Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Background

In the wake of escalating cyber threats and the indispensability of robust network security mechanisms, it becomes crucial to understand the evolving landscape of cryptographic research. Recognizing the significant contributions and discerning emerging trends can guide future strategies and technological advancements. Our study endeavors to shed light on this through a bibliometric analysis of publications in the realms of Network Security and Cryptography.

Method

To chronicle and synthesize the progression of research methodologies from their inception to the present day, we undertook a comprehensive Bibliometric Analysis of Network Security and Cryptography. Our data set was culled from the Clarivate Analytics Web of Science Database, encompassing 3,897 papers, 603 sources, and 7,886 authors from across the globe.

Results

Our analysis revealed a marked upsurge in cryptographic research since 1992, with China standing out as a dominant contributor in terms of publications. Notably, while 'security' and 'cryptography' emerged as recurrent research themes, there's an observable downtrend in international collaborations. Our study also highlights pivotal topics shaping the network security domain, offering insights into the trajectories of research source growth, structural variabilities in research relevance, and prospective intellectual and collaborative avenues as guided by authorship patterns.

Conclusion

Cryptographic research is on an upward trajectory, both in volume and significance. However, the tapering of international collaborations and an evident need to concentrate on emergent challenges, such as data privacy and innovative network attacks, emerge as notable insights. This bibliometric review serves as a compass, directing researchers and academicians towards areas warranting heightened attention, thereby informing the roadmap for future investigative pursuits.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558280232231213053002
2024-01-30
2025-07-10
Loading full text...

Full text loading...

References

  1. BhuyanM.H. BhattacharyyaD.K. KalitaJ.K. Network anomaly detection: methods, systems and tools.IEEE Commun. Surv. Tutor.201416130333610.1109/SURV.2013.052213.00046
    [Google Scholar]
  2. GoelS. NussbaumB. Attribution across cyber attack types: Network intrusions and information operations.IEEE Open J. Commun. Soc.202121082109310.1109/OJCOMS.2021.3074591
    [Google Scholar]
  3. MengW. TischhauserE.W. WangQ. WangY. HanJ. When intrusion detection meets blockchain technology: A review.IEEE Access20186101791018810.1109/ACCESS.2018.2799854
    [Google Scholar]
  4. Cryptography and Network Security.Cryptography and Network Security.River Publishers2022ixxiv
    [Google Scholar]
  5. ShannonC.E. Communication theory of secrecy systems.Bell Syst. Tech. J194928465671510.1002/j.1538‑7305.1949.tb00928.x
    [Google Scholar]
  6. RivestR.L. ShamirA. AdlemanL. A method for obtaining digital signatures and public-key cryptosystems.Commun. ACM197821212012610.1145/359340.359342
    [Google Scholar]
  7. ShorP.W. Algorithms for quantum computation: Discrete logarithms and factoringProceedings 35th Annual Symposium on Foundations of Computer ScienceSanta Fe, NM, USA199412413410.1109/SFCS.1994.365700
    [Google Scholar]
  8. KobayashiD. YamamotoH. OgawaT. Secure multiplex coding attaining channel capacity in wiretap channels.IEEE Trans. Inf. Theory201359128131814310.1109/TIT.2013.2282673
    [Google Scholar]
  9. BhattadK. NarayananK.R. Weakly secure network coding.2009 IEEE Information Theory Workshop on Networking and Information Theoryvol. 104200516
    [Google Scholar]
  10. SilvaD. KschischangF.R. Universal weakly secure network coding.2009 IEEE Information Theory Workshop on Networking and Information Theory12-10 June 2009, Volos, Greece200910.1109/ITWNIT.2009.5158587
    [Google Scholar]
  11. SilvaD. KschischangF.R. Universal secure network coding via rank-metric codes.IEEE Trans. Inf. Theory20115721124113510.1109/TIT.2010.2090212
    [Google Scholar]
  12. MansourA.S. SchaeferR.F. BocheH. Secrecy measures for broadcast channels with receiver side information: Joint vs individual2014 IEEE Information Theory Workshop (ITW 2014)02-05 November 2014, Hobart, TAS, Australia201442643010.1109/ITW.2014.6970867
    [Google Scholar]
  13. ChenY. KoyluogluO.O. SezginA. On the individual secrecy rate region for the broadcast channel with an external eavesdropper.2015 IEEE International Symposium on Information Theory (ISIT)14-19 June 2015, Hong Kong, China201510.1109/ISIT.2015.7282675
    [Google Scholar]
  14. MansourA.S. SchaeferR.F. BocheH. The individual secrecy capacity of degraded multi-receiver wiretap broadcast channels.2015 IEEE International Conference on Communications (ICC)08-12 June 2015, London, UK201510.1109/ICC.2015.7248979
    [Google Scholar]
  15. MansourA.S. SchaeferR.F. BocheH. On the individual secrecy capacity regions of the general, and degraded and Gaussian multi-receiver wiretap broadcast channel.IEEE Trans. Inf. Forensics Security20161192107212210.1109/TIFS.2016.2566260
    [Google Scholar]
  16. GoldenbaumM. SchaeferR.F. PoorH.V. The multiple-access channel with an external eavesdropper: Trusted vs. untrusted users.2015 49th Asilomar Conference on Signals, Systems and Computers08-11 November 2015, Pacific Grove, CA, USA201510.1109/ACSSC.2015.7421192
    [Google Scholar]
  17. ChenY. KoyluogluO.O. VinckA.J.H. On secure communication over the multiple access channel.2016 International Symposium on Information Theory and Its Applications (ISITA)30 October 2016 - 02 November 2016, Monterey, CA, USA2016
    [Google Scholar]
  18. MansourA.S. SchaeferR.F. BocheH. The individual secrecy capacity of the Gaussian SISO and degraded Gaussian MIMO multireceiver wiretap channel.2015 IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)28 June 2015 - 01 July 2015, Stockholm, Sweden2015
    [Google Scholar]
  19. WuJ. OtaK. DongM. LiJ. WangH. Big data analysis-based security situational awareness for smart grid.IEEE Trans. Big Data20184340841710.1109/TBDATA.2016.2616146
    [Google Scholar]
  20. JalaliM.S. Health care and cybersecurity: Bibliometric analysis of the literature.J Med Internet Res.2019212e1264410.2196/12644
    [Google Scholar]
  21. GentryC. Fully homomorphic encryption using ideal latticesSymposium on the Theory of Computing (STOC)200916917810.1145/1536414.1536440
    [Google Scholar]
  22. MaiV. KhalilI. Design and implementation of a secure cloud-based billing model for smart meters as an Internet of things using homomorphic cryptography.Future Gener. Comput. Syst.20177232733810.1016/j.future.2016.06.003
    [Google Scholar]
  23. KumarP. ThakurR.S. Liver disorder detection using variable- neighbor weighted fuzzy K nearest neighbor approach.Multimedia Tools Appl.20218011165151653510.1007/s11042‑019‑07978‑3
    [Google Scholar]
  24. CachinC. SorniottiM.V. WeigoldT. Blockchain, cryptography, and consensus.ITU Workshop on “Security Aspects of BlockchainGenevaSwitzerland2016
    [Google Scholar]
  25. Fernandez-CaramesT.M. Fraga-LamasP. Towards post-quantum blockchain: A review on blockchain cryptography resistant to quantum computing attacks.IEEE Access20208210912111610.1109/ACCESS.2020.2968985
    [Google Scholar]
  26. SarkerA. CantoA.C. Mozaffari KermaniM. AzarderakhshR. Error detection architectures for hardware/software co-design approaches of number-theoretic transform.IEEE Trans. Comput. Aided Des. Integrated Circ. Syst.20234272418242210.1109/TCAD.2022.3218614
    [Google Scholar]
  27. SarkerA. MozaffariK.M. AzarderakhshR. Efficient error detection architectures for postquantum signature falcon’s sampler and KEM SABER.IEEE Trans. Very Large Scale Integr. (VLSI) Syst.202230679480210.1109/TVLSI.2022.3156479
    [Google Scholar]
  28. DubrovaE. Breaking a fifth-order masked implementation of crystals-kyber by copy-paste.Proceedings of the 10th ACM Asia Public-Key Cryptography Workshop202310.1145/3591866.3593072
    [Google Scholar]
  29. CantoA.C. Algorithmic security is insufficient: A comprehensive survey on implementation attacks haunting post-quantum security.arXiv:2305.135442023
    [Google Scholar]
  30. KaurJ. A comprehensive survey on the implementations, attacks, and countermeasures of the current NIST lightweight cryptography standard.arXiv:2304.062222023
    [Google Scholar]
  31. AzarderakhshReza FPGA-SIDH: High-performance implementation of supersingular isogeny diffie-hellman key-exchange protocol on FPGA.IACR Cryptology ePrint2016
    [Google Scholar]
  32. BuchananW.J. LiS. AsifR. Lightweight cryptography methods.J. Cyber Secur. Technol.201713-418720110.1080/23742917.2017.1384917
    [Google Scholar]
  33. El HadjY. An efficient lightweight cryptographic instructions set extension for IoT device security.Secur. Commun. Netw.20222022
    [Google Scholar]
  34. DhandaS.S. SinghB. JindalP. Lightweight cryptography: A solution to secure IoT.Wirel. Pers. Commun.202011231947198010.1007/s11277‑020‑07134‑3
    [Google Scholar]
  35. Mozaffari KermaniM. AzarderakhshR. Integrating emerging cryptographic engineering research and security education.American Society for Engineering Education.ASEE2015
    [Google Scholar]
  36. KermaniM.M. AzarderakhshR. XieJ Error detection reliable architectures of Camellia block cipher applicable to different variants of its substitution boxes.2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST) 201616.Yilan, Taiwan10.1109/AsianHOST.2016.7835560
    [Google Scholar]
  37. Mozaffari-Kermani Reliable and high-performance hardware architectures for the Advanced Encryption Standard/Galois Counter Mode.Diss. The University of Western Ontario (Canada)2011
    [Google Scholar]
  38. FirdausA. RazakM.F.A. FeizollahA. HashemI.A.T. HazimM. AnuarN.B. The rise of “blockchain”: Bibliometric analysis of blockchain study.Scientometrics201912031289133110.1007/s11192‑019‑03170‑4
    [Google Scholar]
  39. GuoY.M. HuangZ-L. GuoJ. GuoX-R. LiH. LiuM-Y. EzzeddineS. NkeliM.J. A bibliometric analysis and visualization of blockchain.Future Gener. Comput. Syst.202111631633210.1016/j.future.2020.10.023
    [Google Scholar]
  40. The most trusted IDE for open source data science.Available from: https://posit.co/products/open-source/rstudio/ (Accessed on: 14/02/2023).
  41. Available from: https://cran.r-project.org/bin/windows/base/ (Accessed on: 14/02/2023).
  42. Annual number of data compromises and individuals impacted in the United States from 2005 to 2022.Available from: https://www.statista.com/statistics/273550/data-breaches-recorded-in-the-united-states-by-number-of-breaches-and-records-exposed/
  43. PerrigA. SzewczykR. TygarJ.D. WenV. CullerD.E. SPINS: Security protocols for sensor networks.Wirel. Netw.20028552153410.1023/A:1016598314198
    [Google Scholar]
  44. Lidong Zhou HaasZ.J. Securing ad hoc networks.IEEE Netw.1999136243010.1109/65.806983
    [Google Scholar]
  45. LoH.K. CurtyM. TamakiK. Secure quantum key distribution.Nat. Photonics20148859560410.1038/nphoton.2014.149
    [Google Scholar]
  46. ZouY. ZhuJ. WangX. HanzoL. A survey on wireless security: Technical challenges, recent advances, and future trends.Proc. IEEE201610491727176510.1109/JPROC.2016.2558521
    [Google Scholar]
  47. SasakiM. FujiwaraM. IshizukaH. KlausW. WakuiK. TakeokaM. MikiS. YamashitaT. WangZ. TanakaA. YoshinoK. NambuY. TakahashiS. TajimaA. TomitaA. DomekiT. HasegawaT. SakaiY. KobayashiH. AsaiT. ShimizuK. TokuraT. TsurumaruT. MatsuiM. HonjoT. TamakiK. TakesueH. TokuraY. DynesJ.F. DixonA.R. SharpeA.W. YuanZ.L. ShieldsA.J. UchikogaS. LegréM. RobyrS. TrinklerP. MonatL. PageJ.B. RibordyG. PoppeA. AllacherA. MaurhartO. LängerT. PeevM. ZeilingerA. Field test of quantum key distribution in the Tokyo QKD Network.Opt. Express20111911103871040910.1364/OE.19.01038721643295
    [Google Scholar]
  48. WangW. LuZ. Cyber security in the smart grid: Survey and challenges.Comput. Netw.20135751344137110.1016/j.comnet.2012.12.017
    [Google Scholar]
  49. WehnerS. ElkoussD. Quantum internet: A vision for the road ahead.Science20183626412eaam9288
    [Google Scholar]
  50. PeevM. The SECOQC quantum key distribution network in Vienna’.New J. Phys.2009117075001
    [Google Scholar]
  51. HeD. ZeadallyS. XuB. HuangX. An efficient identity-based conditional privacy-preserving authentication scheme for vehicular ad hoc networks.IEEE Trans. Inf. Forensics Security201510122681269110.1109/TIFS.2015.2473820
    [Google Scholar]
  52. CapkunS. ButtyanL. HubauxJ. Self-organized public-key management for mobile ad hoc networks.IEEE Trans. Mobile Comput.200321526410.1109/TMC.2003.1195151
    [Google Scholar]
  53. DiffieW. HellmanM. New directions in cryptography.IEEE Trans. Inf. Theory197622664465410.1109/TIT.1976.1055638
    [Google Scholar]
  54. ShamirA. How to share a secret.Commun. ACM1979221161261310.1145/359168.359176
    [Google Scholar]
  55. BennettC.H. Quantum cryptography using any two nonorthogonal states.Phys. Rev. Lett.199268213121312410.1103/PhysRevLett.68.312110045619
    [Google Scholar]
  56. ShorP.W. PreskillJ. Simple proof of security of the BB84 quantum key distribution protocol.Phys. Rev. Lett.20008544110.1103/PhysRevLett.85.441
    [Google Scholar]
  57. EkertA.K. Quantum cryptography based on Bell’s theorem.Phys. Rev. Lett.199167666166310.1103/PhysRevLett.67.66110044956
    [Google Scholar]
  58. MillerV.S. Use of elliptic curve in cryptography.Proceedings of Advances in Cryptology (CRYPTO’85).Springer Verlag198641742610.1007/3‑540‑39799‑X_31
    [Google Scholar]
  59. GisinN. Quantum cryptography.Rev. Mod. Phys.20027414510.1103/RevModPhys.74.145
    [Google Scholar]
  60. BennettC.H. BrassardG. Quantum cryptography: Public key distribution and coin tossing.Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing 1984Bangalore10-12 December 1984175179
    [Google Scholar]
  61. ShamirA. Identity-based cryptosystems and signature schemes.Advances in Cryptology. CRYPTO 1984. BlakleyG.R. ChaumD. Lecture Notes in Computer Science196Berlin, HeidelbergSpringer198510.1007/3‑540‑39568‑7_5
    [Google Scholar]
  62. KoblitzN. Elliptic curve cryptosystems.Math. Comput.19874817720320910.1090/S0025‑5718‑1987‑0866109‑5
    [Google Scholar]
  63. BabulalK.S. TewariR.R. Cross layer energy efficient routing (XLE2R) for prolonging lifetime of wireless sensor networks.2010 International Conference on Computer and Communication Technology (ICCCT) 2010Allahabad, India707410.1109/ICCCT.2010.5640385
    [Google Scholar]
  64. AbadiM. AndersenD.G. Learning to protect communications with adversarial neural cryptography.arXiv:1610.069182016
    [Google Scholar]
  65. Cintas-CantoA. ChatGPT vs. Lightweight Security: First Work Implementing the NIST Cryptographic Standard ASCON.arXiv:2306.081782023
    [Google Scholar]
  66. KermaniM.M. SavasE. UpadhyayaS.J. Guest editorial: Introduction to the special issue on emerging security trends for deeply-embedded computing systems.IEEE Trans. Emerg. Top. Comput.20164331832010.1109/TETC.2015.2482778
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558280232231213053002
Loading
/content/journals/rascs/10.2174/0126662558280232231213053002
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): bibliometric review; cryptography; cyber threats; internet; Network security; roadmap
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test