Skip to content
2000
image of AI Chatbots in Fintech Sector: A Study Towards Technological Convergence

Abstract

The Fintech industry, particularly banks, has witnessed a profound transformation with the integration of Artificial Intelligence chatbots, redefining customer experience and engagement. As Fintech firms increasingly integrate AI chatbots into their platforms, understanding customer perceptions becomes paramount for strategic decision-making and sustained success. To unravel the complexities of this convergence, a holistic examination is needed, encompassing not only the technological aspects but also the strategic dimensions that underpin competitive advantage. In this context, the role of intellectual property, particularly patents, emerges as a critical factor shaping the innovation landscape. This research aims to comprehensively investigate customers' perceptions towards AI chatbots in the Fintech industry, with a specific focus on technological convergence. The study seeks to analyze the impact of cutting-edge AI chatbot technologies, including those protected by patents, on user attitudes and overall customer experience within the dynamic fintech landscape. This study provides a comprehensive review of 40 empirical studies on AI chatbots in the fintech industry, particularly the banking sector, featuring patented innovations using the PRISMA methodology. Study outcomes illustrate emerging themes related to consumer behavior and response to financial chatbots in terms of acceptance and adoption intention. Additionally, four key factors that influence how people perceive, anticipate, and engage with fintech chatbots, namely satisfaction, trust, anthropomorphism, and privacy are explored. In conclusion, the finance industry's effective integration and broad use of AI chatbots is dependent on the convergence of four factors: satisfaction, privacy, trust, and anthropomorphism. Current study offers a strong basis for analysing and resolving the obstacles to AI chatbot acceptance and deployment in the financial sector by addressing all these elements extensively. This exploration of technological convergence in fintech industry by analyzing customers' behavior and response to financial chatbots not only contributes to a comprehensive understanding of its intricacies but also serves as a foundation for development and deployment of user-centric fintech chatbots.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558325422240926103718
2024-10-09
2025-01-19
Loading full text...

Full text loading...

References

  1. Abdulquadri A. Mogaji E. Kieu T. A. Nguyen N. P. Digital transformation in financial services provision: A Nigerian perspective to the adoption of chatbot. J Enterprising Communities 2021 15 2 258 281
    [Google Scholar]
  2. Adam M. Wessel M. Benlian A. AI-based chatbots in customer service and their effects on user compliance. Electron. Mark. 2021 31 2 427 445 10.1007/s12525‑020‑00414‑7
    [Google Scholar]
  3. Akma N. Hafiz M. Zainal A. Fairuz M. Adnan Z. Review of chatbots design techniques. Int. J. Comput. Appl. 2018 181 8 7 10 10.5120/ijca2018917606
    [Google Scholar]
  4. Alagarsamy S. Mehrolia S. Exploring chatbot trust: Antecedents and behavioural outcomes. Heliyon 2023 9 5 e16074 10.1016/j.heliyon.2023.e16074 37206046
    [Google Scholar]
  5. Ali O. Ally M. Clutterbuck P. Dwivedi Y. The state of play of blockchain technology in the financial services sector: A systematic literature review. Int. J. Inf. Manage. 2020 54 102199 10.1016/j.ijinfomgt.2020.102199
    [Google Scholar]
  6. Alt M.A. Vizeli I. Săplăcan Z. Banking with a chatbot – A study on technology acceptance. Studia Universitatis Babes-Bolyai Oeconomica 2021 66 1 13 35 10.2478/subboec‑2021‑0002
    [Google Scholar]
  7. Araujo T. Living up to the chatbot hype: The influence of anthropomorphic design cues and communicative agency framing on conversational agent and company perceptions. Comput. Human Behav. 2018 85 183 189 10.1016/j.chb.2018.03.051
    [Google Scholar]
  8. Ashfaq M. Yun J. Yu S. Loureiro S.M.C. I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telemat. Inform. 2020 54 101473 10.1016/j.tele.2020.101473
    [Google Scholar]
  9. Aslam W. Ahmed Siddiqui D. Arif I. Farhat K. Chatbots in the frontline: Drivers of acceptance. Kybernetes 2022 10.1108/K‑11‑2021‑1119
    [Google Scholar]
  10. Aznoli F. Navimipour N.J. Cloud services recommendation: Reviewing the recent advances and suggesting the future research directions. J. Netw. Comput. Appl. 2017 77 73 86 10.1016/j.jnca.2016.10.009
    [Google Scholar]
  11. Balakrishnan J. Abed S.S. Jones P. The role of meta-UTAUT factors, perceived anthropomorphism, perceived intelligence, and social self-efficacy in chatbot-based services? Technol. Forecast. Soc. Change 2022 180 121692 10.1016/j.techfore.2022.121692
    [Google Scholar]
  12. Belanche D. Casaló L.V. Flavián C. Artificial Intelligence in FinTech: Understanding robo-advisors adoption among customers. Ind. Manage. Data Syst. 2019 119 7 1411 1430 10.1108/IMDS‑08‑2018‑0368
    [Google Scholar]
  13. Bhatore S. Mohan L. Reddy Y.R. Machine learning techniques for credit risk evaluation: A systematic literature review. J. Bank. Fin. Technol. 2020 4 1 111 138 10.1007/s42786‑020‑00020‑3
    [Google Scholar]
  14. Brachten F. Kissmer T. Stieglitz S. The acceptance of chatbots in an enterprise context – A survey study. Int. J. Inf. Manage. 2021 60 102375 10.1016/j.ijinfomgt.2021.102375
    [Google Scholar]
  15. Cheng Y. Jiang H. How do ai-driven chatbots impact user experience? Examining gratifications, perceived privacy risk, satisfaction, loyalty, and continued use. J. Broadcast. Electron. Media 2020 64 4 592 614 10.1080/08838151.2020.1834296
    [Google Scholar]
  16. Ciechanowski L. Przegalińska A. Wegner K. The necessity of new paradigms in measuring Human-Chatbot interaction. Advances in Intelligent Systems and Computing Springer Cham 2017 605 205 214 10.1007/978‑3‑319‑60747‑4_19
    [Google Scholar]
  17. Crolic C. Thomaz F. Hadi R. Stephen A.T. Blame the bot: Anthropomorphism and anger in customer–chatbot interactions. J. Mark. 2022 86 1 132 148 10.1177/00222429211045687
    [Google Scholar]
  18. Dastile X. Çelik T. Potsane M. Statistical and machine learning models in credit scoring: A systematic literature survey. Appl. Soft Comput. 2020 91 106263 10.1016/j.asoc.2020.106263
    [Google Scholar]
  19. Deepthi B. Gupta P. Rai P. Arora H. Assessing the dynamics of ai driven technologies in indian banking and financial sector. Vision 2022 10.1177/09722629221087371
    [Google Scholar]
  20. Doherty D. Curran K. Chatbots for online banking services. Web Intelligence 2019 17 4 327 342 10.3233/WEB‑190422
    [Google Scholar]
  21. Eren B.A. Determinants of customer satisfaction in chatbot use: Evidence from a banking application in Turkey. Int. J. Bank Mark. 2021 39 2 294 311 10.1108/IJBM‑02‑2020‑0056
    [Google Scholar]
  22. Følstad A. Halvorsrud R. "Communicating service offers in a conversational user interface: An exploratory study of user preferences in chatbot interaction", ACM International Conference Proceeding Series Sydney, NSW, Australia, 15 February 2021, pp. 671–676. 10.1145/3441000.3441046
    [Google Scholar]
  23. Følstad A. Taylor C. Investigating the user experience of customer service chatbot interaction: A framework for qualitative analysis of chatbot dialogues. Qual. User Experience 2021 6 1 6 10.1007/s41233‑021‑00046‑5
    [Google Scholar]
  24. Frison A.K. Wintersberger P. Riener A. Schartmüller C. Boyle L.N. Miller E. Weigl K. "UX we trust: Investigation of aesthetics and usability of driver-vehicle interfaces and their impact on the perception of automated driving", Proceedings of the 2019 CHI conference on human factors in computing systems, Glasgow, Scotland Uk, 02 May 2019, pp. 1–13. 10.1145/3290605.3300374
    [Google Scholar]
  25. Fryer L.K. Nakao K. Thompson A. Chatbot learning partners: Connecting learning experiences, interest and competence. Comput. Human Behav. 2019 93 279 289 10.1016/j.chb.2018.12.023
    [Google Scholar]
  26. Gkinko L. Elbanna A. Designing trust: The formation of employees’ trust in conversational AI in the digital workplace. J. Bus. Res. 2023 158 113707 10.1016/j.jbusres.2023.113707
    [Google Scholar]
  27. Gkinko L. Elbanna A. The appropriation of conversational AI in the workplace: A taxonomy of AI chatbot users. Int. J. Inf. Manage. 2023 69 102568 10.1016/j.ijinfomgt.2022.102568
    [Google Scholar]
  28. Go E. Sundar S.S. Humanizing chatbots: The effects of visual, identity and conversational cues on humanness perceptions. Comput. Human Behav. 2019 97 304 316 10.1016/j.chb.2019.01.020
    [Google Scholar]
  29. Goli M. Sahu A.K. Bag S. Dhamija P. Users’ acceptance of artificial intelligence-based chatbots. Int. J. Technol. Hum. Interact. 2023 19 1 1 18 10.4018/IJTHI.318481
    [Google Scholar]
  30. Górski T. Verification of architectural views model 1+ 5 applicability. Computer Aided Systems Theory–EUROCAST 2019. Springer International Publishing 2020 10.1007/978‑3‑030‑45093‑9_60
    [Google Scholar]
  31. Górski T. The 1+ 5 architectural views model in designing blockchain and IT system integration solutions. Symmetry 2021 13 11 2000 10.3390/sym13112000
    [Google Scholar]
  32. Gupta D. A. Customers’ attitude towards chatbots in banking industry of India. Int J Innov Technol Explor Eng 2019 8 11 1222 1225 10.35940/ijitee.J9366.0981119
    [Google Scholar]
  33. Hildebrand C. Bergner A. Conversational robo advisors as surrogates of trust: onboarding experience, firm perception, and consumer financial decision making. J Acad Mark Sci 2021 49 659 676 10.1007/s11747‑020‑00753‑z
    [Google Scholar]
  34. Huang S.Y.B. Lee C.J. Lee S.C. Toward a unified theory of customer continuance model for financial technology chatbots. Sensors 2021 21 17 5687 10.3390/s21175687 34502578
    [Google Scholar]
  35. Jang M. Jung Y. Kim S. Investigating managers’ understanding of chatbots in the Korean financial industry. Comput. Human Behav. 2021 120 106747 10.1016/j.chb.2021.106747
    [Google Scholar]
  36. Jin S.V. Youn S. Social presence and imagery processing as predictors of chatbot continuance intention in human-ai-interaction. Int. J. Hum. Comput. Interact. 2022 10.1080/10447318.2022.2129277
    [Google Scholar]
  37. Kumar A. Kumar D. Kumar P. Dhawan V. Optimization of incremental sheet forming process using artificial intelligence-based techniques. Nat-Inspired Optim Adv Manuf Process Syst 2020 113 130
    [Google Scholar]
  38. Kumar A. Kumar P. Sharma N. Srivastava A.K. 3D Printing Technologies: Digital Manufacturing, Artificial Intelligence, Industry 4.0. Walter de Gruyter GmbH & Co KG 2024 10.1515/9783111215112
    [Google Scholar]
  39. Kumar A. Mittal R.K. Haleem A. Advances in Additive Manufacturing: Artificial Intelligence, Nature-Inspired, and Biomanufacturing. Elsevier 2023 10.1007/978‑3‑031‑34563‑0
    [Google Scholar]
  40. Kumar A. Rani S. Rathee S. Bhatia S. Security and Risk Analysis for Intelligent Cloud Computing: Methods, Applications, and Preventions. CRC Press 2023 10.1201/9781003329947
    [Google Scholar]
  41. Kumar A. Shrivastava V.K. Kumar P. Kumar A. Gulati V. Predictive and experimental analysis of forces in die-less forming using artificial intelligence techniques. Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng. 2024 10.1177/09544089241235473
    [Google Scholar]
  42. Lai S. Leu F. Lin J. A banking chatbot security control procedure for protecting user data security and privacy. Lecture notes on data engineering and communications technologies Springer Cham 2018 10.1007/978‑3‑030‑02613‑4_50
    [Google Scholar]
  43. Lappeman J. Marlie S. Johnson T. Poggenpoel S. Trust and digital privacy: Willingness to disclose personal information to banking chatbot services. J. Financ. Serv. Mark. 2022 10.1057/s41264‑022‑00154‑z
    [Google Scholar]
  44. Levy Y. Ellis T. A systems approach to conduct an effective literature review in support of information systems research. Inform. Sci. 2006 9 181 212 10.28945/479
    [Google Scholar]
  45. Lui A. Lamb G.W. Artificial intelligence and augmented intelligence collaboration: Regaining trust and confidence in the financial sector. Inf. Commun. Technol. Law 2018 27 3 267 283 10.1080/13600834.2018.1488659
    [Google Scholar]
  46. Manshad M.S. Brannon D.C. Gender-based conversational interface preferences in live chat systems for financial services. J. Financ. Serv. Mark. 2022 10.1057/s41264‑022‑00175‑8
    [Google Scholar]
  47. Mehta R. Verghese J. Mahajan S. Barykin S. Bozhuk S. Kozlova N. Vasilievna Kapustina I. Mikhaylov A. Naumova E. Dedyukhina N. Consumers’ behavior in conversational commerce marketing based on messenger chatbots. F1000 Res. 2022 11 647 647 10.12688/f1000research.122037.1
    [Google Scholar]
  48. Mogaji E. Nguyen N.P. Managers’ understanding of artificial intelligence in relation to marketing financial services: Insights from a cross-country study. Int. J. Bank Mark. 2022 40 6 1272 1298 10.1108/IJBM‑09‑2021‑0440
    [Google Scholar]
  49. Moher D. Shamseer L. Clarke M. Ghersi D. Liberati A. Petticrew M. Shekelle P. Stewart L.A. PRISMA-P Group Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015 4 1 1 9 10.1186/2046‑4053‑4‑1 25554246
    [Google Scholar]
  50. Mulyono J.A. Sfenrianto S. Evaluation of customer satisfaction on Indonesian banking chatbot services during the COVID-19 pandemic. CommIT (Commun. Inform. Technol.) J. 2022 16 1 69 85
    [Google Scholar]
  51. Nadarzynski T. Miles O. Cowie A. Ridge D. Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study. Digit. Health 2019 5 10.1177/2055207619871808 31467682
    [Google Scholar]
  52. Ng M. Coopamootoo K.P.L. Toreini E. Aitken M. Elliot K. Van Moorsel A. "Simulating the effects of social presence on trust, privacy concerns & usage intentions in automated bots for finance", 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Genoa, Italy, 07-11 September 2020, pp. 190-199. 10.1109/EuroSPW51379.2020.00034
    [Google Scholar]
  53. Nguyen D.M. Chiu Y.T.H. Le H.D. Determinants of continuance intention towards banks’ chatbot services in Vietnam: A necessity for sustainable development. Sustainability 2021 13 14 7625 10.3390/su13147625
    [Google Scholar]
  54. Nordheim C.B. Følstad A. Bjørkli C.A. An initial model of trust in chatbots for customer service—findings from a questionnaire study. Interact. Comput. 2019 31 3 317 335 10.1093/iwc/iwz022
    [Google Scholar]
  55. Page M.J. McKenzie J.E. Bossuyt P.M. Boutron I. Hoffmann T.C. Mulrow C.D. Shamseer L. Tetzlaff J.M. Akl E.A. Brennan S.E. Chou R. Glanville J. Grimshaw J.M. Hróbjartsson A. Lalu M.M. Li T. Loder E.W. Mayo-Wilson E. McDonald S. McGuinness L.A. Stewart L.A. Thomas J. Tricco A.C. Welch V.A. Whiting P. Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021 88 105906 10.1016/j.ijsu.2021.105906 33789826
    [Google Scholar]
  56. Paschou T. Rapaccini M. Adrodegari F. Saccani N. Digital servitization in manufacturing: A systematic literature review and research agenda. Ind. Mark. Manage. 2020 89 278 292 10.1016/j.indmarman.2020.02.012
    [Google Scholar]
  57. Patil D.K. Kulkarni D.M.S. Artificial intelligence in financial services: Customer chatbot advisor adoption. Int. J. Innov. Technol. Explor. Eng. 2019 9 1 4296 4303 10.35940/ijitee.A4928.119119
    [Google Scholar]
  58. Poncette A.S. Rojas P.D. Hofferbert J. Valera Sosa A. Balzer F. Braune K. Hackathons as stepping stones in health care innovation: Case study with Systematic recommendations. J. Med. Internet Res. 2020 22 3 e17004 10.2196/17004 32207691
    [Google Scholar]
  59. Radziwill N.M. Benton M.C. Evaluating quality of chatbots and intelligent conversational agents. arxiv 2017
    [Google Scholar]
  60. Rajendra P. Kumari M. Rani S. Dogra N. Boadh R. Kumar A. Dahiya M. Impact of artificial intelligence on civilization: Future perspectives. Mater. Today Proc. 2022 56 252 256 10.1016/j.matpr.2022.01.113
    [Google Scholar]
  61. Rani S. Tripathi K. Arora Y. Kumar A. "A machine learning approach to analyze cloud computing attacks", 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), Uttar Pradesh, India, 14-16 December 2022, pp. 22-26. 10.1109/IC3I56241.2022.10073468
    [Google Scholar]
  62. Richad R. Vivensius V. Sfenrianto S. Kaburuan E.R. Analysis of factors influencing millennial’s technology acceptance of chatbot in the banking industry in Indonesia. Int. J. Manag. 2019 10 3 1270 1281 10.34218/IJM.10.3.2019.011
    [Google Scholar]
  63. Rodríguez Cardona D. Werth O. Schönborn S. Breitner M. H. "A mixed methods analysis of the adoption and diffusion of Chatbot Technology in the German insurance sector", Proceedings of the 25th Americas Conference on Information Systems (AMCIS), Cancu, Mexico, January 2019.
    [Google Scholar]
  64. Shamseer L. Moher D. Clarke M. Ghersi D. Liberati A. Petticrew M. Shekelle P. Stewart L.A. PRISMA-P Group Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015 349 jan02 1 g7647 10.1136/bmj.g7647 25555855
    [Google Scholar]
  65. Sheehan B. Jin H.S. Gottlieb U. Customer service chatbots: Anthropomorphism and adoption. J. Bus. Res. 2020 115 14 24 10.1016/j.jbusres.2020.04.030
    [Google Scholar]
  66. Shin H. Bunosso I. Levine L.R. The influence of chatbot humour on consumer evaluations of services. Int. J. Consum. Stud. 2023 47 2 545 562 10.1111/ijcs.12849
    [Google Scholar]
  67. Silva F.A. Shojaei A.S. Barbosa B. Chatbot-based services: A study on customers’ reuse intention. J. Theor. Appl. Electron. Commer. Res. 2023 18 1 457 474 10.3390/jtaer18010024
    [Google Scholar]
  68. Snyder H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019 104 333 339 10.1016/j.jbusres.2019.07.039
    [Google Scholar]
  69. Soni R. Tyagi V. Professor A. Professor A. Acceptance of chat bots by millennial consumers. IJREAM 2019 04 10 2454 9150 10.18231/2454‑9150.2018.1343
    [Google Scholar]
  70. Sugumar M. Chandra S. Do I desire chatbots to be like humans? exploring factors for adoption of chatbots for financial services. J. Int. Technol. Inf. Manag. 2021 30 3 38 77 10.58729/1941‑6679.1501
    [Google Scholar]
  71. Thompson C. Assessing chatbot interaction as a means of driving customer engagement. 2018 Available from: https://urn.fi/URN:NBN:fi:amk-2018121321406
    [Google Scholar]
  72. Van Eeuwen M. Mobile conversational commerce: Messenger chatbots as the next interface between businesses and consumers. 2017 Available from: http://purl.utwente.nl/essays/71706
    [Google Scholar]
  73. van Esch P. Arli D. Gheshlaghi M.H. Creating an effective self-managed service climate for frontline service employees. J. Retailing Consum. Serv. 2020 57 102204 10.1016/j.jretconser.2020.102204
    [Google Scholar]
  74. Zainol Candidate S. Farid Shamsudin M. Hassan S. Azila Mohd Noor N. Understanding customer satisfaction of chatbots service and system quality in banking services. J. Inf. Technol. Manage. 2023 15 142 152 10.22059/jitm.2022.89417
    [Google Scholar]
  75. Zhou L. Gao J. Li D. Shum H.Y. The design and implementation of XiaoIce, an empathetic social chatbot. Comput. Linguist. 2020 46 1 53 93 10.1162/coli_a_00368
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558325422240926103718
Loading
/content/journals/rascs/10.2174/0126662558325422240926103718
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test