Skip to content
2000
image of Recent Developments of Solar Charge Controllers Technologies: A Bibliometric Study

Abstract

A solar photovoltaic system is a renewable energy that depends on solar irradiance and ambient temperature. A solar charge controller is required to ensure the energy received by the photovoltaic cell or module is maximized at the output. This study presents the first bibliometric analysis based on a thorough evaluation of the most frequently cited articles on the solar charge controller to forecast future trends and applications. This paper performs a statistical analysis using the Scopus database and extracts the 100 most cited papers. It has been illustrated that the solar charge controller literature expanded swiftly from 2012 to 2023, with 2019 receiving the most publications and papers published in 2018 receiving more citations compared to works published in other years. In recent years, battery storage, electric vehicles, energy storage, controllers, photovoltaic systems, and power management systems have garnered great interest. The solar charge controller's functional evaluation and determination of the optimal renewable energy system might boost its potential. Our analysis of highly cited articles on solar charge controllers emphasizes a selection of features, including control methods and systems, issues, challenges to establishing current constraints, research gaps, and the need to find solutions and resolve problems. Every aspect of the features of this overview is anticipated to contribute to an upsurge through the invention of advanced solar charge controllers and control methods for future photovoltaic systems.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965347847241122182835
2025-01-06
2025-07-14
Loading full text...

Full text loading...

References

  1. Gielen D. Boshell F. Saygin D. Bazilian M.D. Wagner N. Gorini R. The role of renewable energy in the global energy transformation. Energy Strategy Reviews 2019 24 38 50 10.1016/j.esr.2019.01.006
    [Google Scholar]
  2. Ramachandran T. Mourad A. H. I. Hamed F. A review on solar energy utilization and projects: Development in and around the UAE Energies 2022 15 10 3754 10.3390/en15103754
    [Google Scholar]
  3. Jossen A. Garche J. Sauer D.U. Operation conditions of batteries in PV applications. Sol. Energy 2004 76 6 759 769 10.1016/j.solener.2003.12.013
    [Google Scholar]
  4. Jing W. Lai C.H. Ling D.K.X. Wong W.S.H. Wong M.L.D. Battery lifetime enhancement via smart hybrid energy storage plug-in module in standalone photovoltaic power system. J. Energy Storage 2019 21 586 598 10.1016/j.est.2018.12.007
    [Google Scholar]
  5. Abdulmumini S. Sani M. Yusuf T. Bello A. Design, construction and performance evaluation of solar charge controller for street lighting application. International Journal of Science for Global Sustainability 2023 9 4 62 69 10.57233/ijsgs.v9i4.554
    [Google Scholar]
  6. Arifin A.I.M. Redzuan F.N.M. Kadir E.A. Ismail N. Zain M.F.M. Design and sizing water pumping system powered by photovoltaic AIP Conf. Proc 2020 2306 1 10.1063/5.0033116
    [Google Scholar]
  7. Varghese N. Reji P. Energy storage management of hybrid solar/wind standalone system using adaptive neuro‐fuzzy inference system. Int. Trans. Electr. Energy Syst. 2019 29 7 10.1002/2050‑7038.12124
    [Google Scholar]
  8. Sabry A.H. Hasan W.Z.W. Ab Kadir M. Radzi M.A.M. Shafie S. DC-based smart PV-powered home energy management system based on voltage matching and RF module. PLoS One 2017 12 9 e0185012 10.1371/journal.pone.0185012 28934271
    [Google Scholar]
  9. Nimalsiri N.I. Mediwaththe C.P. Ratnam E.L. Shaw M. Smith D.B. Halgamuge S.K. A survey of algorithms for distributed charging control of electric vehicles in smart grid. IEEE Trans. Intell. Transp. Syst. 2020 21 11 4497 4515 10.1109/TITS.2019.2943620
    [Google Scholar]
  10. Mohammadi F. Nazri G.A. Saif M. A bidirectional power charging control strategy for plug-in hybrid electric vehicles. Sustainability (Basel) 2019 11 16 4317 10.3390/su11164317
    [Google Scholar]
  11. Venkitaraman A.K. Kosuru V.S.R. Hybrid deep learning mechanism for charging control and management of electric vehicles. European Journal of Electrical Engineering and Computer Science 2023 7 1 38 46 10.24018/ejece.2023.7.1.485
    [Google Scholar]
  12. Pratilastiarso J System design of smart solar photovoltaic water pump in Indonesia J. Phys.: Conf. Ser 2019 1321 022001 10.1088/1742‑6596/1321/2/022001
    [Google Scholar]
  13. Ghenai C. Bettayeb M. Grid-tied solar PV/fuel cell hybrid power system for University building. Energy Procedia 2019 159 96 103 10.1016/j.egypro.2018.12.025
    [Google Scholar]
  14. Shariff S.M. Alam M.S. Ahmad F. Rafat Y. Asghar M.S.J. Khan S. System design and realization of a solar-powered electric vehicle charging station. IEEE Syst. J. 2020 14 2 2748 2758 10.1109/JSYST.2019.2931880
    [Google Scholar]
  15. Lopez-Vargas A. Fuentes M. Garcia M.V. Munoz-Rodriguez F.J. Low-cost datalogger intended for remote monitoring of solar photovoltaic standalone systems based on arduino™. IEEE Sens. J. 2019 19 11 4308 4320 10.1109/JSEN.2019.2898667
    [Google Scholar]
  16. Al-Ali A.R. Al Nabulsi A. Mukhopadhyay S. Awal M.S. Fernandes S. Ailabouni K. IoT-solar energy powered smart farm irrigation system. Journal of Electronic Science and Technology 2019 17 4 100017 10.1016/j.jnlest.2020.100017
    [Google Scholar]
  17. Proppe D.S. Pandit M.M. Bridge E.S. Jasperse P. Holwerda C. Semi‐portable solar power to facilitate continuous operation of technology in the field. Methods Ecol. Evol. 2020 11 11 1388 1394 10.1111/2041‑210X.13456
    [Google Scholar]
  18. Tulpule P.J. Marano V. Yurkovich S. Rizzoni G. Economic and environmental impacts of a PV powered workplace parking garage charging station. Appl. Energy 2013 108 323 332 10.1016/j.apenergy.2013.02.068
    [Google Scholar]
  19. Wang S. Sina M. Parikh P. Uekert T. Shahbazian B. Devaraj A. Meng Y.S. Role of 4- tert -Butylpyridine as a hole transport layer Morphological controller in Perovskite solar cells. Nano Lett. 2016 16 9 5594 5600 10.1021/acs.nanolett.6b02158 27547991
    [Google Scholar]
  20. García P. García C.A. Fernández L.M. Llorens F. Jurado F. ANFIS-Based control of a grid-connected hybrid system integrating renewable energies, hydrogen and batteries. IEEE Trans. Industr. Inform. 2014 10 2 1107 1117 10.1109/TII.2013.2290069
    [Google Scholar]
  21. Yin H. Zhou W. Li M. Ma C. Zhao C. An adaptive fuzzy logic-based energy management strategy on battery/ultracapacitor hybrid electric vehicles. IEEE Trans. Transp. Electrif. 2016 2 3 300 311 10.1109/TTE.2016.2552721
    [Google Scholar]
  22. Xie S. Hu X. Xin Z. Li L. Time-efficient stochastic model predictive energy management for a plug-in hybrid electric bus with an adaptive reference state-of-charge advisory. IEEE Trans. Vehicular Technol. 2018 67 7 5671 5682 10.1109/TVT.2018.2798662
    [Google Scholar]
  23. Nasir M. Jin Z. Khan H.A. Zaffar N.A. Vasquez J.C. Guerrero J.M. A decentralized control architecture applied to DC nanogrid clusters for rural electrification in developing regions. IEEE Trans. Power Electron. 2019 34 2 1773 1785 10.1109/TPEL.2018.2828538
    [Google Scholar]
  24. Salman S. Ai X. Wu Z. Design of a P-&-O algorithm based MPPT charge controller for a stand-alone 200W PV system. PCoMPS 2018 3 1 25 10.1186/s41601‑018‑0099‑8
    [Google Scholar]
  25. Rezaei A. Burl J.B. Zhou B. Estimation of the ECMS equivalent factor bounds for hybrid electric vehicles. IEEE Trans. Control Syst. Technol. 2018 26 6 2198 2205 10.1109/TCST.2017.2740836
    [Google Scholar]
  26. Frost D.F. Howey D.A. Completely decentralized active balancing battery management system. IEEE Trans. Power Electron. 2018 33 1 729 738 10.1109/TPEL.2017.2664922
    [Google Scholar]
  27. Shehab El Din M. Hussein A.A. Abdel-Hafez M.F. Improved battery SOC estimation accuracy using a modified UKF with an adaptive cell model under real EV operating conditions. IEEE Trans. Transp. Electrif. 2018 4 2 408 417 10.1109/TTE.2018.2802043
    [Google Scholar]
  28. Cao J. Du W. Wang H. McCulloch M. Optimal sizing and control strategies for hybrid storage system as limited by grid frequency deviations. IEEE Trans. Power Syst. 2018 33 5 5486 5495 10.1109/TPWRS.2018.2805380
    [Google Scholar]
  29. Moghaddam I.N. Chowdhury B.H. Mohajeryami S. Predictive operation and optimal sizing of battery energy storage with high wind energy penetration. IEEE Trans. Ind. Electron. 2018 65 8 6686 6695 10.1109/TIE.2017.2774732
    [Google Scholar]
  30. Fathabadi H. Novel grid-connected solar/wind powered electric vehicle charging station with vehicle-to-grid technology. Energy 2017 132 1 11 10.1016/j.energy.2017.04.161
    [Google Scholar]
  31. Abdolrasol M.G.M. Hannan M.A. Mohamed A. Amiruldin U.A.U. Abidin I.B.Z. Uddin M.N. An optimal scheduling controller for virtual power plant and microgrid integration using the binary backtracking search algorithm. IEEE Trans. Ind. Appl. 2018 54 3 2834 2844 10.1109/TIA.2018.2797121
    [Google Scholar]
  32. Natsheh E.M. Natsheh A.R. Albarbar A. Intelligent controller for managing power flow within standalone hybrid power systems. IET Sci. Measur. Technol. 2013 7 4 191 200 10.1049/iet‑smt.2013.0011
    [Google Scholar]
  33. Rosewater D.M. Copp D.A. Nguyen T.A. Byrne R.H. Santoso S. Battery energy storage models for optimal control. IEEE Access 2019 7 178357 178391 10.1109/ACCESS.2019.2957698
    [Google Scholar]
  34. Altaf F. Egardt B. Johannesson Mardh L. Load management of modular battery using model predictive control: thermal and state-of-charge balancing. IEEE Trans. Control Syst. Technol. 2017 25 1 47 62 10.1109/TCST.2016.2547980
    [Google Scholar]
  35. Locment F. Sechilariu M. Houssamo I. DC load and batteries control limitations for photovoltaic systems. Experimental validation. IEEE Trans. Power Electron. 2012 27 9 4030 4038 10.1109/TPEL.2012.2189134
    [Google Scholar]
  36. Liu B. Li L. Wang X. Cheng S. Hybrid electric vehicle downshifting strategy based on stochastic dynamic programming during regenerative braking process. IEEE Trans. Vehicular Technol. 2018 67 6 4716 4727 10.1109/TVT.2018.2815518
    [Google Scholar]
  37. Schreiber M. Harrer M. Whitehead A. Bucsich H. Dragschitz M. Seifert E. Tymciw P. Practical and commercial issues in the design and manufacture of vanadium flow batteries. J. Power Sources 2012 206 483 489 10.1016/j.jpowsour.2010.12.032
    [Google Scholar]
  38. Venkatramanan D. John V. Dynamic modeling and analysis of buck converter based solar PV charge controller for improved MPPT performance. IEEE Trans. Ind. Appl. 2019 55 6 6234 6246 10.1109/TIA.2019.2937856
    [Google Scholar]
  39. Dutta A. Debbarma S. Frequency regulation in deregulated market using vehicle-to-grid services in residential distribution network. IEEE Syst. J. 2018 12 3 2812 2820 10.1109/JSYST.2017.2743779
    [Google Scholar]
  40. Sinha S. Bajpai P. Power management of hybrid energy storage system in a standalone DC microgrid. J. Energy Storage 2020 30 101523 10.1016/j.est.2020.101523
    [Google Scholar]
  41. Stonier A.A. Lehman B. An intelligent-based fault-tolerant system for solar-Fed Cascaded multilevel inverters. IEEE Trans. Energ. Convers. 2018 33 3 1047 1057 10.1109/TEC.2017.2786299
    [Google Scholar]
  42. Salas V. Suponthana W. Salas R.A. Overview of the off-grid photovoltaic diesel batteries systems with AC loads. Appl. Energy 2015 157 195 216 10.1016/j.apenergy.2015.07.073
    [Google Scholar]
  43. Bhattacharjee A. Saha H. Design and experimental validation of a generalised electrical equivalent model of Vanadium Redox flow battery for interfacing with renewable energy sources. J. Energy Storage 2017 13 220 232 10.1016/j.est.2017.07.016
    [Google Scholar]
  44. Nikzad A. Chahartaghi M. Ahmadi M.H. Technical, economic, and environmental modeling of solar water pump for irrigation of rice in Mazandaran province in Iran: A case study. J. Clean. Prod. 2019 239 118007 10.1016/j.jclepro.2019.118007
    [Google Scholar]
  45. Goetz S.M. Wang C. Li Z. Murphy D.L.K. Peterchev A.V. Concept of a distributed photovoltaic multilevel inverter with cascaded double H-bridge topology. Int. J. Electr. Power Energy Syst. 2019 110 667 678 10.1016/j.ijepes.2019.03.054
    [Google Scholar]
  46. Halvgaard R. Poulsen N.K. Madsen H. Jørgensen J.B. Marra F. Bondy D.E.M. Electric vehicle charge planning using economic model predictive control 2012 IEEE International Electric Vehicle Conference, IEVC 2012 SC, USA, 04-08 March 2012, pp. 1-6 10.1109/IEVC.2012.6183173
    [Google Scholar]
  47. Akeyo O.M. Rallabandi V. Jewell N. Ionel D.M. The design and analysis of large solar PV farm configurations with DC-connected battery systems. IEEE Trans. Ind. Appl. 2020 56 3 2903 2912 10.1109/TIA.2020.2969102
    [Google Scholar]
  48. Preindl M. A battery balancing auxiliary power module with predictive control for electrified transportation. IEEE Trans. Ind. Electron. 2018 65 8 6552 6559 10.1109/TIE.2017.2682030
    [Google Scholar]
  49. Vazquez N. Yu S.S. Chau T.K. Fernando T. Iu H.H.C. A fully decentralized adaptive droop optimization strategy for power loss minimization in microgrids with PV-BESS. IEEE Trans. Energ. Convers. 2019 34 1 385 395 10.1109/TEC.2018.2878246
    [Google Scholar]
  50. Naidu B.R. Panda G. Siano P. A self-reliant dc microgrid: Sizing, control, adaptive dynamic power management, and experimental analysis. IEEE Trans. Industr. Inform. 2018 14 8 3300 3313 10.1109/TII.2017.2780193
    [Google Scholar]
  51. Kruger A. Krajewski W.F. Niemeier J.J. Ceynar D.L. Goska R. Bridge-mounted river stage sensors (BMRSS). IEEE Access 2016 4 8948 8966 10.1109/ACCESS.2016.2631172
    [Google Scholar]
  52. Bonkile M.P. Ramadesigan V. Power management control strategy using physics-based battery models in standalone PV-battery hybrid systems. J. Energy Storage 2019 23 258 268 10.1016/j.est.2019.03.016
    [Google Scholar]
  53. Prakash J. Roan D. Tauqir W. Nazir H. Ali M. Kannan A. Off-grid solar thermal water heating system using phase-change materials: Design, integration and real environment investigation. Appl. Energy 2019 240 73 83 10.1016/j.apenergy.2019.02.058
    [Google Scholar]
  54. Anowar M.H. Roy P. A modified incremental conductance based photovoltaic MPPT charge controller 2nd International Conference on Electrical, Computer and Communication Engineering, ECCE 2019 Cox'sBazar, Bangladesh, 07-09 February 2019, pp. 1-5 10.1109/ECACE.2019.8679308
    [Google Scholar]
  55. Kim B. Azzaro-Pantel C. Pietrzak-David M. Maussion P. Life cycle assessment for a solar energy system based on reuse components for developing countries. J. Clean. Prod. 2019 208 1459 1468 10.1016/j.jclepro.2018.10.169
    [Google Scholar]
  56. Wen S. Wang S. Liu G. Liu R. Energy management and coordinated control strategy of PV/HESS AC microgrid during islanded operation. IEEE Access 2019 7 4432 4441 10.1109/ACCESS.2018.2887114
    [Google Scholar]
  57. Rezaei A. Burl J.B. Rezaei M. Zhou B. Catch energy saving opportunity in charge-depletion mode, a real-time controller for plug-in hybrid electric vehicles. IEEE Trans. Vehicular Technol. 2018 67 11 11234 11237 10.1109/TVT.2018.2866569
    [Google Scholar]
  58. Ali W. Farooq H. Rehman A.U. Awais Q. Jamil M. Noman A. Design considerations of stand-alone solar photovoltaic systems 2018 International Conference on Computing, Electronic and Electrical Engineering, ICE Cube 2018 Quetta, Pakistan, 2018, pp. 1-6 10.1109/ICECUBE.2018.8610970
    [Google Scholar]
  59. Iqbal S. Xin A. Jan M.U. Abdelbaky M.A. Rehman H.U. Salman S. Rizvi S.A.A. Aurangzeb M. Aggregation of EVs for primary frequency control of an industrial microgrid by implementing grid regulation & charger controller. IEEE Access 2020 8 141977 141989 10.1109/ACCESS.2020.3013762
    [Google Scholar]
  60. Tsai T-H. Chen K. A 3.4mW photovoltaic energy-harvesting charger with integrated maximum power point tracking and battery management 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers San Francisco, CA, USA, 17-21 February 2013, pp. 72-73 10.1109/ISSCC.2013.6487642
    [Google Scholar]
  61. Fudholi A. Haw L.C. Sopian K. Omer Abdulmula A.M. A primary study of tracking photovoltaic system for mobile station in Malaysia. (IJPEDS) 2018 9 1 427 432 10.11591/ijpeds.v9.i1.pp427‑432
    [Google Scholar]
  62. Bhairi M.N. Kangle S.S. Edake M.S. Madgundi B.S. Bhosale V.B. Design and implementation of smart solar LED street light 2017 International Conference on Trends in Electronics and Informatics (ICOEI) Tirunelveli, India, 11-12 May 2017, pp. 509-512 10.1109/ICOEI.2017.8300980
    [Google Scholar]
  63. e Silva D.P. Félix Salles J.L. Fardin J.F. Rocha Pereira M.M. Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data. Appl. Energy 2020 278 115581 10.1016/j.apenergy.2020.115581
    [Google Scholar]
  64. Subramaniam U. Vavilapalli S. Padmanaban S. Blaabjerg F. Holm-Nielsen J.B. Almakhles D. A hybrid PV-battery system for ON-grid and off-grid applications-controller-in-loop simulation validation. Energies 2020 13 3 755 10.3390/en13030755
    [Google Scholar]
  65. Lin X. Wang Y. Chang N. Pedram M. Concurrent task scheduling and dynamic voltage and frequency scaling in a real-time embedded system with energy harvesting. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 2016 35 11 1890 1902 10.1109/TCAD.2016.2523450
    [Google Scholar]
  66. Chatzinikolaou E. Rogers D.J. Hierarchical distributed balancing control for large-scale reconfigurable AC battery packs. IEEE Trans. Power Electron. 2018 33 7 5592 5602 10.1109/TPEL.2017.2782675
    [Google Scholar]
  67. Mathew P. Madichetty S. Mishra S. A multilevel distributed hybrid control scheme for islanded DC microgrids. IEEE Syst. J. 2019 13 4 4200 4207 10.1109/JSYST.2019.2896927
    [Google Scholar]
  68. Li G. Wu J. Li J. Ye T. Morello R. Battery status sensing software-defined multicast for v2g regulation in smart grid. IEEE Sens. J. 2017 17 23 7838 7848 10.1109/JSEN.2017.2731971
    [Google Scholar]
  69. Latif T. Hussain S.R. Design of a charge controller based on SEPIC and buck topology using modified Incremental Conductance MPPT 8th International Conference on Electrical and Computer Engineering: Advancing Technology for a Better Tomorrow, ICECE 2014 Dhaka, Bangladesh, 20-22 December 2014, pp. 824-827 2015 824 827 10.1109/ICECE.2014.7026999
    [Google Scholar]
  70. Al-Quraan A. Al-Qaisi M. Modelling, design and control of a standalone hybrid PV-wind micro-grid system. Energies 2021 14 16 4849 10.3390/en14164849
    [Google Scholar]
  71. Hassani H. Zaouche F. Rekioua D. Belaid S. Rekioua T. Bacha S. Feasibility of a standalone photovoltaic/battery system with hydrogen production. J. Energy Storage 2020 31 101644 10.1016/j.est.2020.101644
    [Google Scholar]
  72. Mahmoud A. Alhawari M. Mohammad B. Saleh H. Ismail M. A gain-controlled, low-leakage dickson charge pump for energy-harvesting applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019 27 5 1114 1123 10.1109/TVLSI.2019.2897046
    [Google Scholar]
  73. Pathare M. Shetty V. Datta D. Valunjkar R. Sawant A. Pai S. Designing and implementation of maximum power point tracking(MPPT) solar charge controller 2017 International Conference on Nascent Technologies in Engineering, ICNTE 2017 - Proceedings Vashi, India, 27-28 January 2017, pp. 1-5 10.1109/ICNTE.2017.7947928
    [Google Scholar]
  74. Touzani S. Prakash A.K. Wang Z. Agarwal S. Pritoni M. Kiran M. Brown R. Granderson J. Controlling distributed energy resources via deep reinforcement learning for load flexibility and energy efficiency. Appl. Energy 2021 304 117733 10.1016/j.apenergy.2021.117733
    [Google Scholar]
  75. Clarke W.C. Manzie C. Brear M.J. An economic MPC approach to microgrid control 2016 Australian Control Conference, AuCC 2016 2017 276 281 10.1109/AUCC.2016.7868202
    [Google Scholar]
  76. Talbi S. Mabwe A.M. Hajjaji A.E. Control of a bidirectional dual active bridge converter for charge and discharge of a Li-Ion Battery 2015 10.1109/IECON.2015.7392205
    [Google Scholar]
  77. Shubhra S. Singh B. Three-phase grid-interactive solar PV-battery microgrid control based on normalized gradient adaptive regularization factor neural filter. IEEE Trans. Industr. Inform. 2020 16 4 2301 2314 10.1109/TII.2019.2937561
    [Google Scholar]
  78. Zeng X. Wang J. Optimizing the energy management strategy for plug-in hybrid electric vehicles with multiple frequent routes. IEEE Trans. Control Syst. Technol. 2019 27 1 394 400 10.1109/TCST.2017.2768042
    [Google Scholar]
  79. Ma Y. Wang J. Integrated power management and aftertreatment system control for hybrid electric vehicles with road grade preview. IEEE Trans. Vehicular Technol. 2017 66 12 10935 10945 10.1109/TVT.2017.2763587
    [Google Scholar]
  80. Krishan O. Suhag S. A novel control strategy for a hybrid energy storage system in a grid‐independent hybrid renewable energy system. Int. Trans. Electr. Energy Syst. 2020 30 4 10.1002/2050‑7038.12262
    [Google Scholar]
  81. Tushar W. Zhang J.A. Yuen C. Smith D.B. Ul Hassan N. Management of renewable energy for a shared facility controller in smart grid. IEEE Access 2016 4 4269 4281 10.1109/ACCESS.2016.2592509
    [Google Scholar]
  82. Xiao S. Shadmand M.B. Balog R.S. Model predictive control of multi-string PV systems with battery back-up in a community dc microgrid Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC Tampa, FL, USA, 26-30 March 2017, pp. 1284-1290 10.1109/APEC.2017.7930861
    [Google Scholar]
  83. Venkatramanan D. John V. A reconfigurable solar photovoltaic grid-tied inverter architecture for enhanced energy access in backup power applications. IEEE Trans. Ind. Electron. 2020 67 12 10531 10541 10.1109/TIE.2019.2960742
    [Google Scholar]
  84. Tavakoli A. Khajehoddin S.A. Salmon J. Control and analysis of a modular bridge for battery cell voltage balancing. IEEE Trans. Power Electron. 2018 33 11 9722 9733 10.1109/TPEL.2018.2798636
    [Google Scholar]
  85. Saha C.R. Huda M.N. Mumtaz A. Debnath A. Thomas S. Jinks R. Photovoltaic (PV) and thermo-electric energy harvesters for charging applications. Microelectronics J. 2020 96 104685 10.1016/j.mejo.2019.104685
    [Google Scholar]
  86. Thao N.G.M. Uchida K. A two-level control strategy with fuzzy logic for large-scale photovoltaic farms to support grid frequency regulation. Control Eng. Pract. 2017 59 77 99 10.1016/j.conengprac.2016.11.006
    [Google Scholar]
  87. Anusuyadevi R. Suresh Pandiarajan P. Muruga Bharathi J. Sliding mode controller based maximum power point tracking of DC to DC boost converter. International Journal of Power Electronics and Drive Systems 2013 3 3 321 327
    [Google Scholar]
  88. Ghosh S.K. Roy T.K. Pramanik M.A.H. Sarkar A.K. Mahmud M.A. An energy management system-based control strategy for DC microgrids with dual energy storage systems. Energies 2020 13 11 2992 10.3390/en13112992
    [Google Scholar]
  89. Madrigal G.A. Cuevas K.G. Hora V. Jimenez K.M. Manato J.N. Porlaje M.J. Fortaleza B. Fuzzy logic-based maximum power point tracking solar battery charge controller with backup stand-by AC generator. Indonesian Journal of Electrical Engineering and Computer Science 2019 16 1 136 146 10.11591/ijeecs.v16.i1.pp136‑146
    [Google Scholar]
  90. Nyemba W.R. Chinguwa S. Mushanguri I. Mbohwa C. Optimization of the design and manufacture of a solar-wind hybrid street light Procedia Manufacturing 2019 35 285 290 10.1016/j.promfg.2019.05.041
    [Google Scholar]
  91. Chakraborty S. Hasan M.M. Worighi I. Hegazy O. Razzak M.A. Performance evaluation of a PID-controlled synchronous buck converter based battery charging controller for solar-powered lighting system in a fishing trawler. Energies 2018 11 10 2722 10.3390/en11102722
    [Google Scholar]
  92. Idzkowski A. Leoniuk K. Walendziuk W. Budzynski L. Monitoring and control system of charging batteries connected to a photovoltaic panel Proceedings of SPIE - The International Society for Optical Engineering Wilga, Poland, 2015, pp. 511 10.1117/12.2205237
    [Google Scholar]
  93. Sarkar T. Sharma M. Gawre S.K. A generalized approach to design the electrical power system of a solar electric vehicle Conference on Electrical, Electronics and Computer Science, SCEECS 2014 Bhopal, India, 01-02 March 2014, pp. 1-6 2014 10.1109/SCEECS.2014.6804490
    [Google Scholar]
  94. Kumar J. Parhyar N.R. Panjwani M.K. Khan D. Design and performance analysis of PV grid-tied system with energy storage system. (IJECE) 2021 11 2 1077 1085 10.11591/ijece.v11i2.pp1077‑1085
    [Google Scholar]
  95. Rokonuzzaman M. IoT-enabled high efficiency smart solar charge controller with maximum power point tracking—Design, hardware implementation and performance testing Electronics 2020 9 8 1267 10.3390/electronics9081267
    [Google Scholar]
  96. Punna S. Manthati U.B. Optimum design and analysis of a dynamic energy management scheme for HESS in renewable power generation applications. SN Applied Sciences 2020 2 3 495 10.1007/s42452‑020‑2313‑3
    [Google Scholar]
  97. E Karar Haider Solar power remote monitoring and controlling using Arduino, LabVIEW and web browser 2015 Power Generation Systems and Renewable Energy Technologies, PGSRET 2015, pp. 1-4 10.1109/PGSRET.2015.7312240
    [Google Scholar]
  98. Aranya S.D.S. Sathyamoorthi S. Gandhiraj R. A fuzzy logic based energy management system for a microgrid. J. Eng. Appl. Sci. (Asian Res. Publ. Netw.) 2015 10 6 2663 2669
    [Google Scholar]
  99. Kekezoglu B. Arikan O. Erduman A. Isen E. Durusu A. Bozkurt A. Reliability analysis of hybrid energy systems: Case study of davutpasa campus Eurocon 2013 Zagreb, Croatia, 01-04 July 2013, pp. 1141-1144 10.1109/EUROCON.2013.6625124
    [Google Scholar]
  100. Raveendhra D. Kumar B. Mishra D. Mankotia M. Design of FPGA based open circuit voltage MPPT charge controller for solar PV system Proceedings of IEEE International Conference on Circuit, Power and Computing Technologies, ICCPCT 2013 Nagercoil, India, 20-21 March 2013, pp. 523-527 10.1109/ICCPCT.2013.6529012
    [Google Scholar]
  101. Siddik A A. M S. Implementation of fuzzy logic controller in photovoltaic power generation using boost converter and boost inverter. (IJPEDS) 2012 2 3 249 256 10.11591/ijpeds.v2i3.334
    [Google Scholar]
  102. Atri P.K. Modi P.S. Gujar N.S. Comparison of Different MPPT Control Strategies for Solar Charge Controller 2020 International Conference on Power Electronics and IoT Applications in Renewable Energy and its Control, PARC 2020 Mathura, India, 28-29 February 2020, pp. 65-69 10.1109/PARC49193.2020.236559
    [Google Scholar]
  103. Mathew P. Madichetty S. Mishra S. A multi-level control and optimization scheme for islanded PV based microgrid: A control frame work. IEEE J. Photovolt. 2019 9 3 822 831 10.1109/JPHOTOV.2019.2897579
    [Google Scholar]
  104. Hegarty A. Westbrook G. Glynn D. Murray D. Omerdic E. Toal D. A Low-cost remote solar energy monitoring system for a buoyed iot ocean observation platform 2019 IEEE 5th World Forum on Internet of Things (WF-IoT) Limerick, Ireland, 15-18 April 2019, pp. 386-391 2019 10.1109/WF‑IoT.2019.8767311
    [Google Scholar]
  105. Abbassi A. Dami M.A. Jemli M. Statistical characterization of capacity of Hybrid Energy Storage System (HESS) to assimilate the fast PV-Wind power generation fluctuations Proceedings of International Conference on Advanced Systems and Electric Technologies, IC_ASET 2017 Hammamet, Tunisia, 14-17 January 2017, pp. 467-472 10.1109/ASET.2017.7983738
    [Google Scholar]
  106. Podder A.K. Ahmed K. Roy N.K. Biswas P.C. Design and simulation of an independent solar home system with battery backup 4th International Conference on Advances in Electrical Engineering, ICAEE 2017 Dhaka, Bangladesh, 28-30 September 2017, pp. 427-431 2017 427 431 10.1109/ICAEE.2017.8255394
    [Google Scholar]
  107. El Shenawy E.T. Hegazy A.H. Abdellatef M. Design and optimization of stand-alone PV system for Egyptian rural communities. Int. J. Appl. Eng. Res. 2017 12 20 10433 10446
    [Google Scholar]
  108. Kanakasabapathy P. Gopal V.K. Abhijith V. Mohan A. Reddy E.H.S. Energy management and control of solar aided UPS Proceedings of IEEE International Conference on Technological Advancements in Power and Energy, TAP Energy 2015 Kollam, India, 24-26 June 2015, pp. 363-368 10.1109/TAPENERGY.2015.7229646
    [Google Scholar]
  109. Mamun K.A. Islam F.R. Haque R. Chand A.A. Prasad K.A. Goundar K.K. Prakash K. Maharaj S. Systematic modeling and analysis of on-board vehicle integrated novel hybrid renewable energy system with storage for electric vehicles. Sustainability (Basel) 2022 14 5 2538 10.3390/su14052538
    [Google Scholar]
  110. Gholinejad H.R. Adabi J. Marzband M. Hierarchical energy management system for home-energy-hubs considering plug-in electric vehicles. IEEE Trans. Ind. Appl. 2022 58 5 5582 5592 10.1109/TIA.2022.3158352
    [Google Scholar]
  111. Nagaiah M. Sekhar K.C. Analysis of fuzzy logic controller based bi-directional DC-DC converter for battery energy management in hybrid solar/wind micro grid system. International Journal of Electrical and Computer Engineering (IJECE) 2020 10 3 2271 2284 10.11591/ijece.v10i3.pp2271‑2284
    [Google Scholar]
  112. Kumar N.K. Gandhi V.I. Implementation of fuzzy logic controller in power system applications. J. Intell. Fuzzy Syst. 2019 36 5 4115 4126 10.3233/JIFS‑169971
    [Google Scholar]
  113. Verma A. Singh B. Multi-objective reconfigurable three phase off-board charger for EV 2017 IEEE Transportation Electrification Conference (ITEC-India) Pune, India, 13-15 December 2017, pp. 1-6 10.1109/ITEC‑India.2017.8333838
    [Google Scholar]
  114. Cheng L. Acuna P. Aguilera R.P. Jiang J. Flecther J. Baier C. Model predictive control for energy management of a hybrid energy storage system in light rail vehicles 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG) Cadiz, Spain, 04-06 April 2017, pp. 683-688 10.1109/CPE.2017.7915255
    [Google Scholar]
  115. Harini K. Syama S. Simulation and analysis of incremental conductance and Perturb and Observe MPPT with DC-DC converter topology for PV array Proceedings of 2015 IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2015 Coimbatore, India, 05-07 March 2015, pp. 1-5 10.1109/ICECCT.2015.7225989
    [Google Scholar]
  116. Nkambule M. S. Hasan A. N. Ali A. MPPT under partial shading conditions based on Perturb & Observe and Incremental Conductance 2019 11th International Conference on Electrical and Electronics Engineering (ELECO) Bursa, Turkey, 28-30 November 2019, pp. 85-90 10.23919/ELECO47770.2019.8990426
    [Google Scholar]
  117. Kamran M. Mudassar M. Fazal M.R. Asghar M.U. Bilal M. Asghar R. Implementation of improved Perturb & Observe MPPT technique with confined search space for standalone photovoltaic system. JKSU-ES 2020 32 7 432 441 10.1016/j.jksues.2018.04.006
    [Google Scholar]
  118. Sarika E.P. Jacob J. Mohammed S. Paul S. A novel hybrid maximum power point tracking technique with zero oscillation based On P&O algorithm. IJRER 2020 10 v10i4 1962 1973 10.20508/ijrer.v10i4.11502.g8096
    [Google Scholar]
  119. Sonam S.K. Harika P. A Fuzzy Logic based MPPT Method for Solar Power Generation International Conference on Intelligent Computing and Control Systems ICICCS 2017 Madurai, India, 15-16 June 2017, pp. 1182-1186 2017 1182 1186
    [Google Scholar]
  120. Ishaque K. Salam Z. Amjad M. Mekhilef S. An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation. IEEE Trans. Power Electron. 2012 27 8 3627 3638 10.1109/TPEL.2012.2185713
    [Google Scholar]
  121. Oliveira F.M. Da Silva S.A.O. Durand F.R. Sampaio L.P. Application of PSO method for maximum power point extraction in photovoltaic systems under partial shading conditions 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC) Fortaleza, Brazil, 29 November 2015 - 02 December 2015, pp. 1-6 10.1109/COBEP.2015.7420175
    [Google Scholar]
  122. Avila L. De Paula M. Trimboli M. Carlucho I. Deep reinforcement learning approach for MPPT control of partially shaded PV systems in smart grids. Appl. Soft Comput. 2020 97 106711 10.1016/j.asoc.2020.106711
    [Google Scholar]
  123. Pan W. Cui C. Chen H. Research on photovoltaic MPPT technique based on deep reinforcement learning under varying irradiance levels 2023 8th International Conference on Power and Renewable Energy (ICPRE) Shanghai, China, 22-25 September 2023, pp. 1794-1799 10.1109/ICPRE59655.2023.10353820
    [Google Scholar]
  124. Panggabean J. Sutisna N. Syafalni I. Adiono T. Comparison of MPPT based on Deep Reinforcement Learning by DQN, DDPG and TD3 2023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) Taipei, Taiwan, 31 October 2023 - 03 November 2023, pp. 261-266 10.1109/APSIPAASC58517.2023.10317341
    [Google Scholar]
  125. Phan B.C. Lai Y.C. Lin C.E. A deep reinforcement learning-based MPPT control for PV systems under partial shading condition. Sensors (Basel) 2020 20 11 3039 10.3390/s20113039 32471144
    [Google Scholar]
  126. Hu J. Lim B-H. Tian X. Wang K. Xu D. Zhang F. Zhang Y. A comprehensive review of Artificial Intelligence applications in the photovoltaic systems. CAAI Artificial Intelligence Research 2024 3 9150031 9150031 10.26599/AIR.2024.9150031
    [Google Scholar]
  127. Systems P. Koad R.B.A. Zobaa A.F. Comparison between the conventional methods and PSO based MPPT algorithm for. Core 2019 12 1 28 50
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965347847241122182835
Loading
/content/journals/raeeng/10.2174/0123520965347847241122182835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test