Skip to content
2000
Volume 18, Issue 10
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

A solar photovoltaic system is a renewable energy that depends on solar irradiance and ambient temperature. A solar charge controller is required to ensure the energy received by the photovoltaic cell or module is maximized at the output. This study presents the first bibliometric analysis based on a thorough evaluation of the most frequently cited articles on the solar charge controller to forecast future trends and applications. This paper performs a statistical analysis using the Scopus database and extracts the 100 most cited papers. It has been illustrated that the solar charge controller literature expanded swiftly from 2012 to 2023, with 2019 receiving the most publications and papers published in 2018 receiving more citations compared to works published in other years. In recent years, battery storage, electric vehicles, energy storage, controllers, photovoltaic systems, and power management systems have garnered great interest. The solar charge controller's functional evaluation and determination of the optimal renewable energy system might boost its potential. Our analysis of highly cited articles on solar charge controllers emphasizes a selection of features, including control methods and systems, issues, challenges to establishing current constraints, research gaps, and the need to find solutions and resolve problems. Every aspect of the features of this overview is anticipated to contribute to an upsurge through the invention of advanced solar charge controllers and control methods for future photovoltaic systems.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965347847241122182835
2025-01-06
2026-02-20
Loading full text...

Full text loading...

References

  1. GielenD. BoshellF. SayginD. BazilianM.D. WagnerN. GoriniR. The role of renewable energy in the global energy transformation.Energy Strategy Reviews201924385010.1016/j.esr.2019.01.006
    [Google Scholar]
  2. RamachandranT. MouradA. H. I. HamedF. A review on solar energy utilization and projects: Development in and around the UAEEnergies20221510375410.3390/en15103754
    [Google Scholar]
  3. JossenA. GarcheJ. SauerD.U. Operation conditions of batteries in PV applications.Sol. Energy200476675976910.1016/j.solener.2003.12.013
    [Google Scholar]
  4. JingW. LaiC.H. LingD.K.X. WongW.S.H. WongM.L.D. Battery lifetime enhancement via smart hybrid energy storage plug-in module in standalone photovoltaic power system.J. Energy Storage20192158659810.1016/j.est.2018.12.007
    [Google Scholar]
  5. AbdulmuminiS. SaniM. YusufT. BelloA. Design, construction and performance evaluation of solar charge controller for street lighting application.International Journal of Science for Global Sustainability202394626910.57233/ijsgs.v9i4.554
    [Google Scholar]
  6. ArifinA.I.M. RedzuanF.N.M. KadirE.A. IsmailN. ZainM.F.M. Design and sizing water pumping system powered by photovoltaicAIP Conf. Proc20202306110.1063/5.0033116
    [Google Scholar]
  7. VargheseN. RejiP. Energy storage management of hybrid solar/wind standalone system using adaptive neuro‐fuzzy inference system.Int. Trans. Electr. Energy Syst.201929710.1002/2050‑7038.12124
    [Google Scholar]
  8. SabryA.H. HasanW.Z.W. Ab KadirM. RadziM.A.M. ShafieS. DC-based smart PV-powered home energy management system based on voltage matching and RF module.PLoS One2017129e018501210.1371/journal.pone.018501228934271
    [Google Scholar]
  9. NimalsiriN.I. MediwaththeC.P. RatnamE.L. ShawM. SmithD.B. HalgamugeS.K. A survey of algorithms for distributed charging control of electric vehicles in smart grid.IEEE Trans. Intell. Transp. Syst.202021114497451510.1109/TITS.2019.2943620
    [Google Scholar]
  10. MohammadiF. NazriG.A. SaifM. A bidirectional power charging control strategy for plug-in hybrid electric vehicles.Sustainability (Basel)20191116431710.3390/su11164317
    [Google Scholar]
  11. VenkitaramanA.K. KosuruV.S.R. Hybrid deep learning mechanism for charging control and management of electric vehicles.European Journal of Electrical Engineering and Computer Science202371384610.24018/ejece.2023.7.1.485
    [Google Scholar]
  12. PratilastiarsoJ System design of smart solar photovoltaic water pump in IndonesiaJ. Phys.: Conf. Ser20191321 02200110.1088/1742‑6596/1321/2/022001
    [Google Scholar]
  13. GhenaiC. BettayebM. Grid-tied solar PV/fuel cell hybrid power system for University building.Energy Procedia20191599610310.1016/j.egypro.2018.12.025
    [Google Scholar]
  14. ShariffS.M. AlamM.S. AhmadF. RafatY. AsgharM.S.J. KhanS. System design and realization of a solar-powered electric vehicle charging station.IEEE Syst. J.20201422748275810.1109/JSYST.2019.2931880
    [Google Scholar]
  15. Lopez-VargasA. FuentesM. GarciaM.V. Munoz-RodriguezF.J. Low-cost datalogger intended for remote monitoring of solar photovoltaic standalone systems based on arduino™.IEEE Sens. J.201919114308432010.1109/JSEN.2019.2898667
    [Google Scholar]
  16. Al-AliA.R. Al NabulsiA. MukhopadhyayS. AwalM.S. FernandesS. AilabouniK. IoT-solar energy powered smart farm irrigation system.Journal of Electronic Science and Technology201917410001710.1016/j.jnlest.2020.100017
    [Google Scholar]
  17. ProppeD.S. PanditM.M. BridgeE.S. JasperseP. HolwerdaC. Semi‐portable solar power to facilitate continuous operation of technology in the field.Methods Ecol. Evol.202011111388139410.1111/2041‑210X.13456
    [Google Scholar]
  18. TulpuleP.J. MaranoV. YurkovichS. RizzoniG. Economic and environmental impacts of a PV powered workplace parking garage charging station.Appl. Energy201310832333210.1016/j.apenergy.2013.02.068
    [Google Scholar]
  19. WangS. SinaM. ParikhP. UekertT. ShahbazianB. DevarajA. MengY.S. Role of 4- tert -Butylpyridine as a hole transport layer Morphological controller in Perovskite solar cells.Nano Lett.20161695594560010.1021/acs.nanolett.6b0215827547991
    [Google Scholar]
  20. GarcíaP. GarcíaC.A. FernándezL.M. LlorensF. JuradoF. ANFIS-Based control of a grid-connected hybrid system integrating renewable energies, hydrogen and batteries.IEEE Trans. Industr. Inform.20141021107111710.1109/TII.2013.2290069
    [Google Scholar]
  21. YinH. ZhouW. LiM. MaC. ZhaoC. An adaptive fuzzy logic-based energy management strategy on battery/ultracapacitor hybrid electric vehicles.IEEE Trans. Transp. Electrif.20162330031110.1109/TTE.2016.2552721
    [Google Scholar]
  22. XieS. HuX. XinZ. LiL. Time-efficient stochastic model predictive energy management for a plug-in hybrid electric bus with an adaptive reference state-of-charge advisory.IEEE Trans. Vehicular Technol.20186775671568210.1109/TVT.2018.2798662
    [Google Scholar]
  23. NasirM. JinZ. KhanH.A. ZaffarN.A. VasquezJ.C. GuerreroJ.M. A decentralized control architecture applied to DC nanogrid clusters for rural electrification in developing regions.IEEE Trans. Power Electron.20193421773178510.1109/TPEL.2018.2828538
    [Google Scholar]
  24. SalmanS. AiX. WuZ. Design of a P-&-O algorithm based MPPT charge controller for a stand-alone 200W PV system.PCoMPS2018312510.1186/s41601‑018‑0099‑8
    [Google Scholar]
  25. RezaeiA. BurlJ.B. ZhouB. Estimation of the ECMS equivalent factor bounds for hybrid electric vehicles.IEEE Trans. Control Syst. Technol.20182662198220510.1109/TCST.2017.2740836
    [Google Scholar]
  26. FrostD.F. HoweyD.A. Completely decentralized active balancing battery management system.IEEE Trans. Power Electron.201833172973810.1109/TPEL.2017.2664922
    [Google Scholar]
  27. Shehab El DinM. HusseinA.A. Abdel-HafezM.F. Improved battery SOC estimation accuracy using a modified UKF with an adaptive cell model under real EV operating conditions.IEEE Trans. Transp. Electrif.20184240841710.1109/TTE.2018.2802043
    [Google Scholar]
  28. CaoJ. DuW. WangH. McCullochM. Optimal sizing and control strategies for hybrid storage system as limited by grid frequency deviations.IEEE Trans. Power Syst.20183355486549510.1109/TPWRS.2018.2805380
    [Google Scholar]
  29. MoghaddamI.N. ChowdhuryB.H. MohajeryamiS. Predictive operation and optimal sizing of battery energy storage with high wind energy penetration.IEEE Trans. Ind. Electron.20186586686669510.1109/TIE.2017.2774732
    [Google Scholar]
  30. FathabadiH. Novel grid-connected solar/wind powered electric vehicle charging station with vehicle-to-grid technology.Energy201713211110.1016/j.energy.2017.04.161
    [Google Scholar]
  31. AbdolrasolM.G.M. HannanM.A. MohamedA. AmiruldinU.A.U. AbidinI.B.Z. UddinM.N. An optimal scheduling controller for virtual power plant and microgrid integration using the binary backtracking search algorithm.IEEE Trans. Ind. Appl.20185432834284410.1109/TIA.2018.2797121
    [Google Scholar]
  32. NatshehE.M. NatshehA.R. AlbarbarA. Intelligent controller for managing power flow within standalone hybrid power systems.IET Sci. Measur. Technol.20137419120010.1049/iet‑smt.2013.0011
    [Google Scholar]
  33. RosewaterD.M. CoppD.A. NguyenT.A. ByrneR.H. SantosoS. Battery energy storage models for optimal control.IEEE Access2019717835717839110.1109/ACCESS.2019.2957698
    [Google Scholar]
  34. AltafF. EgardtB. Johannesson MardhL. Load management of modular battery using model predictive control: thermal and state-of-charge balancing.IEEE Trans. Control Syst. Technol.2017251476210.1109/TCST.2016.2547980
    [Google Scholar]
  35. LocmentF. SechilariuM. HoussamoI. DC load and batteries control limitations for photovoltaic systems. Experimental validation.IEEE Trans. Power Electron.20122794030403810.1109/TPEL.2012.2189134
    [Google Scholar]
  36. LiuB. LiL. WangX. ChengS. Hybrid electric vehicle downshifting strategy based on stochastic dynamic programming during regenerative braking process.IEEE Trans. Vehicular Technol.20186764716472710.1109/TVT.2018.2815518
    [Google Scholar]
  37. SchreiberM. HarrerM. WhiteheadA. BucsichH. DragschitzM. SeifertE. TymciwP. Practical and commercial issues in the design and manufacture of vanadium flow batteries.J. Power Sources201220648348910.1016/j.jpowsour.2010.12.032
    [Google Scholar]
  38. VenkatramananD. JohnV. Dynamic modeling and analysis of buck converter based solar PV charge controller for improved MPPT performance.IEEE Trans. Ind. Appl.20195566234624610.1109/TIA.2019.2937856
    [Google Scholar]
  39. DuttaA. DebbarmaS. Frequency regulation in deregulated market using vehicle-to-grid services in residential distribution network.IEEE Syst. J.20181232812282010.1109/JSYST.2017.2743779
    [Google Scholar]
  40. SinhaS. BajpaiP. Power management of hybrid energy storage system in a standalone DC microgrid.J. Energy Storage20203010152310.1016/j.est.2020.101523
    [Google Scholar]
  41. StonierA.A. LehmanB. An intelligent-based fault-tolerant system for solar-Fed Cascaded multilevel inverters.IEEE Trans. Energ. Convers.20183331047105710.1109/TEC.2017.2786299
    [Google Scholar]
  42. SalasV. SuponthanaW. SalasR.A. Overview of the off-grid photovoltaic diesel batteries systems with AC loads.Appl. Energy201515719521610.1016/j.apenergy.2015.07.073
    [Google Scholar]
  43. BhattacharjeeA. SahaH. Design and experimental validation of a generalised electrical equivalent model of Vanadium Redox flow battery for interfacing with renewable energy sources.J. Energy Storage20171322023210.1016/j.est.2017.07.016
    [Google Scholar]
  44. NikzadA. ChahartaghiM. AhmadiM.H. Technical, economic, and environmental modeling of solar water pump for irrigation of rice in Mazandaran province in Iran: A case study.J. Clean. Prod.201923911800710.1016/j.jclepro.2019.118007
    [Google Scholar]
  45. GoetzS.M. WangC. LiZ. MurphyD.L.K. PeterchevA.V. Concept of a distributed photovoltaic multilevel inverter with cascaded double H-bridge topology.Int. J. Electr. Power Energy Syst.201911066767810.1016/j.ijepes.2019.03.054
    [Google Scholar]
  46. HalvgaardR. PoulsenN.K. MadsenH. JørgensenJ.B. MarraF. BondyD.E.M. Electric vehicle charge planning using economic model predictive control2012 IEEE International Electric Vehicle Conference, IEVC 2012 SC, USA, 04-08 March 2012, pp. 1-610.1109/IEVC.2012.6183173
    [Google Scholar]
  47. AkeyoO.M. RallabandiV. JewellN. IonelD.M. The design and analysis of large solar PV farm configurations with DC-connected battery systems.IEEE Trans. Ind. Appl.20205632903291210.1109/TIA.2020.2969102
    [Google Scholar]
  48. PreindlM. A battery balancing auxiliary power module with predictive control for electrified transportation.IEEE Trans. Ind. Electron.20186586552655910.1109/TIE.2017.2682030
    [Google Scholar]
  49. VazquezN. YuS.S. ChauT.K. FernandoT. IuH.H.C. A fully decentralized adaptive droop optimization strategy for power loss minimization in microgrids with PV-BESS.IEEE Trans. Energ. Convers.201934138539510.1109/TEC.2018.2878246
    [Google Scholar]
  50. NaiduB.R. PandaG. SianoP. A self-reliant dc microgrid: Sizing, control, adaptive dynamic power management, and experimental analysis.IEEE Trans. Industr. Inform.20181483300331310.1109/TII.2017.2780193
    [Google Scholar]
  51. KrugerA. KrajewskiW.F. NiemeierJ.J. CeynarD.L. GoskaR. Bridge-mounted river stage sensors (BMRSS).IEEE Access201648948896610.1109/ACCESS.2016.2631172
    [Google Scholar]
  52. BonkileM.P. RamadesiganV. Power management control strategy using physics-based battery models in standalone PV-battery hybrid systems.J. Energy Storage20192325826810.1016/j.est.2019.03.016
    [Google Scholar]
  53. PrakashJ. RoanD. TauqirW. NazirH. AliM. KannanA. Off-grid solar thermal water heating system using phase-change materials: Design, integration and real environment investigation.Appl. Energy2019240738310.1016/j.apenergy.2019.02.058
    [Google Scholar]
  54. AnowarM.H. RoyP. A modified incremental conductance based photovoltaic MPPT charge controller2nd International Conference on Electrical, Computer and Communication Engineering, ECCE 2019 Cox'sBazar, Bangladesh, 07-09 February 2019, pp. 1-510.1109/ECACE.2019.8679308
    [Google Scholar]
  55. KimB. Azzaro-PantelC. Pietrzak-DavidM. MaussionP. Life cycle assessment for a solar energy system based on reuse components for developing countries.J. Clean. Prod.20192081459146810.1016/j.jclepro.2018.10.169
    [Google Scholar]
  56. WenS. WangS. LiuG. LiuR. Energy management and coordinated control strategy of PV/HESS AC microgrid during islanded operation.IEEE Access201974432444110.1109/ACCESS.2018.2887114
    [Google Scholar]
  57. RezaeiA. BurlJ.B. RezaeiM. ZhouB. Catch energy saving opportunity in charge-depletion mode, a real-time controller for plug-in hybrid electric vehicles.IEEE Trans. Vehicular Technol.20186711112341123710.1109/TVT.2018.2866569
    [Google Scholar]
  58. AliW. FarooqH. RehmanA.U. AwaisQ. JamilM. NomanA. Design considerations of stand-alone solar photovoltaic systems2018 International Conference on Computing, Electronic and Electrical Engineering, ICE Cube 2018 Quetta, Pakistan, 2018, pp. 1-610.1109/ICECUBE.2018.8610970
    [Google Scholar]
  59. IqbalS. XinA. JanM.U. AbdelbakyM.A. RehmanH.U. SalmanS. RizviS.A.A. AurangzebM. Aggregation of EVs for primary frequency control of an industrial microgrid by implementing grid regulation & charger controller.IEEE Access2020814197714198910.1109/ACCESS.2020.3013762
    [Google Scholar]
  60. TsaiT-H. ChenK. A 3.4mW photovoltaic energy-harvesting charger with integrated maximum power point tracking and battery management2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers San Francisco, CA, USA, 17-21 February 2013, pp. 72-7310.1109/ISSCC.2013.6487642
    [Google Scholar]
  61. FudholiA. HawL.C. SopianK. Omer AbdulmulaA.M. A primary study of tracking photovoltaic system for mobile station in Malaysia.(IJPEDS)20189142743210.11591/ijpeds.v9.i1.pp427‑432
    [Google Scholar]
  62. BhairiM.N. KangleS.S. EdakeM.S. MadgundiB.S. BhosaleV.B. Design and implementation of smart solar LED street light2017 International Conference on Trends in Electronics and Informatics (ICOEI) Tirunelveli, India, 11-12 May 2017, pp. 509-51210.1109/ICOEI.2017.8300980
    [Google Scholar]
  63. e SilvaD.P. Félix SallesJ.L. FardinJ.F. Rocha PereiraM.M. Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data.Appl. Energy202027811558110.1016/j.apenergy.2020.115581
    [Google Scholar]
  64. SubramaniamU. VavilapalliS. PadmanabanS. BlaabjergF. Holm-NielsenJ.B. AlmakhlesD. A hybrid PV-battery system for ON-grid and off-grid applications-controller-in-loop simulation validation.Energies202013375510.3390/en13030755
    [Google Scholar]
  65. LinX. WangY. ChangN. PedramM. Concurrent task scheduling and dynamic voltage and frequency scaling in a real-time embedded system with energy harvesting.IEEE Trans. Comput. Aided Des. Integrated Circ. Syst.201635111890190210.1109/TCAD.2016.2523450
    [Google Scholar]
  66. ChatzinikolaouE. RogersD.J. Hierarchical distributed balancing control for large-scale reconfigurable AC battery packs.IEEE Trans. Power Electron.20183375592560210.1109/TPEL.2017.2782675
    [Google Scholar]
  67. MathewP. MadichettyS. MishraS. A multilevel distributed hybrid control scheme for islanded DC microgrids.IEEE Syst. J.20191344200420710.1109/JSYST.2019.2896927
    [Google Scholar]
  68. LiG. WuJ. LiJ. YeT. MorelloR. Battery status sensing software-defined multicast for v2g regulation in smart grid.IEEE Sens. J.201717237838784810.1109/JSEN.2017.2731971
    [Google Scholar]
  69. LatifT. HussainS.R. Design of a charge controller based on SEPIC and buck topology using modified Incremental Conductance MPPT8th International Conference on Electrical and Computer Engineering: Advancing Technology for a Better Tomorrow, ICECE 2014, 2015pp. 824-827 Dhaka, Bangladesh, 20-22 December 2014, pp. 824-82710.1109/ICECE.2014.7026999
    [Google Scholar]
  70. Al-QuraanA. Al-QaisiM. Modelling, design and control of a standalone hybrid PV-wind micro-grid system.Energies20211416484910.3390/en14164849
    [Google Scholar]
  71. HassaniH. ZaoucheF. RekiouaD. BelaidS. RekiouaT. BachaS. Feasibility of a standalone photovoltaic/battery system with hydrogen production.J. Energy Storage20203110164410.1016/j.est.2020.101644
    [Google Scholar]
  72. MahmoudA. AlhawariM. MohammadB. SalehH. IsmailM. A gain-controlled, low-leakage dickson charge pump for energy-harvesting applications.IEEE Trans. Very Large Scale Integr. (VLSI) Syst.20192751114112310.1109/TVLSI.2019.2897046
    [Google Scholar]
  73. PathareM. ShettyV. DattaD. ValunjkarR. SawantA. PaiS. Designing and implementation of maximum power point tracking(MPPT) solar charge controller2017 International Conference on Nascent Technologies in Engineering, ICNTE 2017 - Proceedings Vashi, India, 27-28 January 2017, pp. 1-510.1109/ICNTE.2017.7947928
    [Google Scholar]
  74. TouzaniS. PrakashA.K. WangZ. AgarwalS. PritoniM. KiranM. BrownR. GrandersonJ. Controlling distributed energy resources via deep reinforcement learning for load flexibility and energy efficiency.Appl. Energy202130411773310.1016/j.apenergy.2021.117733
    [Google Scholar]
  75. ClarkeW.C. ManzieC. BrearM.J. An economic MPC approach to microgrid control2016 Australian Control Conference, AuCC 2016, 2017 pp. 276-28110.1109/AUCC.2016.7868202
    [Google Scholar]
  76. TalbiS. MabweA.M. HajjajiA.E. Control of a bidirectional dual active bridge converter for charge and discharge of a Li-Ion Battery201510.1109/IECON.2015.7392205
    [Google Scholar]
  77. ShubhraS. SinghB. Three-phase grid-interactive solar PV-battery microgrid control based on normalized gradient adaptive regularization factor neural filter.IEEE Trans. Industr. Inform.20201642301231410.1109/TII.2019.2937561
    [Google Scholar]
  78. ZengX. WangJ. Optimizing the energy management strategy for plug-in hybrid electric vehicles with multiple frequent routes.IEEE Trans. Control Syst. Technol.201927139440010.1109/TCST.2017.2768042
    [Google Scholar]
  79. MaY. WangJ. Integrated power management and aftertreatment system control for hybrid electric vehicles with road grade preview.IEEE Trans. Vehicular Technol.20176612109351094510.1109/TVT.2017.2763587
    [Google Scholar]
  80. KrishanO. SuhagS. A novel control strategy for a hybrid energy storage system in a grid‐independent hybrid renewable energy system.Int. Trans. Electr. Energy Syst.202030410.1002/2050‑7038.12262
    [Google Scholar]
  81. TusharW. ZhangJ.A. YuenC. SmithD.B. Ul HassanN. Management of renewable energy for a shared facility controller in smart grid.IEEE Access201644269428110.1109/ACCESS.2016.2592509
    [Google Scholar]
  82. XiaoS. ShadmandM.B. BalogR.S. Model predictive control of multi-string PV systems with battery back-up in a community dc microgridConference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC Tampa, FL, USA, 26-30 March 2017, pp. 1284-129010.1109/APEC.2017.7930861
    [Google Scholar]
  83. VenkatramananD. JohnV. A reconfigurable solar photovoltaic grid-tied inverter architecture for enhanced energy access in backup power applications.IEEE Trans. Ind. Electron.20206712105311054110.1109/TIE.2019.2960742
    [Google Scholar]
  84. TavakoliA. KhajehoddinS.A. SalmonJ. Control and analysis of a modular bridge for battery cell voltage balancing.IEEE Trans. Power Electron.201833119722973310.1109/TPEL.2018.2798636
    [Google Scholar]
  85. SahaC.R. HudaM.N. MumtazA. DebnathA. ThomasS. JinksR. Photovoltaic (PV) and thermo-electric energy harvesters for charging applications.Microelectronics J.20209610468510.1016/j.mejo.2019.104685
    [Google Scholar]
  86. ThaoN.G.M. UchidaK. A two-level control strategy with fuzzy logic for large-scale photovoltaic farms to support grid frequency regulation.Control Eng. Pract.201759779910.1016/j.conengprac.2016.11.006
    [Google Scholar]
  87. AnusuyadeviR. Suresh PandiarajanP. Muruga BharathiJ. Sliding mode controller based maximum power point tracking of DC to DC boost converter.International Journal of Power Electronics and Drive Systems201333321327
    [Google Scholar]
  88. GhoshS.K. RoyT.K. PramanikM.A.H. SarkarA.K. MahmudM.A. An energy management system-based control strategy for DC microgrids with dual energy storage systems.Energies20201311299210.3390/en13112992
    [Google Scholar]
  89. MadrigalG.A. CuevasK.G. HoraV. JimenezK.M. ManatoJ.N. PorlajeM.J. FortalezaB. Fuzzy logic-based maximum power point tracking solar battery charge controller with backup stand-by AC generator.Indonesian Journal of Electrical Engineering and Computer Science201916113614610.11591/ijeecs.v16.i1.pp136‑146
    [Google Scholar]
  90. NyembaW.R. ChinguwaS. MushanguriI. MbohwaC. Optimization of the design and manufacture of a solar-wind hybrid street lightProcedia Manufacturing20193528529010.1016/j.promfg.2019.05.041
    [Google Scholar]
  91. ChakrabortyS. HasanM.M. WorighiI. HegazyO. RazzakM.A. Performance evaluation of a PID-controlled synchronous buck converter based battery charging controller for solar-powered lighting system in a fishing trawler.Energies20181110272210.3390/en11102722
    [Google Scholar]
  92. IdzkowskiA. LeoniukK. WalendziukW. BudzynskiL. Monitoring and control system of charging batteries connected to a photovoltaic panelProceedings of SPIE - The International Society for Optical Engineering Wilga, Poland, 2015, pp. 51110.1117/12.2205237
    [Google Scholar]
  93. SarkarT. SharmaM. GawreS.K. A generalized approach to design the electrical power system of a solar electric vehicleConference on Electrical, Electronics and Computer Science, SCEECS 2014, 2014 Bhopal, India, 01-02 March 2014, pp. 1-610.1109/SCEECS.2014.6804490
    [Google Scholar]
  94. KumarJ. ParhyarN.R. PanjwaniM.K. KhanD. Design and performance analysis of PV grid-tied system with energy storage system.(IJECE)20211121077108510.11591/ijece.v11i2.pp1077‑1085
    [Google Scholar]
  95. RokonuzzamanM. IoT-enabled high efficiency smart solar charge controller with maximum power point tracking—Design, hardware implementation and performance testingElectronics202098126710.3390/electronics9081267
    [Google Scholar]
  96. PunnaS. ManthatiU.B. Optimum design and analysis of a dynamic energy management scheme for HESS in renewable power generation applications.SN Applied Sciences20202349510.1007/s42452‑020‑2313‑3
    [Google Scholar]
  97. E KararHaider Solar power remote monitoring and controlling using Arduino, LabVIEW and web browser2015 Power Generation Systems and Renewable Energy Technologies, PGSRET, 2015, pp. 1-410.1109/PGSRET.2015.7312240
    [Google Scholar]
  98. AranyaS.D.S. SathyamoorthiS. GandhirajR. A fuzzy logic based energy management system for a microgrid.J. Eng. Appl. Sci. (Asian Res. Publ. Netw.)201510626632669
    [Google Scholar]
  99. KekezogluB. ArikanO. ErdumanA. IsenE. DurusuA. BozkurtA. Reliability analysis of hybrid energy systems: Case study of davutpasa campusEurocon 2013 Zagreb, Croatia, 01-04 July 2013, pp. 1141-114410.1109/EUROCON.2013.6625124
    [Google Scholar]
  100. RaveendhraD. KumarB. MishraD. MankotiaM. Design of FPGA based open circuit voltage MPPT charge controller for solar PV systemProceedings of IEEE International Conference on Circuit, Power and Computing Technologies, ICCPCT 2013 Nagercoil, India, 20-21 March 2013, pp. 523-52710.1109/ICCPCT.2013.6529012
    [Google Scholar]
  101. Siddik AA. MS. Implementation of fuzzy logic controller in photovoltaic power generation using boost converter and boost inverter.(IJPEDS)20122324925610.11591/ijpeds.v2i3.334
    [Google Scholar]
  102. AtriP.K. ModiP.S. GujarN.S. Comparison of Different MPPT Control Strategies for Solar Charge Controller2020 International Conference on Power Electronics and IoT Applications in Renewable Energy and its Control, PARC 2020 Mathura, India, 28-29 February 2020, pp. 65-6910.1109/PARC49193.2020.236559
    [Google Scholar]
  103. MathewP. MadichettyS. MishraS. A multi-level control and optimization scheme for islanded PV based microgrid: A control frame work.IEEE J. Photovolt.20199382283110.1109/JPHOTOV.2019.2897579
    [Google Scholar]
  104. HegartyA. WestbrookG. GlynnD. MurrayD. OmerdicE. ToalD. A Low-cost remote solar energy monitoring system for a buoyed iot ocean observation platform2019 IEEE 5th World Forum on Internet of Things (WF-IoT), 2019 Limerick, Ireland, 15-18 April 2019, pp. 386-39110.1109/WF‑IoT.2019.8767311
    [Google Scholar]
  105. AbbassiA. DamiM.A. JemliM. Statistical characterization of capacity of Hybrid Energy Storage System (HESS) to assimilate the fast PV-Wind power generation fluctuationsProceedings of International Conference on Advanced Systems and Electric Technologies, IC_ASET 2017 Hammamet, Tunisia, 14-17 January 2017, pp. 467-47210.1109/ASET.2017.7983738
    [Google Scholar]
  106. PodderA.K. AhmedK. RoyN.K. BiswasP.C. Design and simulation of an independent solar home system with battery backup4th International Conference on Advances in Electrical Engineering, ICAEE 2017, 2017pp. 427-431 Dhaka, Bangladesh, 28-30 September 2017, pp. 427-43110.1109/ICAEE.2017.8255394
    [Google Scholar]
  107. El ShenawyE.T. HegazyA.H. AbdellatefM. Design and optimization of stand-alone PV system for Egyptian rural communities.Int. J. Appl. Eng. Res.201712201043310446
    [Google Scholar]
  108. KanakasabapathyP. GopalV.K. AbhijithV. MohanA. ReddyE.H.S. Energy management and control of solar aided UPSProceedings of IEEE International Conference on Technological Advancements in Power and Energy, TAP Energy 2015 Kollam, India, 24-26 June 2015, pp. 363-36810.1109/TAPENERGY.2015.7229646
    [Google Scholar]
  109. MamunK.A. IslamF.R. HaqueR. ChandA.A. PrasadK.A. GoundarK.K. PrakashK. MaharajS. Systematic modeling and analysis of on-board vehicle integrated novel hybrid renewable energy system with storage for electric vehicles.Sustainability (Basel)2022145253810.3390/su14052538
    [Google Scholar]
  110. GholinejadH.R. AdabiJ. MarzbandM. Hierarchical energy management system for home-energy-hubs considering plug-in electric vehicles.IEEE Trans. Ind. Appl.20225855582559210.1109/TIA.2022.3158352
    [Google Scholar]
  111. NagaiahM. SekharK.C. Analysis of fuzzy logic controller based bi-directional DC-DC converter for battery energy management in hybrid solar/wind micro grid system.International Journal of Electrical and Computer Engineering (IJECE)20201032271228410.11591/ijece.v10i3.pp2271‑2284
    [Google Scholar]
  112. KumarN.K. GandhiV.I. Implementation of fuzzy logic controller in power system applications.J. Intell. Fuzzy Syst.20193654115412610.3233/JIFS‑169971
    [Google Scholar]
  113. VermaA. SinghB. Multi-objective reconfigurable three phase off-board charger for EV2017 IEEE Transportation Electrification Conference (ITEC-India) Pune, India, 13-15 December 2017, pp. 1-610.1109/ITEC‑India.2017.8333838
    [Google Scholar]
  114. ChengL. AcunaP. AguileraR.P. JiangJ. FlectherJ. BaierC. Model predictive control for energy management of a hybrid energy storage system in light rail vehicles2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG) Cadiz, Spain, 04-06 April 2017, pp. 683-68810.1109/CPE.2017.7915255
    [Google Scholar]
  115. HariniK. SyamaS. Simulation and analysis of incremental conductance and Perturb and Observe MPPT with DC-DC converter topology for PV arrayProceedings of 2015 IEEE International Conference on Electrical, Computer and Communication Technologies, ICECCT 2015 Coimbatore, India, 05-07 March 2015, pp. 1-510.1109/ICECCT.2015.7225989
    [Google Scholar]
  116. NkambuleM. S. HasanA. N. AliA. MPPT under partial shading conditions based on Perturb & Observe and Incremental Conductance2019 11th International Conference on Electrical and Electronics Engineering (ELECO) Bursa, Turkey, 28-30 November 2019, pp. 85-9010.23919/ELECO47770.2019.8990426
    [Google Scholar]
  117. KamranM. MudassarM. FazalM.R. AsgharM.U. BilalM. AsgharR. Implementation of improved Perturb & Observe MPPT technique with confined search space for standalone photovoltaic system.JKSU-ES202032743244110.1016/j.jksues.2018.04.006
    [Google Scholar]
  118. SarikaE.P. JacobJ. MohammedS. PaulS. A novel hybrid maximum power point tracking technique with zero oscillation based On P&O algorithm.IJRER202010v10i41962197310.20508/ijrer.v10i4.11502.g8096
    [Google Scholar]
  119. SonamS.K. HarikaP. A Fuzzy Logic based MPPT Method for Solar Power GenerationInternational Conference on Intelligent Computing and Control Systems ICICCS 2017, Madurai, India, 15-16 June 2017, pp. 1182-1186
    [Google Scholar]
  120. IshaqueK. SalamZ. AmjadM. MekhilefS. An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation.IEEE Trans. Power Electron.20122783627363810.1109/TPEL.2012.2185713
    [Google Scholar]
  121. OliveiraF.M. Da SilvaS.A.O. DurandF.R. SampaioL.P. Application of PSO method for maximum power point extraction in photovoltaic systems under partial shading conditions2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC) Fortaleza, Brazil, 29 November 2015 - 02 December 2015, pp. 1-610.1109/COBEP.2015.7420175
    [Google Scholar]
  122. AvilaL. De PaulaM. TrimboliM. CarluchoI. Deep reinforcement learning approach for MPPT control of partially shaded PV systems in smart grids.Appl. Soft Comput.20209710671110.1016/j.asoc.2020.106711
    [Google Scholar]
  123. PanW. CuiC. ChenH. Research on photovoltaic MPPT technique based on deep reinforcement learning under varying irradiance levels2023 8th International Conference on Power and Renewable Energy (ICPRE) Shanghai, China, 22-25 September 2023, pp. 1794-179910.1109/ICPRE59655.2023.10353820
    [Google Scholar]
  124. PanggabeanJ. SutisnaN. SyafalniI. AdionoT. Comparison of MPPT based on Deep Reinforcement Learning by DQN, DDPG and TD32023 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) Taipei, Taiwan, 31 October 2023 - 03 November 2023, pp. 261-26610.1109/APSIPAASC58517.2023.10317341
    [Google Scholar]
  125. PhanB.C. LaiY.C. LinC.E. A deep reinforcement learning-based MPPT control for PV systems under partial shading condition.Sensors (Basel)20202011303910.3390/s2011303932471144
    [Google Scholar]
  126. HuJ. LimB-H. TianX. WangK. XuD. ZhangF. ZhangY. A comprehensive review of Artificial Intelligence applications in the photovoltaic systems.CAAI Artificial Intelligence Research202439150031915003110.26599/AIR.2024.9150031
    [Google Scholar]
  127. SystemsP. KoadR.B.A. ZobaaA.F. Comparison between the conventional methods and PSO based MPPT algorithm for.Core20191212850
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965347847241122182835
Loading
/content/journals/raeeng/10.2174/0123520965347847241122182835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test