Skip to content
2000
image of Optimization Removal of Cd (II) from Aqueous Solution by Exhausted Kahwa Coffee Biochar under Various Carbonization Parameters

Abstract

Introduction

Recently, abundant agricultural solid waste has been utilized as sustainable biosorbents for removing heavy metals from aqueous solutions. However, the influence of the carbonization parameters on the specified biosorbent performance has not been well discussed. In this study, we developed the removal efficiency (RE) of Exhausted Kahwa Coffee (EKC) as a low-cost and high-efficiency biosorbent for Cd (II) under various carbonization temperatures (300 - 600 ˚C) and time (1- 4h).

Method

The batch biosorption test showed that the EKC biochar with a carbonization temperature of 500 ˚C and time of 4 h removed 97% of Cd (II) from the solution. The biosorption performance was further investigated by integrating the physicochemical changes in the surface and functional groups of the EKC biochar at different temperatures using BET, SEM, and FT-IR instruments.

Results

The FT-IR showed alterations in the functional groups, while the BET data and SEM images demonstrated that the porous surface of the biochar developed as the temperature increased. Furthermore, the biosorption test data was plotted in the Langmuir and Freundlich isotherm models, where the Langmuir isotherm model showed the better fit of EKC biochar. The maximum biosorption capacity of the EKC biochar on Cd (II) was calculated at 3.41 mg/g by fitting the equilibrium data to Langmuir isotherm equations.

Conclusion

It was found that the kinetic data fitted well with Pseudo-Second-Order (PSO) with a correlation coefficient of R2 = 0.99. These findings imply the influence of the carbonization parameter on the potential biosorption of the EKC biochar on Cd (II).

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204340243241230055026
2025-01-08
2025-04-25
Loading full text...

Full text loading...

References

  1. Ali H. Khan E. Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environ-mental persistence, toxicity, and bioaccumulation. J. Chem. 2019 2019 1 14 10.1155/2019/6730305
    [Google Scholar]
  2. Kahlon S.K. Sharma G. Julka J.M. Kumar A. Sharma S. Stadler F.J. Impact of heavy metals and nanoparti-cles on aquatic biota. Environ. Chem. Lett. 2018 16 3 919 946 10.1007/s10311‑018‑0737‑4
    [Google Scholar]
  3. Vareda J.P. Valente A.J.M. Durães L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J. Environ. Manage. 2019 246 101 118 10.1016/j.jenvman.2019.05.126
    [Google Scholar]
  4. Fawzy M.A. Darwish H. Alharthi S. Al-Zaban M.I. Noureldeen A. Hassan S.H.A. Process optimization and modeling of Cd2+ biosorption onto the free and immobilized Turbinaria ornata using Box–Behnken experimental design. Sci. Rep. 2022 12 1 3256 10.1038/s41598‑022‑07288‑z 35228594
    [Google Scholar]
  5. Jiang C. Sheng X. Qian M. Wang Q. Isolation and characterization of a heavy metal-resistant Burkhol-deria sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 2008 72 2 157 164 10.1016/j.chemosphere.2008.02.006 18348897
    [Google Scholar]
  6. McLaughlin M.J. Parker D.R. Clarke J.M. Metals and micronutrients – food safety issues. Field Crops Res. 1999 60 1-2 143 163 10.1016/S0378‑4290(98)00137‑3
    [Google Scholar]
  7. Rahim H.U. Akbar W.A. Alatalo J.M. A Comprehensi-ve Literature Review on Cadmium (Cd) Status in the Soil Environment and Its Immobilization by Biochar-Based Materials. Agronomy (Basel) 2022 12 4 877 10.3390/agronomy12040877
    [Google Scholar]
  8. Fadlillah L.N. Utami S. Rachmawati A.A. Jayanto G.D. Widyastuti M. Ecological risk and source identifica-tions of heavy metals contamination in the water and surface sediments from anthropogenic impacts of ur-ban river, Indonesia. Heliyon 2023 9 4 e15485 10.1016/j.heliyon.2023.e15485 37151694
    [Google Scholar]
  9. WHO Guidelines for Drinking-water Quality. 2024
    [Google Scholar]
  10. Elgarahy A.M. Elwakeel K.Z. Mohammad S.H. Elshoubaky G.A. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean Eng Tech 2021 4 June 100209 10.1016/j.clet.2021.100209
    [Google Scholar]
  11. Anggriawan R. Remediation of Heavy Metals Polluted Soils in Indonesia. Indonesia postpandemic outlook: Environment and technology role for Indonesia development. 2022 49 67 10.55981/brin.538.c504
    [Google Scholar]
  12. Ahmadi H. Hafiz S.S. Sharifi H. Rene N.N. Habibi S.S. Hussain S. Low cost biosorbent (Melon Peel) for ef-fective removal of Cu (II), Cd (II), and Pb (II) ions from aqueous solution. Case Stu in Chem Envir Eng 2022 6 August 100242 10.1016/j.cscee.2022.100242
    [Google Scholar]
  13. Choińska-Pulit A. Sobolczyk-Bednarek J. Łaba W. Optimization of copper, lead and cadmium bio-sorption onto newly isolated bacterium using a Box-Behnken design. Ecotoxicol. Environ. Saf. 2018 149 275 283 10.1016/j.ecoenv.2017.12.008
    [Google Scholar]
  14. Zhou R. Zhang M. Zhou J. Wang J. Optimization of biochar preparation from the stem of Eichhornia crassipes using response surface methodology on ad-sorption of Cd2+. Sci. Rep. 2019 9 1 17538 10.1038/s41598‑019‑54105‑1 31772278
    [Google Scholar]
  15. Çelebi H. Gök G. Gök O. Adsorption capability of brewed tea waste in waters containing toxic lead(II), cadmium (II), nickel (II), and zinc(II) heavy metal ions. Sci. Rep. 2020 10 1 17570 10.1038/s41598‑020‑74553‑4 33067532
    [Google Scholar]
  16. Simón D. Palet C. Costas A. Cristóbal A. Agro-Industrial Waste as Potential Heavy Metal Adsor-bents and Subsequent Safe Disposal of Spent Adsor-bents. Water 2022 14 20 3298 10.3390/w14203298
    [Google Scholar]
  17. Nag S. Bar N. Das S.K. Sustainable bioremadiation of Cd(II) in fixed bed column using green adsorbents: Application of Kinetic models and GA-ANN techni-que. Envi Techn Innov 2019 13 130 145 10.1016/j.eti.2018.11.007
    [Google Scholar]
  18. Yanti N.R. Puari A.T. Rusnam R. Stiyanto E. Potential of Exhausted Kahwa Coffee as Activated Carbon to Remove Cd 2+ and Zn 2+. IOP Conf. Ser. Earth Environ. Sci. 2022 1059 1 012041 10.1088/1755‑1315/1059/1/012041
    [Google Scholar]
  19. Chen X.M. Ma Z. Kitts D.D. Effects of processing method and age of leaves on phytochemical profiles and bioactivity of coffee leaves. Food Chem. 2018 249 143 153 10.1016/j.foodchem.2017.12.073
    [Google Scholar]
  20. Klingel T. Kremer J.I. Gottstein V. De Rezende T.R. A Review of Co ff ee By-Products Including Leaf. Foods 2020 9 1 20
    [Google Scholar]
  21. Ronsse F. van Hecke S. Dickinson D. Prins W. Pro-duction and characterization of slow pyrolysis bio-char: influence of feedstock type and pyrolysis con-ditions. Glob. Change Biol. Bioenergy 2013 5 2 104 115 10.1111/gcbb.12018
    [Google Scholar]
  22. Rusnam R. Puari A.T. Yanti N.R. Efrizal E. Utilisation of Exhausted Coffee Husk as Low-Cost Bio-Sorbent for Adsorption of Pb2+. Trop. Life Sci. Res. 2022 33 3 229 252 10.21315/tlsr2022.33.3.12 36545053
    [Google Scholar]
  23. Xiao H. Peng H. Deng S. Yang X. Zhang Y. Li Y. Pre-paration of activated carbon from edible fungi resi-due by microwave assisted K2CO3 activation—Application in reactive black 5 adsorption from aqueous solution. Bioresour. Technol. 2012 111 127 133 10.1016/j.biortech.2012.02.054 22397825
    [Google Scholar]
  24. Bhattacharyya K.G. Gupta S.S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv. Colloid Interface Sci. 2008 140 2 114 131 10.1016/j.cis.2007.12.008 18319190
    [Google Scholar]
  25. Meroufel B. Benali O. Benyahia M. Zenasni M.A. Merlin A. George B. Removal of Zn (II) from Aqueous Solution onto Kaolin by Batch Design. J. Water Resource Prot. 2013 5 7 669 680 10.4236/jwarp.2013.57067
    [Google Scholar]
  26. Ayalew A.A. Aragaw T.A. Utilization of treated coffee husk as low-cost bio-sorbent for adsorption of methy-lene blue. Adsorpt. Sci. Technol. 2020 38 5-6 205 222 10.1177/0263617420920516
    [Google Scholar]
  27. Lagergren S. About the theory of so-called adsorption of solid substance. Handlinger 1898 10.4236/ss.2014.52008
    [Google Scholar]
  28. Ho Y.S. McKay G. Wase D.A.J. Forster C.F. Study of the sorption of divalent metal ions on to peat. Adsorpt. Sci. Technol. 2000 18 7 639 650 10.1260/0263617001493693
    [Google Scholar]
  29. Osman N.B. Shamsuddin N. Uemura Y. Activated Carbon of Oil Palm Empty Fruit Bunch (EFB). Core and Shaggy. Procedia Eng 2016 148 758 764 10.1016/j.proeng.2016.06.610
    [Google Scholar]
  30. Angın D. Altintig E. Köse T.E. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresour. Technol. 2013 148 542 549 10.1016/j.biortech.2013.08.164 24080293
    [Google Scholar]
  31. Üner O. Bayrak Y. The effect of carbonization tem-perature, carbonization time and impregnation ratio on the properties of activated carbon produced from Arundo donax. Microporous Mesoporous Mater. 2018 268 March 225 234 10.1016/j.micromeso.2018.04.037
    [Google Scholar]
  32. Nag S. Mondal A. Roy D.N. Bar N. Das S.K. Sustaina-ble bioremediation of Cd(II) from aqueous solution using natural waste materials: Kinetics, equilibrium, thermodynamics, toxicity studies and GA-ANN hybrid modelling. Envir Techn Inno 2018 11 83 104 10.1016/j.eti.2018.04.009
    [Google Scholar]
  33. Sun S. Yu Q. Li M. Zhao H. Wang Y. Ji X. Effect of carbonization temperature on characterization and water vapor adsorption of coffee-shell activated car-bon. Adsorpt. Sci. Technol. 2020 38 9-10 377 392 10.1177/0263617420950994
    [Google Scholar]
  34. Li J. He F. Shen X. Hu D. Huang Q. Pyrolyzed fabri-cation of N/P co-doped biochars from (NH4)3PO4-pretreated coffee shells and appraisement for re-medying aqueous Cr(VI) contaminants. Bioresour. Technol. 2020 315 July 123840 10.1016/j.biortech.2020.123840 32693347
    [Google Scholar]
  35. Lawtae P. Tangsathitkulchai C. The use of high sur-face area mesoporous-activated carbon from longan seed biomass for increasing capacity and kinetics of methylene blue adsorption from aqueous solution. Molecules 2021 26 21 6521 10.3390/molecules26216521 34770928
    [Google Scholar]
  36. ALOthman Z. A review: Fundamental aspects of silicate mesoporous materials. Materials (Basel) 2012 5 12 2874 2902 10.3390/ma5122874
    [Google Scholar]
  37. Saasa V. Orasugh J.T. Mwakikunga B. Ray S.S. Elec-trospun rGO-PVDF/WO3 composite fibers for SO2 sensing. Mater. Sci. Semicond. Process. 2024 181 October 108631 10.1016/j.mssp.2024.108631
    [Google Scholar]
  38. Huang H. Reddy N.G. Huang X. Effects of py-rolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Sci. Rep. 2021 11 1 7419 10.1038/s41598‑021‑86701‑5 33795757
    [Google Scholar]
  39. Yargicoglu E.N. Sadasivam B.Y. Reddy K.R. Spokas K. Physical and chemical characterization of waste wood derived biochars. Waste Manag. 2015 36 256 268 10.1016/j.wasman.2014.10.029 25464942
    [Google Scholar]
  40. Niazi N.K. Bibi I. Shahid M. Arsenic removal by perilla leaf biochar in aqueous solutions and ground-water: An integrated spectroscopic and microscopic examination. Environ. Pollut. 2018 232 31 41 10.1016/j.envpol.2017.09.051 28966026
    [Google Scholar]
  41. Abbas Z. Ali S. Rizwan M. A critical review of mechanisms involved in the adsorption of organic and inorganic contaminants through biochar. Arab. J. Geosci. 2018 11 16 448 10.1007/s12517‑018‑3790‑1
    [Google Scholar]
  42. Fonseca G.C. Oliveira M.S. Martins C.V.C. de Souza J.C.P. How the Carbonization Time of Sugarcane Biomass Affects the Microstructure of Biochar and the Adsorption Process? Sustainability (Basel) 2022 14 3 1571 10.3390/su14031571
    [Google Scholar]
  43. Ho Y. McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000 34 3 735 742 10.1016/S0043‑1354(99)00232‑8
    [Google Scholar]
  44. Azouaou N. Sadaoui Z. Djaafri A. Mokaddem H. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 2010 184 1-3 126 134 10.1016/j.jhazmat.2010.08.014 20817346
    [Google Scholar]
  45. Minamisawa M. Minamisawa H. Yoshida S. Takai N. Adsorption behavior of heavy metals on biomate-rials. J. Agric. Food Chem. 2004 52 18 5606 5611 10.1021/jf0496402 15373400
    [Google Scholar]
  46. Puari A.T. Azora A. Rusnam R. Yanti N.R. Arlius F. Shukor M.Y. Carbonization parameters optimization for the biosorption capacity of Cu2+ by a novel bio-sorbent from agroindustrial solid waste using response surface methodology. Chem. Envir. Engin. 2024 9 100645 10.1016/j.cscee.2024.100645
    [Google Scholar]
  47. Oliveira W.E. Franca A.S. Oliveira L.S. Rocha S.D. Un-treated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. J. Hazard. Mater. 2008 152 3 1073 1081 10.1016/j.jhazmat.2007.07.085 17804159
    [Google Scholar]
  48. Singh K. Singh A. Hasan S. Low cost bio-sorbent ‘wheat bran’ for the removal of cadmium from was-tewater: Kinetic and equilibrium studies. Bioresour. Technol. 2006 97 8 994 1001 10.1016/j.biortech.2005.04.043 15993581
    [Google Scholar]
  49. Ghasemi S Mafi Gholami R Yazdanian M. Bio-sorption of Heavy Metal From Cadmium Rich Aqueous Solutions by Tea Waste as a Low Cost Bio-Adsorbent. Jundis. J Heal Sci. 2016 9 1 10.17795/jjhs‑37301
    [Google Scholar]
  50. Singh K. Rastogi R. Hasan S. Removal of cadmium from wastewater using agricultural waste ‘rice polish’. J. Hazard. Mater. 2005 121 1-3 51 58 10.1016/j.jhazmat.2004.11.002 15885406
    [Google Scholar]
  51. Memon J.R. Memon S.Q. Bhanger M.I. Memon G.Z. El-Turki A. Allen G.C. Characterization of banana peel by scanning electron microscopy and FT-IR spectros-copy and its use for cadmium removal. Colloids Surf. B Biointerfaces 2008 66 2 260 265 10.1016/j.colsurfb.2008.07.001 18760572
    [Google Scholar]
  52. Saikaew W. Kaewsarn P. Saikaew W. Pomelo peel: Agricultural waste for biosorption of cadmium ions from aqueous solutions. World Acad. Sci. Eng. Technol. 2009
    [Google Scholar]
  53. Minamisawa M. Nakajima S. Minamisawa H. Yos-hida S. Takai N. Removal of copper(II) and cad-mium(II) from water using roasted coffee beans. Environmental Chemistry. Green Chemistry and Po-llutants in Ecosystems 2005 10.1007/3‑540‑26531‑7_25
    [Google Scholar]
  54. Ho Y.S. Ofomaja A.E. Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent. Biochem. Eng. J. 2006 30 2 117 123 10.1016/j.bej.2006.02.012
    [Google Scholar]
  55. Das A. Bar N. Das S.K. Adsorptive removal of Pb(II) ion on Arachis hypogaea’s shell: Batch Experiments, statistical, and GA modeling. Int. J. Environ. Sci. Technol. 2023 20 1 537 550 10.1007/s13762‑021‑03842‑w
    [Google Scholar]
/content/journals/rice/10.2174/0124055204340243241230055026
Loading
/content/journals/rice/10.2174/0124055204340243241230055026
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: heavy metal ; exhausted kahwa coffee ; temperature ; Biosorption ; time
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test