Skip to content
2000
image of Methane Valorization through Direct Conversion to Methanol Using Catalysts Based on Copper-Modified Natural Clays

Abstract

Introduction

A series of Cu-montmorillonite clay composites (MtCs), prepared through cation exchange and wet impregnation with varying amounts of copper, have been tested for the direct oxidation of methane to methanol.

Methods

The catalysts have been characterized using several analytical techniques, including surface area BET, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), ammonia temperature-programmed desorption (NH-TPD), and pyridine desorption, followed by Fourier Transform Infrared (FTIR) spectroscopy. Catalytic tests have been conducted at various temperatures and pressures using hydrogen peroxide as the oxidizing agent.

Results

The characterization results have indicated the incorporation of copper species to not significantly modify the clay composite morphology. The TEM images of the samples with low copper content (0.8 Cu wt.%) have shown the copper particles to be uniformly distributed. Conversely, for the higher copper content samples (3.5 Cu wt.%) prepared by wet impregnation, the copper particles have been distributed around the montmorillonite clay composites. It has been observed that silica (MtC-Si) and aluminum (MtC-SiAl) montmorillonite clay composites have exhibited notable differences in acid site strength and distribution, influencing the dispersion and type of copper species being active for direct oxidation of methane to methanol.

Conclusion

The findings have indicated the well-dispersed copper species, favored by the structure MtCs, to result in enhanced catalytic activity for methane’s oxidation to methanol.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204337755241121192521
2024-12-26
2025-04-24
Loading full text...

Full text loading...

References

  1. Cunha D.G.P. Medeiros D.J.L. Direct methane to methanol patents. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering Elsevier 2024 10.1016/B978‑0‑443‑15740‑0.00061‑6
    [Google Scholar]
  2. Holmen A. Direct conversion of methane to fuels and chemicals. Catal. Today 2009 142 1-2 2 8 10.1016/j.cattod.2009.01.004
    [Google Scholar]
  3. Hakemian A.S. Rosenzweig A.C. The biochemistry of methane oxidation. Annu. Rev. Biochem. 2007 76 1 223 241 10.1146/annurev.biochem.76.061505.175355 17328677
    [Google Scholar]
  4. Schramm V.L. Introduction: Principles of enzymatic catalysis. Chem. Rev. 2006 106 8 3029 3030 10.1021/cr050246s
    [Google Scholar]
  5. Smeets P.J. Hadt R.G. Woertink J.S. Vanelderen P. Schoonheydt R.A. Sels B.F. Solomon E.I. Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5. J. Am. Chem. Soc. 2010 132 42 14736 14738 10.1021/ja106283u 20923156
    [Google Scholar]
  6. Pannov G.I. Sobolev V.I. Kharitonov A.S. The role of iron in N2O decomposition on ZSM-5 zeolite and reactivity of the surface oxygen formed. J. Mol. Catal. 1990 61 1 85 97 10.1016/0304‑5102(90)85197‑P
    [Google Scholar]
  7. Dubkov K.A. Ovanesyan N.S. Shteinman A.A. Starokon E.V. Panov G.I. Evolution of iron states and formation of α-sites upon activation of FeZSM-5 zeolites. J. Catal. 2002 207 2 341 352 10.1006/jcat.2002.3552
    [Google Scholar]
  8. Groothaert M.H. Smeets P.J. Sels B.F. Jacobs P.A. Schoonheydt R.A. Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 2005 127 5 1394 1395 10.1021/ja047158u 15686370
    [Google Scholar]
  9. Woertink J.S. Smeets P.J. Groothaert M.H. Vance M.A. Sels B.F. Schoonheydt R.A. Solomon E.I. A [Cu 2 O] 2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc. Natl. Acad. Sci. 2009 106 45 18908 18913 10.1073/pnas.0910461106 19864626
    [Google Scholar]
  10. Zhang H. Li J. Wang D. Wang Y. Xiong H. A review on the active sites for direct oxidation of methane to methanol by copper-zeolites: Coordination structure, formation and activity. Coord. Chem. Rev. 2024 503 215637 10.1016/j.ccr.2023.215637
    [Google Scholar]
  11. Li G. Vassilev P. Sanchez S.M. Lercher J.A. Hensen E.J.M. Pidko E.A. Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol. J. Catal. 2016 338 305 312 10.1016/j.jcat.2016.03.014
    [Google Scholar]
  12. Grundner S. Markovits M.A.C. Li G. Tromp M. Pidko E.A. Hensen E.J.M. Jentys A. Sanchez S.M. Lercher J.A. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 2015 6 1 7546 10.1038/ncomms8546 26109507
    [Google Scholar]
  13. Narsimhan K. Iyoki K. Dinh K. Leshkov R.Y. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent. Sci. 2016 2 6 424 429 10.1021/acscentsci.6b00139 27413787
    [Google Scholar]
  14. Galarneau A. Barodawalla A. Pinnavaia T.J. Porous clay heterostructures (PCH) as acid catalysts. Chem. Commun. 1997 ••• 17 1661 1662 10.1039/a703101g
    [Google Scholar]
  15. Polverejan M. Pauly T.R. Pinnavaia T.J. Acidic porous clay heterostructures (PCH): Intragallery assembly of mesoporous silica in synthetic saponite clays. Chem. Mater. 2000 12 9 2698 2704 10.1021/cm0002618
    [Google Scholar]
  16. Sushkevich V.L. Palagin D. Ranocchiari M. Bokhoven V.J.A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 2017 356 6337 523 527 10.1126/science.aam9035 28473586
    [Google Scholar]
  17. Zhou C. Li S. He S. Zhao Z. Jiao Y. Zhang H. Temperature-dependant active sites for methane continuous conversion to methanol over Cu-zeolite catalysts using water as the oxidant. Fuel 2022 329 125483 10.1016/j.fuel.2022.125483
    [Google Scholar]
  18. Hammond C. Forde M.M. Rahim A.M.H. Thetford A. He Q. Jenkins R.L. Dimitratos N. Sanchez L.J.A. Dummer N.F. Murphy D.M. Carley A.F. Taylor S.H. Willock D.J. Stangland E.E. Kang J. Hagen H. Kiely C.J. Hutchings G.J. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew. Chem. Int. Ed. 2012 51 21 5129 5133 10.1002/anie.201108706 22488717
    [Google Scholar]
  19. Kalamaras C. Palomas D. Bos R. Horton A. Crimmin M. Hellgardt K. Selective oxidation of methane to methanol over Cu- and Fe-exchanged zeolites: The effect of Si/Al molar ratio. Catal. Lett. 2016 146 2 483 492 10.1007/s10562‑015‑1664‑7
    [Google Scholar]
  20. Cabrera S. Haskouri E.J. Guillem C. Latorre J. Porter B.A. Porter B.D. Marcos M.D. Amorós P. Generalised syntheses of ordered mesoporous oxides: The atrane route. Solid State Sci. 2000 2 4 405 420 10.1016/S1293‑2558(00)00152‑7
    [Google Scholar]
  21. Leofanti G. Tozzola G. Padovan M. Petrini G. Bordiga S. Zecchina A. Catalyst characterization: Characterization techniques. Catal. Today 1997 34 3-4 307 327 10.1016/S0920‑5861(96)00056‑9
    [Google Scholar]
  22. Chmielarz L. Kowalczyk A. Skoczek M. Rutkowska M. Gil B. Natkański P. Radko M. Motak M. Dębek R. Ryczkowski J. Porous clay heterostructures intercalated with multicomponent pillars as catalysts for dehydration of alcohols. Appl. Clay Sci. 2018 160 116 125 10.1016/j.clay.2017.12.015
    [Google Scholar]
  23. Yuan M. Su Y. Deng W. Zhou H. Porous clay heterostructures (PCHs) modified with copper ferrite spinel as catalyst for SCR of NO with C3H6. Chem. Eng. J. 2019 375 122091 10.1016/j.cej.2019.122091
    [Google Scholar]
  24. Konta J. Textural variation and composition of bentonite derived from Basaltic Ash. Clays Clay Miner. 1986 34 3 257 265 10.1346/CCMN.1986.0340305
    [Google Scholar]
  25. Zaki M.I. Hasan M.A. Sagheer A.F.A. Pasupulety L. In situ FTIR spectra of pyridine adsorbed on SiO2–Al2O3, TiO2, ZrO2 and CeO2: General considerations for the identification of acid sites on surfaces of finely divided metal oxides. Colloids Surf. A Physicochem. Eng. Asp. 2001 190 3 261 274 10.1016/S0927‑7757(01)00690‑2
    [Google Scholar]
  26. Chmielarz L. Kuśtrowski P. Dziembaj R. Cool P. Vansant E.F. Selective catalytic reduction of NO with ammonia over porous clay heterostructures modified with copper and iron species. Catal. Today 2007 119 1-4 181 186 10.1016/j.cattod.2006.08.017
    [Google Scholar]
  27. Park M.B. Ahn S.H. Mansouri A. Ranocchiari M. Bokhoven V.J.A. Comparative study of diverse copper zeolites for the conversion of methane into methanol. Chem. Cat. Chem. 2017 9 19 3705 3713 10.1002/cctc.201700768
    [Google Scholar]
  28. Forde M.M. Armstrong R.D. McVicker R. Wells P.P. Dimitratos N. He Q. Lu L. Jenkins R.L. Hammond C. Sanchez L.J.A. Kiely C.J. Hutchings G.J. Light alkane oxidation using catalysts prepared by chemical vapour impregnation: Tuning alcohol selectivity through catalyst pre-treatment. Chem. Sci. 2014 5 9 3603 3616 10.1039/C4SC00545G
    [Google Scholar]
  29. Hammond C. Conrad S. Hermans I. Oxidative methane upgrading. Chem. Sus. Chem. 2012 5 9 1668 1686 10.1002/cssc.201200299 22848012
    [Google Scholar]
  30. Wang B. Suazo A.S. Torres P.Y. Nikolla E. Advances in methane conversion processes. Catal. Today 2017 285 147 158 10.1016/j.cattod.2017.01.023
    [Google Scholar]
  31. Ravi M. Ranocchiari M. Bokhoven V.J.A. The direct catalytic oxidation of methane to methanol—A critical assessment. Angew. Chem. Int. Ed. 2017 56 52 16464 16483 10.1002/anie.201702550 28643885
    [Google Scholar]
  32. Dusselier M. Davis M.E. Small-pore zeolites: Synthesis and catalysis. Chem. Rev. 2018 118 11 5265 5329 10.1021/acs.chemrev.7b00738 29746122
    [Google Scholar]
  33. Tomkins P. Ranocchiari M. Bokhoven V.J.A. Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond. Acc. Chem. Res. 2017 50 2 418 425 10.1021/acs.accounts.6b00534 28151649
    [Google Scholar]
/content/journals/rice/10.2174/0124055204337755241121192521
Loading
/content/journals/rice/10.2174/0124055204337755241121192521
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: methane oxidation ; copper catalyst ; mesoporous composite ; methanol ; Montmorillonite clay
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test