Skip to content
2000
image of WITHDRAWN: An Enhanced Segmentation Method Using a Fuzzy Clustering Technique for Colored Satellite Images

Abstract

This article has been withdrawn at the request of the authors due to a conflict of interest among them that was not disclosed at the time of submission. After careful consideration, the publisher has determined that this undisclosed conflict compromises the integrity of the publication.
Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.
The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php
BENTHAM SCIENCE DISCLAIMER:
It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965340126241024120027
2025-01-06
2025-07-04
Loading full text...

Full text loading...

/deliver/fulltext/raeeng/10.2174/0123520965340126241024120027/BMS-EENG-2024-HT55-5903-5.html?itemId=/content/journals/raeeng/10.2174/0123520965340126241024120027&mimeType=html&fmt=ahah

References

  1. Asokan A. Anitha J. Ciobanu M. Gabor A. Naaji A. Hemanth D.J. Image processing techniques for analysis of satellite images for historical maps classification—An overview. Appl. Sci. 2020 10 12 4207 4218 10.3390/app10124207
    [Google Scholar]
  2. Giri V. Sengupta S. Satellite image enhancement and restoration. Lect. Not. Data Eng. Commu. Tech. 2019 46 1 252 258
    [Google Scholar]
  3. Sharma L. Sengupta S. Kumar B. An improved technique for enhancement of satellite image. J. Phys. Conf. Ser. 2021 1714 1 012051 10.1088/1742‑6596/2267/1/012051
    [Google Scholar]
  4. Haralick R.M. Campbell J.B. Wang S. Automatic inference of elevation and drainage models from a satellite image. Proc. IEEE 1985 73 6 1040 1053 10.1109/PROC.1985.13235
    [Google Scholar]
  5. Watanabe M. Osaki E. Horii S. Kageyama S. A new recursive estimation method for digital image restoration filter and its applications. IEEE International Conference on Acoustics, Speech, and Signal Processing Tokyo, Japan 1986 8 1 2475 2478 10.1109/ICASSP.1986.1169278
    [Google Scholar]
  6. Campbell W. Weaks M. An inexpensive interactive processing system for NOAA satellite images. Part. Mar. Int. 1988 4 1 1626 1634
    [Google Scholar]
  7. Cheng B. Riveros V.J. Jabbour K. Meyer W. Classification of storms based on their boundaries and cloud top temperatures using satellite imagery. Proceedings of the 32nd Midwest Symposium on Circuits and Systems IEEE 1989 1 1 337 340
    [Google Scholar]
  8. Desachy J. A knowledge-based system for satellite image interpretation. Proceedings of International Conference on Pattern Recognition The Hague, Netherlands 1992 198 201 10.1109/ICPR.1992.201540
    [Google Scholar]
  9. Velazco R. Cheynet P. Muller J.D. Ecoffet R. Buchner S. Artificial neural network robustness for on-board satellite image processing: Results of upset simulations and ground tests. IEEE Trans. Nucl. Sci. 1997 44 6 2337 2344 10.1109/23.659057
    [Google Scholar]
  10. Simhadri K.K. Iyengar S.S. Holyer R.J. Lybanon M. Zachary J.M. Wavelet-based feature extraction from oceanographic images. IEEE Trans. Geosci. Remote Sens. 1998 36 3 767 778 10.1109/36.673670
    [Google Scholar]
  11. Masson P. Pieczynski W. SEM algorithm and unsupervised statistical segmentation of satellite images. IEEE Trans. Geosci. Remote Sens. 1993 31 3 618 633 10.1109/36.225529
    [Google Scholar]
  12. Binaghi E. Madella P. Montesano G.M. Rampini A. Fuzzy contextual classification of multisource remote sensing images. IEEE Trans. Geosci. Remote Sens. 1997 35 2 326 340 10.1109/36.563272
    [Google Scholar]
  13. Maitre H. Pinciroli M. Fractal characterization of a hydrological basin using SAR satellite images. IEEE Trans. Geosci. Remote Sens. 1999 37 1 175 181 10.1109/36.739152
    [Google Scholar]
  14. Moore T.S. Campbell J.W. Feng H. A fuzzy logic classification scheme for selecting and blending satellite ocean color algorithms. IEEE Trans. Geosci. Remote Sens. 2001 39 8 1764 1776 10.1109/36.942555
    [Google Scholar]
  15. Du Y. Guindon B. Cihlar J. Haze detection and removal in high resolution satellite image with wavelet analysis. IEEE Trans. Geosci. Remote Sens. 2002 40 1 210 217 10.1109/36.981363
    [Google Scholar]
  16. Saha S. Bandyopadhyay S. Application of a new symmetry-based cluster validity index for satellite image segmentation. IEEE Geosci. Remote Sens. Lett. 2008 5 2 166 170 10.1109/LGRS.2008.915595
    [Google Scholar]
  17. Holowczak R.D. Artigas F.J. Cho J.S. Stone H.S. An experimental study on content-based image classification for satellite image databases. IEEE Trans. Geosci. Remote Sens. 2002 40 6 1338 1347 10.1109/TGRS.2002.800751
    [Google Scholar]
  18. Cain S. Bayesian-based subpixel brightness temperature estimation from multichannel infrared GOES radiometer data. IEEE Trans. Geosci. Remote Sens. 2004 42 1 188 201 10.1109/TGRS.2003.815397
    [Google Scholar]
  19. Marcal A.R.S. Castro L. Hierarchical clustering of multispectral images using combined spectral and spatial criteria. IEEE Geosci. Remote Sens. Lett. 2005 2 1 59 63 10.1109/LGRS.2004.839646
    [Google Scholar]
  20. Ma J. Antoniadis A. Dimet L.F-X. Curvelet-based snake for multiscale detection and tracking of geophysical fluids. IEEE Trans. Geosci. Remote Sens. 2006 44 12 3626 3638 10.1109/TGRS.2006.885017
    [Google Scholar]
  21. Hu H. Fuzzy image region segmentation method based on non-robust feature fitting. Rec. Adv. Elect. Elect. Eng. 2016 9 1 39 43
    [Google Scholar]
  22. Goel S. Meena T. Different approaches for missing data handling in fuzzy clustering: A review. Rec. Adv. Elect. Elect. Eng. 2020 13 6 833 846
    [Google Scholar]
  23. Seydi S.T. Boueshagh M. Namjoo F. Minouei S.M. Nikraftar Z. Amani M. A hyperspectral change detection (HCD-Net) framework based on double stream convolutional neural networks and an attention module. Remote Sens. 2024 16 5 827 10.3390/rs16050827
    [Google Scholar]
  24. Sina T. Theja T. Trivedi A. Sense less, generate more: Pre-training lidar perception with masked autoencoders for ultra-efficient 3d sensing. Comp. Vis. Pat. Rec. 2024 1 6
    [Google Scholar]
  25. Safari K Imani F. A novel fuzzy-belbic structure for the adaptive control of satellite attitude.Advanced materials: Design, processing, characterization and applications. Adv. Aeros. Technol. 2023 3 1 256
    [Google Scholar]
  26. Molinier M. Laaksonen J. Hame T. Detecting man-made structures and changes in satellite imagery with a content-based information retrieval system built on self-organizing maps. IEEE Trans. Geosci. Remote Sens. 2007 45 4 861 874 10.1109/TGRS.2006.890580
    [Google Scholar]
  27. Naz S.M. Irshad H. Image segmentation using fuzzy clustering: A survey. International Conference on Emerging Technologies Islamabad, Pakistan 2010 181 186 10.1109/ICET.2010.5638492
    [Google Scholar]
  28. Sengupta S. Mittal N. Analysis of various techniques of feature extraction on skin lesion images. Proceedings of 6th International Conference on Reliability, Infocom Technologies and Optimization. Trends and Future Directions. Noida, India 2017 651 656 10.1109/ICRITO.2017.8342508
    [Google Scholar]
  29. Mittal A. Soundararajan R. Bovik A.C. Making a “Completely Blind” image quality analyzer. IEEE Signal Process. Lett. 2013 20 3 209 212 10.1109/LSP.2012.2227726
    [Google Scholar]
  30. Sharma L. Garg P.K. Deep learning in internet of things for next generation healthcare. 1st ed Chapman and Hall/CRC New York 2024 310 10.1201/9781003451846
    [Google Scholar]
  31. Sharma L. Garg P.K. Technological prospects and social applications of society 5.0. 1st ed Chapman and Hall/CRC New York 2023 278 10.1201/9781003324720
    [Google Scholar]
  32. Sharma L. Carpenter M. Role of image processing in artificial intelligence and internet of things. Computer vision and internet of things 1st ed Taylor and Francis, Boca Raton London , New York 2022 11 10.1201/9781003244165
    [Google Scholar]
  33. Sharma L. Garg P.K. Artificial intelligence. Technologies, applications, and challenges. 1st ed Chapman and Hall/CRC New York 2021 264 10.1201/9781003140351
    [Google Scholar]
  34. Hu K. Chen Z. Kang H. Tang Y. 3D vision technologies for a self-developed structural external crack damage recognition robot. Autom. Construct. 2024 159 105262 105262 10.1016/j.autcon.2023.105262
    [Google Scholar]
  35. Tang Y. Huang Z. Chen Z. Chen M. Zhou H. Zhang H. Sun J. Novel visual crack width measurement based on backbone double-scale features for improved detection automation. Eng. Struct. 2023 274 115158 115158 10.1016/j.engstruct.2022.115158
    [Google Scholar]
  36. Abdi C. Eshan K. Fathi A. Baffle-enhanced scour mitigation in rectangular and trapezoidal piano key weirs: An experimental and machine learning investigation. Wat. Eros. Sedi. Trans. 2024 16 15 2133
    [Google Scholar]
  37. Rahiminasab A. Tirandazi P. Ebadi M.J. Ahmadian A. Salimi M. An energy-aware method for selecting cluster heads in wireless sensor networks. Appl. Sci. 2020 10 21 7886 10.3390/app10217886
    [Google Scholar]
  38. Sen D. Pal S.K. Generalized rough sets, entropy, and image ambiguity measures. IEEE Trans. Syst. Man Cybern. B Cybern. 2009 39 1 117 128 10.1109/TSMCB.2008.2005527 19150762
    [Google Scholar]
  39. Tsai D.Y. Lee Y. Matsuyama E. Information entropy measure for evaluation of image quality. J. Digit. Imaging 2008 21 3 338 347 10.1007/s10278‑007‑9044‑5 17577596
    [Google Scholar]
  40. Silva L.E.V. Filho A.C.S.S. Fazan V.P.S. Felipe J.C. Junior L.O.M. Two-dimensional sample entropy: assessing image texture through irregularity. Biomed. Phys. Eng. Express 2016 2 4 045002 10.1088/2057‑1976/2/4/045002
    [Google Scholar]
  41. Sparavigna A.C. Entropy in image analysis. Entropy 2019 21 5 502 10.3390/e21050502 33267216
    [Google Scholar]
  42. Sengupta S. Mittal N. Modi M. Improved skin lesion edge detection method using ant colony optimization. Skin Res. Technol. 2019 25 6 srt.12744 10.1111/srt.12744 31228313
    [Google Scholar]
  43. Sengupta S. Mittal N. Modi M. Improved skin lesions detection using color space and artificial intelligence techniques. J. Dermatolog. Treat. 2020 31 5 511 518 10.1080/09546634.2019.1708239 31865822
    [Google Scholar]
  44. Sengupta S. Negi A. Comparative analysis of contrast enhancement techniques for MRI images. Proceeding of the International Conference on Computer Networks, Big Data and IoT Springer, Cham. 2020 49 290 296 10.1007/978‑3‑030‑43192‑1_33
    [Google Scholar]
  45. Seydi S.T. Hasanlou M. Amani M. Huang W. Oil spill detection based on multiscale multidimensional residual CNN for optical remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021 14 10941 10952 10.1109/JSTARS.2021.3123163
    [Google Scholar]
  46. Seydi S.T. Amani M. Ghorbanian A. A dual attention convolutional neural network for crop classification using time-series Sentinel-2 imagery. Remote Sens. 2022 14 3 498 10.3390/rs14030498
    [Google Scholar]
  47. Seydi S.T. Sadegh M. Improved burned area mapping using monotemporal Landsat-9 imagery and convolutional shift-transformer. Measurement 2023 216 112961
    [Google Scholar]
  48. Boueshagh M. Hasanlou M. Estimating water level in the Urmia Lake using satellite data: A machine learning approach. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2019 XLII-4/W18 219 226
    [Google Scholar]
  49. Seydi S.T. Saeidi V. Kalantar B. Ueda N. Halin A.A. Fire-net: A deep learning framework for active forest fire detection. J. Sens. 2022 2022 1 1 14 10.1155/2022/8044390
    [Google Scholar]
  50. Safari K. Imani F. A novel fuzzy-BELBIC structure for the adaptive control of satellite attitude. Proceedings of the ASME 2022 International Mechanical Engineering Congress and Exposition Columbus, Ohio, USA October, 30–November, 3 2022 3 V003T04A033 10.1115/IMECE2022‑96034
    [Google Scholar]
  51. Fang Z. Qajar J. Safari K. Hosseini S. Khajehzadeh M. Nehdi M.L. Application of non-destructive test results to estimate rock mechanical characteristics—A case study. Minerals 2023 13 4 472 10.3390/min13040472
    [Google Scholar]
  52. Seydi S.T. Akhoondzadeh M. Amani M. Mahdavi S. Wildfire damage assessment over australia using sentinel-2 imagery and modis land cover product within the google earth engine cloud platform. Remote Sens. 2021 13 2 220 10.3390/rs13020220
    [Google Scholar]
  53. Burke M. Driscoll A. Lobell D.B. Ermon S. Using satellite imagery to understand and promote sustainable development. Science 2021 371 6535 eabe8628 10.1126/science.abe8628 33737462
    [Google Scholar]
  54. Basu S. Ganguly S. Mukhopadhyay S. DiBiano R. Karki M. Nemani R. Deepsat: A learning framework for satellite imagery. Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems New York, NY, USA 2015 37 1 10 10.1145/2820783.2820816
    [Google Scholar]
  55. Jean N. Burke M. Xie M. Davis W.M. Lobell D.B. Ermon S. Combining satellite imagery and machine learning to predict poverty. Science 2016 353 6301 790 794 10.1126/science.aaf7894 27540167
    [Google Scholar]
  56. Doshi J. Basu S. Pang G. From satellite imagery to disaster insights. arXiv 2018 1812.07033
    [Google Scholar]
  57. Harvey J.T. Estimating census district populations from satellite imagery: Some approaches and limitations. Int. J. Remote Sens. 2002 23 10 2071 2095 10.1080/01431160110075901
    [Google Scholar]
  58. Pesaresi M. Benediktsson J.A. A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 2001 39 2 309 320 10.1109/36.905239
    [Google Scholar]
  59. Verpoorter C. Kutser T. Seekell D.A. Tranvik L.J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 2014 41 18 6396 6402 10.1002/2014GL060641
    [Google Scholar]
  60. Albert A. Kaur J. Gonzalez M.C. Using convolutional networks and satellite imagery to identify patterns in urban environments at a large scale. Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining New York, NY, USA 2017 1357 1366 10.1145/3097983.3098070
    [Google Scholar]
  61. Zhang L. Zhang L. Bovik A.C. A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 2015 24 8 2579 2591 10.1109/TIP.2015.2426416 25915960
    [Google Scholar]
  62. Ganesan P. Sathish B.S. Vasanth K. Vadivel M. Sivakumar V.G. Thulasiprasad S. Color image quality assessment based on full reference and blind image quality measures. Proceedings of the 8th ICIECE 2019 Springer, Singapore 2020 449 457 10.1007/978‑981‑15‑3172‑9_43
    [Google Scholar]
  63. Varga D. No-reference image quality assessment using the statistics of global and local image features. Electronics 2023 12 7 1615 10.3390/electronics12071615
    [Google Scholar]
  64. Mukherjee S. Valenzise G. Cheng I. Potential of deep features for opinion-unaware, distortion-unaware, and no-reference image quality assessment. International conference on smart multimedia McDaniel T. Berretti S. Curcio I. Basu A. Cham Springer International Publishing 2019 12015 87 95
    [Google Scholar]
  65. Ma D. Wen H. Li X. Xie T. Li X. A sub‐regional compression method for greenhouse images based on CNN image quality assessment. J. Food Process. Preserv. 2022 46 11 e16992 10.1111/jfpp.16992
    [Google Scholar]
  66. Wang Z. Simoncelli E.P. Reduced-reference image quality assessment using a wavelet-domain natural image statistic model. Human vision and electronic imaging X. SPIE 2005 5666 149 159 10.1117/12.597306
    [Google Scholar]
  67. Chandler D.M. Chandler D.M. Most apparent distortion: Full-reference image quality assessment and the role of strategy. J. Electron. Imaging 2010 19 1 011006 011006 10.1117/1.3267105
    [Google Scholar]
  68. Sheikh H.R. Sabir M.F. Bovik A.C. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 2006 15 11 3440 3451 10.1109/TIP.2006.881959 17076403
    [Google Scholar]
  69. Park H.J. Har D.H. Digital image quality assessment based on standard normal deviation. Int. J. Cont. 2015 11 2 20 30 10.5392/IJoC.2015.11.2.020
    [Google Scholar]
  70. Mittal A. Moorthy A.K. Bovik A.C. No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 2012 21 12 4695 4708 10.1109/TIP.2012.2214050 22910118
    [Google Scholar]
  71. Lal A. Chiang Z.D. Yakovenko N. Duarte F.M. Israeli J. Buenrostro J.D. Deep learning-based enhancement of epigenomics data with AtacWorks. Nat. Commun. 2021 12 1 1507 10.1038/s41467‑021‑21765‑5 33686069
    [Google Scholar]
  72. Kaur A. Kaur G. A review on image enhancement with deep learning approach. ACCENTS Trans. Imag. Proc. Comp. Vis. 2018 4 11 16 20 10.19101/TIPCV.2018.411002
    [Google Scholar]
  73. Li G. Yang Y. Qu X. Cao D. Li K. A deep learning based image enhancement approach for autonomous driving at night. Knowl. Base. Syst. 2021 213 106617 10.1016/j.knosys.2020.106617
    [Google Scholar]
  74. Tsagkatakis G. Aidini A. Fotiadou K. Giannopoulos M. Pentari A. Tsakalides P. Survey of deep-learning approaches for remote sensing observation enhancement. Sensors 2019 19 18 3929 10.3390/s19183929 31547250
    [Google Scholar]
  75. Chen Z. Pawar K. Ekanayake M. Pain C. Zhong S. Egan G.F. Deep learning for image enhancement and correction in magnetic resonance imaging—state-of-the-art and challenges. J. Digit. Imaging 2022 36 1 204 230 10.1007/s10278‑022‑00721‑9 36323914
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965340126241024120027
Loading
/content/journals/raeeng/10.2174/0123520965340126241024120027
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test