Skip to content
2000
Volume 17, Issue 3
  • ISSN: 2405-5204
  • E-ISSN:

Abstract

Introduction

The possibility of regulating the curing rate and the complex of adhesive, deformation-strength and dynamic mechanical properties of polymers based on bisphenol A dithioester (thiirane) using a mixture of amine hardeners of various chemical nature is investigated.

Methods

Diethylenetriamine, diethylenetriaminomethylphenol and aminopolyamide were investigated as hardeners. The ratio of the components of the mixed hardener is selected, which provides the best combination of strength properties.

Results

It was found that the rate of adhesion and cohesive strength at the initial stage (during the first hour) of curing compositions containing a mixture hardener significantly exceeds compositions cured by individual components of the mixture.

Conclusion

The results of measuring the dynamic mechanical characteristics of the studied polymers indicate that the dynamic modulus of elasticity, measured at temperatures below and above the transition from a glassy state to a high elastic one, for a sample containing a mixed hardener has an intermediate value between the values characteristic of samples containing individual components of a mixed hardener.

Loading

Article metrics loading...

/content/journals/rice/10.2174/0124055204303723240510115938
2024-05-17
2024-11-19
Loading full text...

Full text loading...

References

  1. BakerA.A. Repair of metallic airframe components using fibre-reinforced polymer (FRP) composites.Rehabilitation of Metallic Civil Infrastructure Using Fiber Reinforced Polymer (FRP) Composites.CambridgeWoodhead Publishing Li-mited2014115910.1533/9780857096654.1.11
    [Google Scholar]
  2. LimK.S. AzraaiS.N.A. NoorN.M. YahayaN. An overview of corroded pipe repair techniques using composite materials.Int J Chem Molec NuclMat Metall Eng2016101192510.5281/zenodo.1110684
    [Google Scholar]
  3. LiB. ChenJ. WangH. LiH. Kinetics of fast-curing epoxy resin cationic thermopolymerization: Propagated by ACE and AM mechanism.J. Therm. Anal. Calorim.202214721118991190710.1007/s10973‑022‑11381‑w
    [Google Scholar]
  4. AhmadiZ. Nanostructured epoxy adhesives: A review.Prog. Org. Coat.201913544945310.1016/j.porgcoat.2019.06.028
    [Google Scholar]
  5. RimdusitS. IshidaH. Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins.Polymer200041227941794910.1016/S0032‑3861(00)00164‑6
    [Google Scholar]
  6. ZhangB.L. TangG.L. ShiK.Y. A study on properties of epoxy resin toughened by functionalized polymer containing rigid, rod-like moiety.Eur. Polym. J.200036120521310.1016/S0014‑3057(99)00032‑4
    [Google Scholar]
  7. WangY. LiuW. QiuY. WeiY. A one-component, fast-cure, and economical epoxy resin system suitable for liquid molding of automotive composite parts.Materials201811568569710.3390/ma11050685 29702575
    [Google Scholar]
  8. BarkoulaN.M. KarabelaM. ZafeiropoulosN.E. TsotraP. Fast curing versus conventional resins degradation due to hygrothermal and UV exposure.Express Polym. Lett.202014540141510.3144/expresspolymlett.2020.34
    [Google Scholar]
  9. PerrinF.X. NguyenT.M.H. VernetJ.L. Modeling the cure of an epoxy-amine resin with bisphenol a as an external catalyst.Macromol. Chem. Phys.20072081556710.1002/macp.200600408
    [Google Scholar]
  10. RamírezC. AbadM.J. BarralL. Thermal behaviour of a polyhedral oligomeric silsesquioxane with epoxy resin cured by diamines.J. Therm. Anal. Calorim.200372242142910.1023/A:1024544709249
    [Google Scholar]
  11. KellerA. MasaniaK. TaylorA.C. DransfeldC. Fast-curing epoxy polymers with silica nanoparticles: Properties and rheo-kinetic modelling.J. Mater. Sci.201651123625110.1007/s10853‑015‑9158‑y
    [Google Scholar]
  12. BhatP. MerotteJ. SimacekP. AdvaniS.G. Process analysis of compression resin transfer molding. Compos, Part A.Appl. Sci. Manuf.200940443144110.1016/j.compositesa.2009.01.006
    [Google Scholar]
  13. KarkanasP.I. PartridgeI.K. Cure modeling and monitoring of epoxy/amine resin systems. I. Cure kinetics modeling.J. Appl. Polym. Sci.20007771419143110.1002/1097‑4628(20000815)77:7<1419::AID‑APP3>3.0.CO;2‑N
    [Google Scholar]
  14. YangL.F. YaoK.D. KohW. Kinetics analysis of the curing reaction of fast cure epoxy prepregs.J. Appl. Polym. Sci.19997381501150810.1002/(SICI)1097‑4628(19990822)73:8<1501::AID‑APP19>3.0.CO;2‑R
    [Google Scholar]
  15. SukantoH. RaharjoW.W. AriawanD. TriyonoJ. KaavesinaM. Epoxy resins thermosetting for mechanical engineering.Open Eng.202111179781410.1515/eng‑2021‑0078
    [Google Scholar]
  16. PrimeR. B. MichalskiC. NeagC. M. Kinetic analysis of a fast reacting thermoset system.Thermochimica. Acta2005429221321710.1016/j.tca.2004.11.029
    [Google Scholar]
  17. GuoZ. DuS. ZhangB. Temperature field of thick thermoset composite laminates during cure process.Compos. Sci. Technol.2005653-451752310.1016/j.compscitech.2004.07.015
    [Google Scholar]
  18. FriedrichK. AlmajidA.A. Manufacturing aspects of advanced polymer composites for automotive applications.Appl. Compos. Mater.201320210712810.1007/s10443‑012‑9258‑7
    [Google Scholar]
  19. BellengerV. VerduJ. MorelE. Effect of structure on glass transition temperature of amine crosslinked epoxies.J. Polym. Sci., B, Polym. Phys.19872561219123410.1002/polb.1987.090250604
    [Google Scholar]
  20. PearsonR.A. YeeA.F. Toughening mechanisms in elastomer-modified epoxies.J. Mater. Sci.19892472571258010.1007/BF01174528
    [Google Scholar]
  21. HsiehT.H. KinlochA.J. MasaniaK. Sohn LeeJ. TaylorA.C. SprengerS. The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles.J. Mater. Sci.20104551193121010.1007/s10853‑009‑4064‑9
    [Google Scholar]
  22. GladkikhS.N. KolobovaV.M. KuznetsovaL.I. Fast-curing adhesive compositions based on modified epoxy resins.Polym. Sci. Ser. C200749219319410.1134/S1811238207020208
    [Google Scholar]
  23. RudawskaA. WorzakowskaM. BociągaE. Olewnik-KruszkowskaE. Investigation of selected properties of adhesive compositions based on epoxy resins.Int. J. Adhes. Adhes.201992233610.1016/j.ijadhadh.2019.04.008
    [Google Scholar]
  24. CostaM.L. PardiniL.C. RezendeM.C. Influence of aromatic amine hardeners in the cure kinetics of an epoxy resin used in advanced composites.Mater. Res.200581657010.1590/S1516‑14392005000100012
    [Google Scholar]
  25. WuL. HoaS.V. Minh-Tan Ton-That. Effects of composition of hardener on the curing and aging for an epoxy resin system.J. Appl. Polym. Sci.200699258058810.1002/app.22493
    [Google Scholar]
  26. IgnatenkoV.Y. IlyinS.O. KostyukA.V. BondarenkoG.N. AntonovS.V. Acceleration of epoxy resin curing by using a combination of aliphatic and aromatic amines.Polym. Bull.20207731519154010.1007/s00289‑019‑02815‑x
    [Google Scholar]
  27. PrimeR.B. SacherE. Kinetics of epoxy cure: 2. The system bisphenol-A diglycidyl ether/polyamide.Polymer197213945545810.1016/0032‑3861(72)90113‑9
    [Google Scholar]
  28. DangZ.M. ZhangB. LiJ. ZhaJ.W. HuG.H. Copper particles/epoxy resin thermosetting conductive adhesive using polyamide resin as curing agent.J. Appl. Polym. Sci.2012126381582110.1002/app.36951
    [Google Scholar]
  29. ProlongoS.G. del RosarioG. UreñaA. Comparative study on the adhesive properties of different epoxy resins.Int. J. Adhes. Adhes.200626312513210.1016/j.ijadhadh.2005.02.004
    [Google Scholar]
  30. RazackN.A. VargheseL.A. The effect of various hardeners on the mechanical and thermal properties of epoxy resin.Int. J. Eng. Res. Technol.2014312662266510.17577/IJERTV3IS10876
    [Google Scholar]
  31. SalehN. RazackA.A. ToomaM. AzizM.E. A study mechanical properties of epoxy resin cured at constant curing time and temperature with different hardeners.Eng Technol20112991804181810.30684/etj.29.9.15
    [Google Scholar]
  32. SakoshevZ.G. BlaznovA.N. ChashchilovD.V. BychinN.V. FirsovV.V. A study of the rheological, physicomechanical, and thermomechanical properties of epoxy binders with various curing agents.Polym. Sci. Ser. D Glues Sealing Mater.202316224525010.1134/S1995421223020363
    [Google Scholar]
  33. KocamanS. AhmetliG. A study of coating properties of biobased modified epoxy resin with different hardeners.Prog. Org. Coat.201697536410.1016/j.porgcoat.2016.03.025
    [Google Scholar]
  34. SmirnovS V VeretennikovaI A KonovalovD A MichurovN S OsipovaV A PestovA V Effect of hardeners on the mechanical properties of epoxy coatings based on ED-20 resin.Diagn Res Mechan mat2023161610.17804/2410‑9908.2023.1.006‑016
    [Google Scholar]
  35. Ozeren OzgulE. OzkulM.H. Effects of epoxy, hardener, and diluent types on the workability of epoxy mixtures.Constr. Build. Mater.201815836937710.1016/j.conbuildmat.2017.10.008
    [Google Scholar]
  36. AchmadZ. IsmailA.E. HamdanA. The effect of a mixture of epoxy resin matrix composite materials and hardener by varying the stirring speed on the mechanical properties.Int J Eng Trend Technol20216911838810.14445/22315381/IJETT‑V69I11P210
    [Google Scholar]
  37. IrzhakV.I. MezhikovskiiS.M. Structural aspects of polymer network formation upon curing of oligomer systems.Russ. Chem. Rev.200978216519410.1070/RC2009v078n02ABEH003896
    [Google Scholar]
  38. EstridgeC.E. The effects of competitive primary and secondary amine reactivity on the structural evolution and properties of an epoxy thermoset resin during cure: A molecular dynamics study.Polymer2018141122010.1016/j.polymer.2018.02.062
    [Google Scholar]
  39. ZhangY. VyazovkinS. Effect of substituents in aromatic amines on the activation energy of epoxy-amine reaction.J. Phys. Chem. B2007111257098710410.1021/jp071001h 17530886
    [Google Scholar]
  40. WanJ. LiC. BuZ.Y. XuC.J. LiB.G. FanH. A comparative study of epoxy resin cured with a linear diamine and a branched polyamine.Chem. Eng. J.201218816017210.1016/j.cej.2012.01.134
    [Google Scholar]
  41. TsuchidaK. BellJ.P. A New epoxy/episulfide resin system for coating applications: Curing mechanism and properties.Int. J. Adhes. Adhes.200020644945610.1016/S0143‑7496(00)00016‑6
    [Google Scholar]
  42. TsuchidaK. BellJ.P. New epoxy/episulfide resin system for electronic applications. I. Curing mechanism and properties.J. Appl. Polym. Sci.20017981359137010.1002/1097‑4628(20010222)79:8<1359::AID‑APP30>3.0.CO;2‑N
    [Google Scholar]
  43. DutkiewiczM. SzołygaM. MaciejewskiH. MarciniecB. Thiirane functional spherosilicate as epoxy resin modifier.J. Therm. Anal. Calorim.2014117125926410.1007/s10973‑014‑3725‑3
    [Google Scholar]
  44. BellJ.P. DonT.M. VoongS. FernandezA. KuW. Synthesis and properties of epoxy‐episulfide resins.Angew. Makromol. Chem.19962401678110.1002/apmc.1996.052400106
    [Google Scholar]
  45. AleksanyanV.T. Kuz’yantsG.M. The vibrational spectra of thiirane.J. Struct. Chem.197112224324710.1007/BF00739108
    [Google Scholar]
  46. LiY. ChengJ. ZhangJ. Study on the synthesis of thiirane.J. Appl. Polym. Sci.200610164023402710.1002/app.23043
    [Google Scholar]
  47. TamamiB. BorujenyK.P. Synthesis of thiiranes from oxiranes using cross-linked polystyrene supported aluminium chloride as a catalyst.Synth. Commun.2004341657010.1081/SCC‑120027239
    [Google Scholar]
  48. DasB. ReddyV.S. KrishnaiahM. An efficient catalyst-free synthesis of thiiranes from oxiranes using polyethylene glycol as the reaction medium.Tetrahedron Lett.200647488471847310.1016/j.tetlet.2006.09.153
    [Google Scholar]
  49. KaboudinB. NorouziH. A new, efficient, and simple method for the synthesis of thiiranes from epoxides under solvent-free conditions.Tetrahedron Lett.20044561283128510.1016/j.tetlet.2003.11.099
    [Google Scholar]
  50. ChewW HarppDN Recent aspects of thiirane chemistry.Sulfur reports199315113910.1080/01961779308050628
    [Google Scholar]
  51. YadavJ.S. ReddyB.V.S. ReddyC.S. RajasekharK. A novel and recyclable ionic liquid for conversation of oxiranes in aqueous media.J. Org. Chem.20036862525252710.1021/jo026544w 12636433
    [Google Scholar]
  52. KiasatA.R. KazemiF. JardiM.F.M. Solvent-free conversion of oxiranes to thiiranes with thiourea.Phosphorus Sulfur Silicon Relat. Elem.200417991841184410.1080/10426500490466599
    [Google Scholar]
  53. TamamiB. KolahdoozanM. Synthesis of thiiranes from oxiranes in water using polymeric cosolvents.Tetrahedron Lett.20044571535153710.1016/j.tetlet.2003.12.014
    [Google Scholar]
  54. KazemiF. KiasatA.R. Fasile cjnversion of epoxides to thiiranes with ammonium thiocyanate catalyzed with oxalic acid.Phosphorus Sulfur Silicon Relat. Elem.200317861333133710.1080/10426500307898
    [Google Scholar]
  55. KuW. BellJ.P. Epoxy resin chemistry II: Fast curing epoxy-episulfide resin for user at room temperature BauerR S ACS Symposium Series1536910.1021/bk‑1983‑0221.ch008
    [Google Scholar]
  56. MirkhaniV. TangestaninejadS. AlipanahL. Mild, efficient, and convenient conversion of oxiranes to thiiranes with ammonium thiocyanate and thiourea in the presence of cerium(IV) polyoxometallate.Synth. Commun.200232462162610.1081/SCC‑120002409
    [Google Scholar]
  57. KazemiF. KiasatA.R. EbrahimiS. LiBF4: A mild and efficient catalyst for conversion of oxiranes to thiiranes with thiourea.Synth. Commun.200333459560010.1081/SCC‑120015813
    [Google Scholar]
  58. ZeynizadehB. BaradaraniM.M. EisaviR. A practical and eco-friendly method for conversion of epoxides to thiiranes with immobilized thiourea on CaCO3.Phosphorus Sulfur Silicon Relat. Elem.2011186112208221510.1080/10426507.2011.583963
    [Google Scholar]
  59. EisaviR. ZeynizadehB. A green protocol for rapid and efficient conversion of epoxides to thiiranes using alumina immobilized thiourea at solvent-free conditions.Phosphorus Sulfur Silicon Relat. Elem.20161911656910.1080/10426507.2015.1085044
    [Google Scholar]
  60. Parvanak BorujeniK. Conversion of oxiranes to thiiranes catalyzed with silica gel-supported aluminium chloride.Synth. Commun.200535192575257910.1080/00397910500214102
    [Google Scholar]
  61. GorjizadehM. AfshariM. A facile and convenient method for synthesis of thiiranes under mild condition using phase transfer catalyst.Orient. J. Chem.20132941657166010.13005/ojc/290454
    [Google Scholar]
  62. BehrouzS SoltaniN PiltanM A Ultrasound promoted rapid and green synthesis of thiiranes from epoxides in water catalyzed by chitosan-silica sulfate nano hybrid (CSSNH) as a green, novel and highly proficient heterogeneous nano catalyst.Ultrason Sonochem201740Pt A5172610.1016/j.ultsonch.2017.07.046
    [Google Scholar]
  63. StrzelecK BączekN SzynkowskaM GramsJ Thiirane resins cured with polythiourethane hardeners as novel supports for metal complex catalysts.J Appl Polym Sci201413111app.4033010.1002/app.40330
    [Google Scholar]
  64. EisaviR. GhadernejadS. ZeynizadehB. Mohammad AminzadehF. Magnetically separable nano CuFe 2 O 4: An efficient and reusable heterogeneous catalyst for the green synthesis of thiiranes from epoxides with thiourea.J. Sulfur Chem.201637553754510.1080/17415993.2016.1196691
    [Google Scholar]
  65. BellJ.P. KuW.H. Epoxy/Episulfide Resins. Crosslinked epoxies. SedlacekB Berlinde Gruyter1987326
    [Google Scholar]
  66. VeceraM. SpacekV. Preparation and reactivity of thiiranes.Crosslinked epoxies.BerlinDe Gruyter19877380
    [Google Scholar]
  67. KocherginY.S. KaratL.D. GrigorenkoT.I. Properties of adhesive compositions based on thiirane.Polym. Sci. Ser. D Glues Sealing Mater.20125315015410.1134/S1995421212030124
    [Google Scholar]
  68. KocherginY.S. KaratL.D. GrigorenkoT.I. Properties of adhesive compositions based on thiirane and oxirane mixtures.Polym. Sci. Ser. D Glues Sealing Mater.20136319720110.1134/S1995421213030106
    [Google Scholar]
  69. KocherginYuS. KaratL.D. GrigorenkoT.I. The influence of the chemical nature of hardeners on the properties of thiirane-based adhesive compositions.Klei GermetikiTekhnologii20132812
    [Google Scholar]
  70. HB 5164-1981 Metallic Cementing : Test Method for Tensile and Shear Strength.
    [Google Scholar]
  71. GB/T 1041-2008 Plastics : Determination of compressive properties.
    [Google Scholar]
  72. GB/T 24148.7-2014 Plastics : Unsaturated polyesterresins : Part 7: Measurement of gel time at ambient temperature.
    [Google Scholar]
  73. GB/T 1033.2-2010 Plastics : Methods for determining the density of non-cellular plastics : Part 2: Density gradient column method.
    [Google Scholar]
/content/journals/rice/10.2174/0124055204303723240510115938
Loading
/content/journals/rice/10.2174/0124055204303723240510115938
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test