strain isolated from textile wastewater. J. Environ. Chem. Eng. 2017 5 1 547 554 10.1016/j.jece.2016.12.030
    [Google Scholar]
/content/journals/rice/10.2174/0124055204346559241007110823
Loading
/content/journals/rice/10.2174/0124055204346559241007110823
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Adsorption ; column study ; pomegranate peel ; factorial design ; dye removal
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test