Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Aims & Background

Due to its ferocity, enormous metastatic potential, and variability, cancer is responsible for a disproportionately high number of deaths. Cancers of the lung and colon are two of the most common forms of the disease in both sexes worldwide. The excellence of treatment and the endurance rate for cancer patients can be greatly improved with early and precise diagnosis.

Objectives & Methodology

We suggest a computationally efficient and highly accurate strategy for the rapid and precise diagnosis of lung and colon cancers as a substitute for the standard approaches now in use. The training and validation procedures in this work made use of an enormous dataset consisting of lung and colon histopathology pictures. There are 25,000 Histopathological Images (HIs) in the dataset, split evenly among 5 categories (mostly lung and colon tissues). Before training it on the dataset, a pretrained neural network (AlexNet) had its four layers fine-tuned.

Results

The study enhances malignancy detection in lung and colon histopathology images by applying transfer learning with class-selective image processing. Instead of enhancing the entire dataset, a targeted contrast enrichment was applied to images from the underperforming class, improving the model's accuracy from 92.3% to 99.2% while reducing computational overhead.

Conclusion

This approach stands out by emphasizing class-specific enhancements, leading to significant performance gains. The results meet or exceed established CAD metrics for breast cancer histological images, demonstrating the method's efficiency and effectiveness.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558335817241014113154
2024-10-23
2025-06-18
Loading full text...

Full text loading...

References

  1. MehmoodS. GhazalT.M. KhanM.A. ZubairM. NaseemM.T. FaizT. AhmadM. Malignancy detection in lung and colon histopathology images using transfer learning with class selective image processing.IEEE Access202210256572566810.1109/ACCESS.2022.3150924
    [Google Scholar]
  2. OubaallaA. ElMoubtahijH. El AkkadN. Detection of Lung and Colon Cancer from Histopathological Images: Using Convolutional Networks and Transfer Learning.Int. J. Comput. Digital Sys.202415158359510.12785/ijcds/160144
    [Google Scholar]
  3. SuneelS. BalaramA. Amina BegumM. UmapathyK. ReddyP.C.S. TalasilaV. Quantum mesh neural network model in precise image diagnosing.Opt. Quantum Electron.202456455910.1007/s11082‑023‑06245‑y
    [Google Scholar]
  4. UddinA.H. ChenY.L. AkterM.R. KuC.S. YangJ. PorL.Y. Colon and lung cancer classification from multi-modal images using resilient and efficient neural network architectures.Heliyon2024109e3062510.1016/j.heliyon.2024.e3062538742084
    [Google Scholar]
  5. Karabulutİ. SelenR. YağanoğluM. ÖzmenS. Recognition of Colon Polyps (Tubular Adenoma, Villous Adenoma) and Normal Colon Epithelium Histomorphology with Transfer Learning.Eurasian J. Med.2024561354110.5152/eurasianjmed.2024.2313039128055
    [Google Scholar]
  6. SudhakarB. SikrantP.A. PrasadM.L. LathaS.B. KumarG.R. SarikaS. Shaker ReddyP.C. Brain Tumor Image Prediction from MR Images Using CNN Based Deep Learning Networks.J. Inf. Technol. Manage.20241614460
    [Google Scholar]
  7. RaoV. Seelam, Nagarjuna Reddy Modernizing Cancer Diagnosis with an Intelligent Model for Lung and Colon Cancer.J. Electrical Systems2024206s1218122610.52783/jes.2851
    [Google Scholar]
  8. AlabdulqaderE.A. UmerM. AlnowaiserK. WangH. AlarfajA.A. AshrafI. Image Processing-based Resource-Efficient Transfer Learning Approach for Cancer Detection Employing Local Binary Pattern Features.Mob. Netw. Appl.202411710.1007/s11036‑024‑02331‑x
    [Google Scholar]
  9. PrasadM.L. KiranA. Shaker ReddyP.C. Chronic Kidney Disease Risk Prediction Using Machine Learning Techniques.J. Inf. Technol. Manage.2024161118134
    [Google Scholar]
  10. TummalaS. KadryS. NadeemA. RaufH.T. GulN. An explainable classification method based on complex scaling in histopathology images for lung and colon cancer.Diagnostics (Basel)2023139159410.3390/diagnostics1309159437174985
    [Google Scholar]
  11. SowjanyaS. ReddyI.S. MuralikrishnaC. PrasadT.S.L. ReddyP.C.S. SharmaV. 2024Bioacoustics Signal Authentication for E-Medical Records Using Blockchain.2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS)18-19 Apr, 2024, Chikkaballapur, India, 2024, pp. 1-6.10.1109/ICKECS61492.2024.10617376
    [Google Scholar]
  12. IqbalS. QureshiA.N. AlhusseinM. AurangzebK. KadryS. A Novel Heteromorphous Convolutional Neural Network for Automated Assessment of Tumors in Colon and Lung Histopathology Images.Biomimetics (Basel)20238437010.3390/biomimetics804037037622975
    [Google Scholar]
  13. ShaikM.K. KalpanaD. SesadriU. MukherjeeS. DastagiraiahC. ReddyP.C.S. Brain Tumor Classification Using UNet Deep Neural Networks from 3D MRI Images.2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC)02-03 May 2024, Bengaluru, India, 2024, pp. 1-6.10.1109/ICECCC61767.2024.10593884
    [Google Scholar]
  14. ChhillarI. SinghA. A feature engineering-based machine learning technique to detect and classify lung and colon cancer from histopathological images.Med. Biol. Eng. Comput.202362391392410.1007/s11517‑023‑02984‑y38091162
    [Google Scholar]
  15. RahmanA. AlqahtaniA. AldhafferiN. NasirM.U. KhanM.F. KhanM.A. MosaviA. Histopathologic oral cancer prediction using oral squamous cell carcinoma biopsy empowered with transfer learning.Sensors (Basel)20222210383310.3390/s2210383335632242
    [Google Scholar]
  16. MalekiD. RahnamayanS. TizhooshH.R. A self-supervised framework for cross-modal search in histopathology archives using scale harmonization.Sci. Rep.2024141972410.1038/s41598‑024‑60256‑738678157
    [Google Scholar]
  17. SinghalA. VarshneyS. MohanaprakashT.A. JayavadivelR. DeeptiK. ReddyP.C.S. MulatM.B. Minimization of latency using multitask scheduling in industrial autonomous systems.Wirel. Commun. Mob. Comput.20222022111010.1155/2022/1671829
    [Google Scholar]
  18. SyalJ.S. JainA. DubeyA.K. JainV. Improving Lung and Colon Cancer Detection using Ensemble Method Approach.2024 11th International Conference on Computing for Sustainable Global Development (INDIACom)28 Feb - 01 Mar, 2024, New Delhi, India, 2024, pp. 1767-1773.10.23919/INDIACom61295.2024.10498812
    [Google Scholar]
  19. DabassM. DabassJ. VashisthS. VigR. A hybrid U-Net model with attention and advanced convolutional learning modules for simultaneous gland segmentation and cancer grade prediction in colorectal histopathological images.Intell. Based Med.2023710009410.1016/j.ibmed.2023.100094
    [Google Scholar]
  20. GadupudiA. PrasadM.L. NadgaundiS.K. ReddyP.C.S. SharmaS. SharmaN. A deep learning framework for human disease prediction using microbiome data.2024 International Conference on Integrated Circuits and Communication Systems (ICICACS) 23-24 Feb, 2024, Raichur, India, 2024, pp. 1-6.10.1109/ICICACS60521.2024.10498711
    [Google Scholar]
  21. KumarA. VishwakarmaA. BajajV. ML3CNet: Non-local means-assisted automatic framework for lung cancer subtypes classification using histopathological images.Comput. Methods Programs Biomed.202425110820710.1016/j.cmpb.2024.10820738723437
    [Google Scholar]
  22. NoamanN.F. KanberB.M. SmadiA.A. JiaoL. AlsmadiM.K. Advancing Oncology Diagnostics: AI-Enabled Early Detection of Lung Cancer Through Hybrid Histological Image Analysis.IEEE Access202412643966441510.1109/ACCESS.2024.3397040
    [Google Scholar]
  23. SalviM. AcharyaU.R. MolinariF. MeiburgerK.M. The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis.Comput. Biol. Med.202112810412910.1016/j.compbiomed.2020.10412933254082
    [Google Scholar]
  24. KhanT.A. FatimaA. ShahzadT. Atta-Ur-Rahman AlissaK. GhazalT.M. Al-SakhniniM.M. AbbasS. KhanM.A. AhmedA. Secure IoMT for disease prediction empowered with transfer learning in healthcare 5.0, the concept and case study.IEEE Access202311394183943010.1109/ACCESS.2023.3266156
    [Google Scholar]
  25. GreenspanH. van GinnekenB. SummersR.M. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique.IEEE Trans. Med. Imaging20163551153115910.1109/TMI.2016.2553401
    [Google Scholar]
  26. RazzakM.I. NazS. ZaibA. Deep learning for medical image processing: Overview, challenges and the future.arXiv:1704.068252018
    [Google Scholar]
  27. NangunuriA. SomnatheA.T. PrasanthiB. MercyE.L. RamananS.V. ReddyP.C.S. A Novel Meta-Learning Ensemble Framework for Cancer Classification Using Convolution Neural Networks.2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC)02-03 May, 2024, Bengaluru, India, 2024, pp. 1-6.10.1109/ICECCC61767.2024.10593843
    [Google Scholar]
  28. SrinidhiC.L. CigaO. MartelA.L. Deep neural network models for computational histopathology: A survey.Med. Image Anal.20216710181310.1016/j.media.2020.10181333049577
    [Google Scholar]
  29. DabassM. VashisthS. VigR. A convolution neural network with multi-level convolutional and attention learning for classification of cancer grades and tissue structures in colon histopathological images.Comput. Biol. Med.202214710568010.1016/j.compbiomed.2022.10568035671654
    [Google Scholar]
  30. IzzatyA.M.K. CenggoroT.W. ElwirehardjaG.N. PardameanB. Multiclass classification of histology on colorectal cancer using deep learning.Commun. Math. Biol. Neurosci.2022202267
    [Google Scholar]
  31. HasanM.I. AliM.S. RahmanM.H. IslamM.K. Automated Detection and Characterization of Colon Cancer with Deep Convolutional Neural Networks.J. Healthc. Eng.2022202211210.1155/2022/526991336704098
    [Google Scholar]
  32. KatherJ.N. Bello-CerezoR. Di MariaF. van PeltG.W. MeskerW.E. HalamaN. BianconiF. Classification of tissue regions in histopathological images: Comparison between pre-trained convolutional neural networks and local binary patterns variants.Deep Learners and Deep Learner Descriptors for Medical ApplicationsSpringer2020
    [Google Scholar]
  33. LiuY. WangH. SongK. SunM. ShaoY. XueS. LiL. LiY. CaiH. JiaoY. SunN. LiuM. ZhangT. CroReLU: Cross-Crossing Space-Based Visual Activation Function for Lung Cancer Pathology Image Recognition.Cancers (Basel)20221421518110.3390/cancers1421518136358598
    [Google Scholar]
  34. AliS. HassanM. SaleemM. TahirS.F. Deep transfer learning based hepatitis B virus diagnosis using spectroscopic images.Int. J. Imaging Syst. Technol.20213119410510.1002/ima.22462
    [Google Scholar]
  35. LiX. PangT. XiongB. LiuW. LiangP. WangT. Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification.2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)14-16 Oct, 2017, Shanghai, China, 2017, pp. 1-11.10.1109/CISP‑BMEI.2017.8301998
    [Google Scholar]
  36. DiPalmaJ. SuriawinataA.A. TafeL.J. TorresaniL. HassanpourS. Resolution-based distillation for efficient histology image classification.Artif. Intell. Med.202111910213610.1016/j.artmed.2021.10213634531005
    [Google Scholar]
  37. DimitriouN. ArandjelovićO. CaieP.D. Deep learning for whole slide image analysis: an overview.Front. Med. (Lausanne)2019626410.3389/fmed.2019.0026431824952
    [Google Scholar]
  38. NapelS. MuW. Jardim-PerassiB.V. AertsH.J.W.L. GilliesR.J. Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats.Cancer2018124244633464910.1002/cncr.3163030383900
    [Google Scholar]
  39. JiaX. XingX. YuanY. XingL. MengM.Q.H. Wireless capsule endoscopy: A new tool for cancer screening in the colon with deep-learning-based polyp recognition.Proc. IEEE2020108117819710.1109/JPROC.2019.2950506
    [Google Scholar]
  40. Singha DeoB. PalM. PanigrahiP.K. PradhanA. 2022An ensemble deep learning model with empirical wavelet transform feature for oral cancer histopathological image classification.medRxiv
    [Google Scholar]
  41. BukhariS.U.K. SyedA. BokhariS.K.A. HussainS.S. ArmaghanS.U. ShahS.S.H. 2020The histological diagnosis of colonic adenocarcinoma by applying partial self supervised learning.MedRxiv10.1101/2020.08.15.20175760
    [Google Scholar]
  42. MangalS. ChaurasiaA. KhajanchiA. 2020Convolution neural networks for diagnosing colon and lung cancer histopathological images.2009.03878
  43. MasudM. MuhammadG. HossainM.S. AlhumyaniH. AlshamraniS.S. CheikhrouhouO. IbrahimS. Light deep model for pulmonary nodule detection from CT scan images for mobile devices.Wirel. Commun. Mob. Comput.202020201810.1155/2020/8893494
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558335817241014113154
Loading
/content/journals/rascs/10.2174/0126662558335817241014113154
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test