Skip to content
2000
image of Flexibilizing Mechanisms of Spinel-, Hercynite-, Galaxite-, and Chromite-Containing Basic Refractories for Cement Rotary Kilns

Abstract

Background

Refractory linings of cement rotary kilns are subjected to severe thermomechanical stresses of cranking, ovality, tyre hooping/migration, and uneven thermal distribution. An insistent demand is to discover the significance of spinel, hercynite, galaxite, and chromite in magnesia refractories, as well as their flexibilizing mechanisms.

Objectives

The objectives are to compare the fracture behavior of magnesia–spinel, –hercynite, -galaxite, and -chromite refractories and to unveil the flexibilizing mechanisms of different spinels.

Methods

The wedge-splitting test is carried out to produce various fracture parameters. Their flexibilizing mechanisms are unveiled by performing microstructural observations and analyses.

Results

Various fracture parameters are obtained, including specific fracture energy, brittleness number, characteristic crack length, and thermal-shock resistance parameter. Generally, magnesia–hercynite bricks and magnesia–galaxite bricks have demonstrated the obvious advantages of fracture resistance, which are more flexible than magnesia–spinel bricks and magnesia–chromite bricks.

Conclusion

The flexibility of magnesia–spinel bricks is attributed to microcracks generated from the thermal mismatch between spinel grains and surrounding periclase, which is recognized as the thermal-expansion mismatch mechanism. In magnesia–hercynite and magnesia-galaxite refractories, the active-ion-diffusion mechanism is predominant beyond similar microcracks, to drive the flexibility by the continuous diffusion of Fe2+, Mn2+, and Mg2+ during high-temperature processes. In magnesia–chromite bricks, the pore rims contribute to the flexibility as a silicate-migration mechanism, after silicate envelopes first arise around chromite grains and then vanish into the surrounding magnesia by the suction of capillary force during the burning process.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204343614241015071422
2024-10-29
2025-04-22
Loading full text...

Full text loading...

References

  1. Hewlett P.C. Lea’s Chemistry of Cement and Concrete. Edward Arnold Publishers London 1998
    [Google Scholar]
  2. Sengupta P. Refractories for the Cement Industry Cham Springer 2020 10.1007/978‑3‑030‑21340‑4
    [Google Scholar]
  3. Slovikovskii V.V. Rotary kiln corrosion-erosion-resistant linings. Refract. Ind. Ceram. 2008 49 2 99 102 10.1007/s11148‑008‑9034‑2
    [Google Scholar]
  4. Wajdowicz A.A. Gonçalves G.E. Pacheco G.R.C. Pinilla J. Oliveira M.G.d. Brito M.A.M. Magnesia–spinel brick: A thermal overload case. Proceedings of the 54th International Colloquium on Refractories Aachen, Germany 19–20 Oct, 2011 2011 116 119
    [Google Scholar]
  5. Gonçalves G.E. Pacheco G.R.C. Brito M.A.M. Silva S.L.C.d. Lins V.F.C. Influence of magnesia in the infiltration of magnesia–spinel refractory bricks by different clinkers. Metallurgy and Materials. Rev. Esc. Minas 2015 68 4 409 415 10.1590/0370‑44672014680117
    [Google Scholar]
  6. Gonçalves G.E. Bittencourt L.R.M. The mechanisms of formation of mayenite (C12A7) the quaternary phase Q (Ca20Al26Mg3Si3O68) of the system CaO–MgO–Al2O3–SiO2 in magnesia–spinel bricks used in the burning and transition zones of rotary cement kilns. Proceedings of the 8th UNITECR’03 Osaka, Japan 19–22 Oct, 2003 138 141
    [Google Scholar]
  7. Szczerba J. Chemical corrosion of basic refractories by cement kiln materials. Ceram. Int. 2010 36 6 1877 1885 10.1016/j.ceramint.2010.03.019
    [Google Scholar]
  8. Chen J. Liu D. Yan M. Jiang P. Li B. Sun J. Influence of microstructure on formation of deterioration layer in periclase-hercynite bricks. Refract. Ind. Ceram. 2016 57 3 267 272 10.1007/s11148‑016‑9966‑x
    [Google Scholar]
  9. Sułkowski M. Obszyńska L. Goławski C. Magnesia-spinel refractories for rotary kiln burning 60% alternative fuel. Proceedings of the Unified International Technical Conference on Refractories (UNITECR 2013) Wiley New Jersey Sułkowski M. Obszyńska L. Goławski C. 215 220 10.1002/9781118837009.ch38
    [Google Scholar]
  10. Ohno M. Toda H. Tokunaga K. Tsuchiya Y. Mizuno Y. Development of magnesia–spinel brick for transition zone in cement rotary kilns under the vastly increasing use of waste. In: Proceedings of the Unified International Technical Conference on Refractories (UNITECR 2013) New Jersey Wiley 205 209 10.1002/9781118837009.ch36
    [Google Scholar]
  11. Szczerba J. Changes in basic bricks from preheater cement kilns using secondary fuels. Ind. Ceram. 2009 29 1 19 30
    [Google Scholar]
  12. Cherif K. Palco S. Guo Z. Rigaud M. Alkalies and cement clinker reactions on basic refractories. Key Eng. Mater. 2001 206 213 1647 1650
    [Google Scholar]
  13. Ohyama T. Imai K. Kanai N. Takada T. Kenmochi I. Kusunose H. Influence of alkali salts on magnesia–spinel bricks for rotary cement kilns. Refractories Overseas 2000 20 3 184 188
    [Google Scholar]
  14. Shubin V.I. Mechanical effects on the lining of rotary cement kilns. Refract. Ind. Ceram. 2001 42 5/6 245 250 10.1023/A:1012354919912
    [Google Scholar]
  15. Krishnan S. Achieving mechanical stability of rotary kiln by FEM. Int. J. Adv. Technol. Eng. Sci. 2014 2 12 568 580
    [Google Scholar]
  16. Shubin V.I. The effect of temperature on the lining of rotary cement kilns. Refract. Ind. Ceram. 2001 42 3/4 171 177 10.1023/A:1011348516788
    [Google Scholar]
  17. Södje J. Klischat H.J. Magnesia, an essential raw material for cement kiln refractories. Refractories Worldforum. 2012 4 2 77 84
    [Google Scholar]
  18. Yoshiharu K. Fumihito O. Toru H. The present and future of chrome-free linings for rotary kilns. Refractories Overseas 2000 20 4 266 270
    [Google Scholar]
  19. Guo Z. Technical progress in basic refractories for cement rotary kilns. Refractories Overseas 2003 23 4 218 225
    [Google Scholar]
  20. Bartha P. The properties of periclase spinel brick and its service stresses in rotary cement kilns. Interceram 1984 33 15 17
    [Google Scholar]
  21. Bartha P. Magnesia–spinel bricks — Properties, production and use In: Proceedings of International Symposium on Refractories Hangzhou, China 15
    [Google Scholar]
  22. Buchebner G. Harmuth H. Molinari T.H. Magnesia–hercynite bricks — An innovative burnt basic refractory. In: Proceedings of the 6th UNITECR’99 Berlin, Germany German Refractory Association 201 203
    [Google Scholar]
  23. Geith M. Majcenovic C. Wiry A. Hercynite & galaxite — “active spinels”, additives for excellent cement rotary kiln bricks. RHI Bull. J. Refract. Innov. 2003 1 25 28
    [Google Scholar]
  24. Ewais E.M.M. Bayoumi I.M.I. Effect of hercynite spinel on the technological properties of MCZ products used for lining cement rotary kilns. Refract. Ind. Ceram. 2019 60 2 192 200 10.1007/s11148‑019‑00334‑w
    [Google Scholar]
  25. Pacheco G.R.C. Gonçalves G.E. Lins V.F.C. Design of magnesia–spinel bricks for improved coating adherence in cement rotary kilns. Ceramics 2021 4 4 652 666 10.3390/ceramics4040046
    [Google Scholar]
  26. Guo Z. Palco S. Rigaud M. Bonding of cement clinker onto doloma-based refractories. J. Am. Ceram. Soc. 2005 88 6 1481 1487 10.1111/j.1551‑2916.2005.00255.x
    [Google Scholar]
  27. Guo Z. Palco S. Rigaud M. Reaction characteristics of magnesia–spinel refractories with cement clinker. Int. J. Appl. Ceram. Technol. 2005 2 4 327 335 10.1111/j.1744‑7402.2005.02027.x
    [Google Scholar]
  28. Harmuth H. Tschegg E.K. A fracture mechanics approach for the development of refractory materials with reduced brittleness. Fatigue Fract. Eng. Mater. Struct. 1997 20 11 1585 1603 10.1111/j.1460‑2695.1997.tb01513.x
    [Google Scholar]
  29. Grasset-Bourdel R. Alzina A. Huger M. Chotard T. Emler R. Gruber D. Harmuth H. Tensile behaviour of magnesia-spinel refractories: Comparison of tensile and wedge splitting tests. J. Eur. Ceram. Soc. 2013 33 5 913 923 10.1016/j.jeurceramsoc.2012.10.031
    [Google Scholar]
  30. Dai Y. Harmuth H. Jin S. Gruber D. Li Y. R-curves determination of ordinary refractory ceramics assisted by digital image correlation method. J. Eur. Ceram. Soc. 2020 40 13 4655 4663 10.1016/j.jeurceramsoc.2020.05.047
    [Google Scholar]
  31. Dai Y. Li Y. Xu X. Zhu Q. Yin Y. Ge S. Huang A. Pan L. Characterization of tensile failure behaviour of magnesia refractory materials by a modified dog-bone shape direct tensile method and splitting tests. Ceram. Int. 2020 46 5 6517 6525 10.1016/j.ceramint.2019.11.133
    [Google Scholar]
  32. Dai Y. Li Y. Jin S. Harmuth H. Xu X. Fracture behavior of magnesia refractory materials under combined cyclic thermal shock and mechanical loading conditions. J. Am. Ceram. Soc. 2020 103 3 1956 1969 10.1111/jace.16856
    [Google Scholar]
  33. Dai Y. Li Y. Jin S. Harmuth H. Wen Y. Xu X. Mechanical and fracture investigation of magnesia refractories with acoustic emission-based method. J. Eur. Ceram. Soc. 2020 40 1 181 191 10.1016/j.jeurceramsoc.2019.09.010
    [Google Scholar]
  34. Dai Y. Li Y. Xu X. Zhu Q. Yan W. Jin S. Harmuth H. Fracture behaviour of magnesia refractory materials in tension with the Brazilian test. J. Eur. Ceram. Soc. 2019 39 16 5433 5441 10.1016/j.jeurceramsoc.2019.07.026
    [Google Scholar]
  35. Dai Y. Yin Y. Xu X. Jin S. Li Y. Harmuth H. Effect of the phase transformation on fracture behaviour of fused silica refractories. J. Eur. Ceram. Soc. 2018 38 16 5601 5609 10.1016/j.jeurceramsoc.2018.08.040
    [Google Scholar]
  36. Belgacem S. Galai H. Tiss H. Qualitative and quantitative investigation of post–mortem cement refractory: The case of magnesia–spinel bricks. Ceram. Int. 2016 42 16 19147 19155 10.1016/j.ceramint.2016.09.077
    [Google Scholar]
  37. Tschegg E. New equipment for fracture tests on concrete. Mater. Test. 1991 33 11-12 338 343 10.1515/mt‑1991‑3311‑1204
    [Google Scholar]
  38. Auer T. Manhart C. Harmuth H. Contributions to refractory fracture mechanical and fractographic investigations. RHI Bull.: J. Refract. Innov. 2006 1 38 42
    [Google Scholar]
  39. Dai Y. Gruber D. Harmuth H. Observation and quantification of the fracture process zone for two magnesia refractories with different brittleness. J. Eur. Ceram. 2017 37 6 2521 2529 10.1016/j.jeurceramsoc.2017.02.005
    [Google Scholar]
  40. Harmuth H. Rieder K. Krobath M. Tschegg E. Investigation of the nonlinear fracture behaviour of ordinary ceramic refractory materials. Mater. Sci. Eng. A 1996 214 1-2 53 61 10.1016/0921‑5093(96)10221‑5
    [Google Scholar]
  41. Hasselman D.P.H. Elastic energy at fracture and surface energy as design criteria for thermal shock. J. Am. Ceram. Soc. 1963 46 11 535 540 10.1111/j.1151‑2916.1963.tb14605.x
    [Google Scholar]
  42. Hasselman D.P.H. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J. Am. Ceram. Soc. 1969 52 11 600 604 10.1111/j.1151‑2916.1969.tb15848.x
    [Google Scholar]
  43. Hillerborg A. Analysis of one single crack. Fracture Mechanics of Concrete. Wittman F.H. Amsterdam Elsevier 1983 223 249
    [Google Scholar]
  44. Harmuth H. Characterisation of the fracture path in ‘flexible’ refractories. Adv. Sci. Technol. 2010 70 30 36 10.4028/www.scientific.net/AST.70.30
    [Google Scholar]
  45. Harmuth H. Bradt R.C. Investigation of refractory brittleness by fracture mechanical and fractographic methods. InterCeram 2010 62 4 6 10
    [Google Scholar]
  46. Buchebner G. Neuboeck R. Basic shaped materials. Handbook of Refractory Materials. 4th ed Routschka G. Wuthnow H. Essen Vulkan-Verlag GmbH 2012 83 117
    [Google Scholar]
  47. Padhi L.N. Sahu P. Sahoo N. Singh S.K. Tripathy J.K. Synthesis of galaxite by plasma fusion & its application in refractory for cement rotary kiln. J. Asian Ceram. Soc. 2017 5 2 144 150 10.1016/j.jascer.2017.03.007
    [Google Scholar]
  48. Racher R.P. McConnell R.W. Buhr A. Magnesium aluminate spinel raw materials for high-performance refractories for steel ladles. Proceedings of 43rd Conference of Metallurgists Hamilton, Ontario, Canada 2004 705 717
    [Google Scholar]
  49. Dal Maschio R. Fabbri B. Fiori C. Industrial application of refractories containing magnesium-aluminate spinel. Ind. Ceram. 1988 8 3 121 126
    [Google Scholar]
  50. Chen J. Guo Z. Production of bauxite-based spinel clinker. Silic. Ind. 1997 62 9–10 163 167
    [Google Scholar]
  51. Guo Z. Nievoll J. An overview of magnesia–hercynite refractories for cement rotary kilns. China's Refract. 2007 16 65 71
    [Google Scholar]
  52. Otroj S. Synthesis of hercynite under air atmosphere using MgAl2O4 spinel. Mater. Sci. 2015 21 2 288 292 10.5755/jo1.mm.21.2.5866
    [Google Scholar]
  53. Chen J. Yu L. Sun J. Li Y. Xue W. Synthesis of hercynite by reaction sintering. J. Eur. Ceram. Soc. 2011 31 3 259 263 10.1016/j.jeurceramsoc.2010.09.017
    [Google Scholar]
  54. Shang J. Shi K. Xu T. Liu B. Liu Y. Chen B. Synthesis of galaxite by sintering at various temperatures and atmospheres. Ceram. Int. 2023 49 8 12224 12230 10.1016/j.ceramint.2022.12.074
    [Google Scholar]
  55. Tathavakar V.D. Antony M.P. Jha A. The physical chemistry of thermal decomposition of South African chromite minerals. Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci. 2005 36 1 75 84 10.1007/s11663‑005‑0008‑1
    [Google Scholar]
  56. Schnabel M. Buhr A. Exenberger R. Rampitsch C. Spinel: In-situ versus preformed — Clearing the myth. Refractories Worldforum. 2010 2 2 87 93
    [Google Scholar]
  57. Aksel C. Warren P.D. Riley F.L. Fracture behaviour of magnesia and magnesia–spinel composites before and after thermal shock. J. Eur. Ceram. Soc. 2004 24 8 2407 2416 10.1016/j.jeurceramsoc.2003.07.005
    [Google Scholar]
  58. Grasset-Bourdel R. Alzina A. Huger M. Gruber D. Harmuth H. Chotard T. Influence of thermal damage occurrence at microstructural scale on the thermomechanical behaviour of magnesia–spinel refractories. J. Eur. Ceram. Soc. 2012 32 5 989 999 10.1016/j.jeurceramsoc.2011.10.048
    [Google Scholar]
  59. Soady J.S. Plint S. A quantitative thermal shock approach to the development of magnesia–spinel refractories for the cement kiln. Proceedings of the 2nd UNITECR 91 Aachen, Germany 26–29 Sep, 1991 443 449
    [Google Scholar]
  60. Aksel C. Rand B. Riley F.L. Warren P.D. Mechanical properties of magnesia-spinel composites. J. Eur. Ceram. Soc. 2002 22 5 745 754 10.1016/S0955‑2219(01)00373‑9
    [Google Scholar]
  61. Guo Z. Dai Y. Chen J. Lei Z. Gao J. Yuan W. Three bond modes of basic refractories used for Ruhrstahl Heraeus degassing process. J. Am. Ceram. Soc. 2023 106 9 5403 5419 10.1111/jace.19148
    [Google Scholar]
/content/journals/rice/10.2174/0124055204343614241015071422
Loading
/content/journals/rice/10.2174/0124055204343614241015071422
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Flexibilizing mechanism ; galaxite ; spinel ; chromite ; magnesia ; hercynite
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test