Skip to content
2000
image of Direct Power Control of BDFRG Based on Novel Integral Sliding Mode Control

Abstract

Introduction

In grid-connected operation control, the Brushless Doubly-Fed Reluctance Generator (BDFRG) faces issues with strong parameter coupling and weak disturbance rejection.

Methods

This paper proposes a direct power control strategy with a novel integral sliding mode controller. By analyzing the correlation between the voltages on the stator control winding side and the active/reactive power, a direct power control model is derived from the d-q rotating coordinate system, achieving decoupling control of active and reactive power. An integral sliding surface, along with a smoothing function, is introduced to improve the switching behavior as the system approaches the sliding surface. Stability ranges for the parameters Kd and Kq are determined by constructing a Lyapunov function.

Results

Results from simulations and hardware-in-the-loop (HIL) experiments demonstrate that the direct power control strategy with a novel integral sliding mode controller reduces chattering and improves the static and dynamic performance of the system, compared to conventional sliding mode control strategy.

Conclusion

The proposed direct power control strategy not only addresses the chattering issues during sliding mode switching but also ensures system stability and efficiency through optimized parameter adjustment.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965321358240919065812
2024-10-03
2024-10-16
Loading full text...

Full text loading...

References

  1. Mahdavi M. Jurado F. Schmitt K. Comparing biomass electricity generation from cow manure with photovoltaic and wind electric energy generation. 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET) 19-21 May 2023, London, United Kingdom, 2023. 10.1109/GlobConET56651.2023.10150075
    [Google Scholar]
  2. Nkundibiza A. Moses P. M. Design and optimization of hybrid electrical energy storage system for grid connected wind energy. 2022 IEEE PES/IAS PowerAfrica 22-26 August 2022, Kigali, Rwanda, 2022. 10.1109/PowerAfrica53997.2022.9905250
    [Google Scholar]
  3. Li B. Mo X. Chen B. Direct control strategy of real-time tracking power generation plan for wind power and battery energy storage combined system. IEEE Access 2019 7 147169 147178 10.1109/ACCESS.2019.2946453
    [Google Scholar]
  4. Homoud L.A. Davis K. Distributed energy resources: A review, modeling, and cyber-physical potential of solar and wind generation. 2023 IEEE Texas Power and Energy Conference (TPEC) 13-14 February 2023, College Station, TX, USA, 2023. 10.1109/TPEC56611.2023.10078505
    [Google Scholar]
  5. Wang W. Liu L. Liu J. Chen Z. Energy management and optimization of vehicle-to-grid systems for wind power integration. CSEE J. Power Energy Syst. 2021 7 1 172 180 10.17775/CSEEJPES.2020.01610
    [Google Scholar]
  6. Jimmy G. McDonald A. Carroll J. Energy yield and operations and maintenance costs of parallel wind turbine powertrains. IEEE Trans. Sustain. Energy 2020 11 2 674 681 10.1109/TSTE.2019.2902517
    [Google Scholar]
  7. Ahmed S.D. Al-Ismail F.S.M. Shafiullah M. Al-Sulaiman F.A. El-Amin I.M. Grid integration challenges of wind energy: A review. IEEE Access 2020 8 10857 10878 10.1109/ACCESS.2020.2964896
    [Google Scholar]
  8. Ali S.W. Sadiq M. Terriche Y. Naqvi S.A.R. Hoang L.Q.N. Mutarraf M.U. Hassan M.A. Yang G. Su C-L. Guerrero J.M. Offshore wind farm-grid integration: A review on infrastructure, challenges, and grid solutions. IEEE Access 2021 9 102811 102827 10.1109/ACCESS.2021.3098705
    [Google Scholar]
  9. Malik M.Z. Baloch M.H. Ali B. Khahro S.H. Soomro A.M. Abbas G. Zhang S. Power supply to local communities through wind energy integration: An opportunity through China-Pakistan Economic Corridor (CPEC). IEEE Access 2021 9 66751 66768 10.1109/ACCESS.2021.3076181
    [Google Scholar]
  10. Abbaticchio E. Sirotkin E. Miroshnichenko A. Transmission of electric energy from wind power plants to the network: Patent search. 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) 01-04 October 2019, Vladivostok, Russia, 2019. 10.1109/FarEastCon.2019.8934250
    [Google Scholar]
  11. Su J. Chen Y. Kang Y. A comprehensive study on model simplification and parameter estimation of brushless doubly fed standalone generation system. IEEE Trans. Ind. Electron. 2024 71 4 3405 3417 10.1109/TIE.2023.3273271
    [Google Scholar]
  12. Jiang Y. Zhang J. Li T. A segmented brushless doubly fed generator for wind power applications. IEEE Transac. Magnet. 2018 54 3 2762827 10.1109/TMAG.2017.2762827
    [Google Scholar]
  13. Liu H. Zhang F. Dai R. Air-Gap magnetic field analysis of dual-stator brushless doubly-fed generator based on analytic method. 2019 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific) 08-10 May 2019, Seogwipo, Korea (South), 2019. 10.1109/ITEC‑AP.2019.8903775
    [Google Scholar]
  14. Zhou Y. Wei Z. Chen X. Wang X. Hu G. Ye C. Design and control of the double side variable frequency based brushless doubly-fed generator system. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC) 28-30 May 2021, Wuhan, China, 2021. 10.1109/CIEEC50170.2021.9510963
    [Google Scholar]
  15. Liu Y. Hussien M.G. Xu W. Shao S. Rashad E.M. Recent advances of control technologies for brushless doubly-fed generators. IEEE Access 2021 9 123324 123347 10.1109/ACCESS.2021.3110373
    [Google Scholar]
  16. Hsieh M. -F. Chang Y. -H. Dorrell D. G. Design and analysis of brushless doubly fed reluctance machine for renewable energy applications. IEEE Transac. Magnet. 2016 52 7 2537140 10.1109/TMAG.2016.2537140
    [Google Scholar]
  17. Zhang F. Wang H. Yu S. Design and analysis of 10MW brushless doubly fed generator for offshore wind turbine. 2016 19th International Conference on Electrical Machines and Systems (ICEMS) 13-16 November 2016, Chiba, Japan, 2016.
    [Google Scholar]
  18. Wang H. Zhang F. Yu S. Lin M. Wang D. Rotor optimization design of brushless doubly fed generator for offshore wind turbine. 2017 IEEE Power and Energy Conference at Illinois (PECI) 23-24 February 2017, Champaign, IL, USA, 2017. 10.1109/PECI.2017.7935725
    [Google Scholar]
  19. Kiran K. Das S. Singh D. Model predictive field oriented speed control of brushless doubly-fed reluctance motor drive. 2018 International Conference on Power, Instrumentation, Control and Computing (PICC) 18-20 January 2018, Thrissur, India, 2018. 10.1109/PICC.2018.8384760
    [Google Scholar]
  20. Yassin E.F. Yassin H.M. Hemeida A. Hallouda M.M. Real time simulation of brushless doubly fed reluctance generator driven wind turbine considering iron saturation. IEEE Access 2022 10 9925 9934 10.1109/ACCESS.2022.3144600
    [Google Scholar]
  21. Yassin E.F. Yassin H.M. Hallouda M.M. Control Strategies for Brushless Doubly Fed Reluctance Generator in WECS: Review. 2021 IEEE International Conference in Power Engineering Application (ICPEA) 08-09 March 2021, Malaysia, 2021. 10.1109/ICPEA51500.2021.9417838
    [Google Scholar]
  22. Taluo T. Ristić L. Jovanović M. Steady-State Analysis of DFIGs and BDFRGs. 2022 7th International Conference on Environment Friendly Energies and Applications (EFEA). 14-16 December 2022, Bagatelle Moka MU, Mauritius, 2022. 10.1109/EFEA56675.2022.10063805
    [Google Scholar]
  23. Song W.K. Dorrell D.G. Implementation of improved direct torque control method of brushless doubly-fed reluctance machines for wind turbine. 2014 IEEE International Conference on Industrial Technology (ICIT). 26 February 2014 - 01 March 2014, Busan, Korea (South), 2014. 10.1109/ICIT.2014.6894992
    [Google Scholar]
  24. Betz R.E. Comparison of rotor side converter protection for DFIGs and brushless doubly fed reluctance machines under fault conditions. 2021 23rd European Conference on Power Electronics and Applications (EPE'21 ECCE Europe). 06-10 September 2021, Ghent, Belgium, 2021. 10.23919/EPE21ECCEEurope50061.2021.9570194
    [Google Scholar]
  25. Taluo T. Ristić L. Brković B. Terzić M. Design and performance study of a large-scale brushless doubly fed reluctance generator. 2022 7th International Conference on Environment Friendly Energies and Applications (EFEA). 14-16 December 2022, Bagatelle Moka MU, Mauritius, 2022. 10.1109/EFEA56675.2022.10063737
    [Google Scholar]
  26. Aghakashkooli M.R. Jovanovic M.G. A sensorless parameter independent controller for brushless doubly-fed reluctance wind generators. 2023 IEEE 14th International Conference on Power Electronics and Drive Systems (PEDS). Montreal, QC, Canada, 2023. 10.1109/PEDS57185.2023.10246472
    [Google Scholar]
  27. Zeng Y. Cheng M. Wei X. Zhang G. Grid-connected and standalone control for dual-stator brushless doubly fed induction generator. IEEE Trans. Ind. Electron. 2021 68 10 9196 9206 10.1109/TIE.2020.3028824
    [Google Scholar]
  28. Xu W. Hussien M.G. Liu Y. Islam M.R. Allam S.M. Sensorless voltage control schemes for brushless doubly-fed induction generators in stand-alone and grid-connected applications. IEEE Trans. Energ. Convers. 2020 35 4 1781 1795 10.1109/TEC.2020.2999629
    [Google Scholar]
  29. Liang S. Jin S. Shi L. Research on control strategy of grid-connected brushless doubly-fed wind power system based on virtual synchronous generator control. CES Transac. Electric. Mach. Syst. 2022 6 4 404 412 10.30941/CESTEMS.2022.00052
    [Google Scholar]
  30. Zhang F. Zhu L. Jin S. Cao W. Wang D. Kirtley J.L. Developing a new SVPWM control strategy for open-winding brushless doubly fed reluctance generators. IEEE Trans. Ind. Appl. 2015 51 6 4567 4574 10.1109/TIA.2015.2461614
    [Google Scholar]
  31. Mohammed O.M.E. Liu Y. Xu W. Zhao Y. Overview of control strategies for improving power quality of brushless doubly fed generators. IEEE Trans. Power Electron. 2024 39 8 10118 10137 10.1109/TPEL.2024.3399194
    [Google Scholar]
  32. Zhu L. Li Y. Chen A. Cheng W. Wang Y. Ademi S. Research on direct power control for open-winding brushless doubly-fed reluctance wind power generator with fault-tolerant strategy. 2019 22nd International Conference on Electrical Machines and Systems (ICEMS) 11-14 August 2019, Harbin, China, 2019. 10.1109/ICEMS.2019.8922192
    [Google Scholar]
  33. Jin S. Li M. Zhu L. Zhang F. Direct power control strategy on grid and machine sides of open-winding brushless doubly-fed wind power generator system. 2017 20th International Conference on Electrical Machines and Systems (ICEMS) 11-14 August 2017, Sydney, NSW, Australia, 2017. 10.1109/ICEMS.2017.8056317
    [Google Scholar]
  34. Hu J. Zhu J. Dorrell D.G. A new control method of cascaded brushless doubly fed induction generators using direct power control. IEEE Trans. Energ. Convers. 2014 29 3 771 779 10.1109/TEC.2014.2325046
    [Google Scholar]
  35. Zhu L. Zhang F. Jin S. Ademi S. Su X. Cao W. Optimized power error comparison strategy for direct power control of the open-winding brushless doubly fed wind power generator. IEEE Trans. Sustain. Energy 2019 10 4 2005 2014 10.1109/TSTE.2018.2877439
    [Google Scholar]
  36. Yang X. Bai J. Qin Y. Zhao J. Direct power control of a brushless doubly-fed induction generator under an unbalanced power grid. 2023 2nd Asia Conference on Electrical, Power and Computer Engineering (EPCE) 22-24 April 2023, Xiamen, China, 2023. 10.1109/EPCE58798.2023.00026
    [Google Scholar]
  37. Jin S. Shi L. Zhu L. Dong T. Zhang F. Cao W. Performance comparison of direct power control for brushless doubly-fed wind power generator with different control winding structure. 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific) 01-04 June 2016, Busan, 2016. 10.1109/ITEC‑AP.2016.7512959
    [Google Scholar]
  38. Zhu L. Direct power control with common mode voltage elimination for open-winding brushless doubly-fed wind power generators. 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific) Busan, Korea (South), 2016. 10.1109/ITEC‑AP.2016.7512946
    [Google Scholar]
  39. Sadeghi R. Madani S.M. Ataei M. Agha Kashkooli M.R. Ademi S. Super-twisting sliding mode direct power control of a brushless doubly fed induction generator. IEEE Trans. Ind. Electron. 2018 65 11 9147 9156 10.1109/TIE.2018.2818672
    [Google Scholar]
  40. Wei X. Cheng M. Wang Q. Direct power control strategies of cascaded brushless doubly fed induction generators. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society Busan, Korea (South), 2016. 10.1109/IECON.2016.7794092
    [Google Scholar]
  41. Ren Q. Chen A. Fang J. Liu X. Liu T. Zhang G. Zhang C. An improved passivity-based direct power control strategy for AC/DC converter under unbalanced and distorted grid conditions. IEEE Trans. Power Electron. 2023 38 10 12153 12165 10.1109/TPEL.2023.3294806
    [Google Scholar]
  42. Serra F.M. De Angelo C.H. Direct power control of a shunt active power filter using a modified IDA–PBC approach with integral action. IEEE Trans. Circuits Syst. II Express Briefs 2023 70 6 1991 1995 10.1109/TCSII.2022.3224248
    [Google Scholar]
  43. Costa J.S. Lunardi A. Ribeiro P.C. Da Silva I.B. Fernandes D.A. Sguarezi Filho A.J. Performance-based tuning for a model predictive direct power control in a grid-tied converter with L-filter. IEEE Access 2023 11 8017 8028 10.1109/ACCESS.2023.3237909
    [Google Scholar]
  44. Razali A.M. Rahman M.A. George G. Rahim N.A. Analysis and design of new switching lookup table for virtual flux direct power control of grid-connected three-phase PWM AC–DC converter. IEEE Trans. Ind. Appl. 2015 51 2 1189 1200 10.1109/TIA.2014.2344503
    [Google Scholar]
  45. Clitan I. Muntean I. Direct-current motor speed control using a PID discrete controller. 2021 9th International Conference on Modern Power Systems (MPS) 16-17 June 2021, Cluj-Napoca, Romania, 2021. 10.1109/MPS52805.2021.9492727
    [Google Scholar]
  46. Longfei J. Yuping H. Jigui Z. Jing C. Yunfei T. Pengfei L. Fuzzy sliding mode control of permanent magnet synchronous motor based on the integral sliding mode surface. 2019 22nd International Conference on Electrical Machines and Systems (ICEMS) 11-14 August 2019, Harbin, China, 2019. 10.1109/ICEMS.2019.8921882
    [Google Scholar]
  47. An B. Wang Y. Liu L. Hou Z. An intelligent terminal sliding mode control algorithm with chattering reduction based on particle swarm optimization. 2018 10th International Conference on Modelling, Identification and Control (ICMIC) 02-04 July 2018, Guiyang, China, 2018. 10.1109/ICMIC.2018.8529871
    [Google Scholar]
  48. Qiang-wen L. Teng Q-f. Wang Y-s. Ma X-p. Application of High-Order Sliding Mode variable structure Control B ased on Power- function in Doubly Fed Induction Generator. 2018 IEEE International Conference of Intelligent Robotic and Control Engineering (IRCE) Lanzhou, China, 2018. 10.1109/IRCE.2018.8492963
    [Google Scholar]
  49. Yang Y. Xie W. Speed control of doubly-fed induction generator based on a improved reaching law integral sliding mode structure. 2023 4th International Conference on Advanced Electrical and Energy Systems (AEES). Shanghai, China, 2023, pp. 264-269. 10.1109/AEES59800.2023.10469550
    [Google Scholar]
  50. Amira L. Tahar B. Abdelkrim M. Sliding mode control of doubly-fed induction generator in wind energy conversion system. 2020 8th International Conference on Smart Grid (icSmartGrid) 17-19 June 2020, Paris, France, 2020. 10.1109/icSmartGrid49881.2020.9144778
    [Google Scholar]
  51. Qingmei K. Xiangdong W. Shujiang L. A novel sliding mode control of doubly-fed induction generator for optimal power extraction. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia) 21-24 May 2019, Chengdu, China, 2019. 10.1109/ISGT‑Asia.2019.8881456
    [Google Scholar]
  52. Ihedrane Y. Power control of wind turbine system based on DFIG-generator, using sliding mode technique. 2017 International Renewable and Sustainable Energy Conference (IRSEC) Tangier, Morocco, 2017, pp. 1-6. 10.1109/IRSEC.2017.8477407
    [Google Scholar]
  53. Krishan Kumar R. Choudhary J. Optimal power extraction of Doubly Fed Induction Generator (DFIG) with novel 2nd order integral Sliding Mode Control (SMC) using super twisting algorithm. 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET) 19-21 May 2023, London, United Kingdom, 2023. 2023 10.1109/GlobConET56651.2023.10150103
    [Google Scholar]
  54. Maaruf M. Ferik S.E. Mahmoud M.S. Integral sliding mode control with power exponential reaching law for DFIG. 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD) 20-23 July 2020, Monastir, Tunisia, 2020. 10.1109/SSD49366.2020.9364131
    [Google Scholar]
  55. Hamid C. Derouich A. Taoussi M. Zamzoum O. Hanafi A. An improved performance variable speed wind turbine driving a doubly fed induction generator using sliding mode strategy. 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS) 02-03 December 2020, Kenitra, Morocco, 2020 10.1109/ICECOCS50124.2020.9314629
    [Google Scholar]
  56. Lat Leily M.R. Tohidi S. Hashemzadeh F. Shotorbani A.M. Novel sliding mode controller for power control of a doubly fed induction generator in variable speed wind turbine. 2019 Iranian Conference on Renewable Energy & Distributed Generation (ICREDG) Tehran, Iran, 2019, pp. 1-6. 10.1109/ICREDG47187.2019.194147
    [Google Scholar]
  57. Trindade F.S. Filho A.J.S. Jacomini R.V. Ruppert E. Experimental results of sliding-mode power control for doubly-fed induction generator. 2013 Brazilian Power Electronics Conference. Gramado, Brazil, 2013, pp. 686-691. 10.1109/COBEP.2013.6785189
    [Google Scholar]
  58. Hafiane M. Sabor J. Taleb M. Gualous H. Chaoui H. Adaptive second order sliding mode speed control of doubly fed induction generator wind turbines. 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC). 10-13 December 2015, Marrakech, Morocco, 2015. 10.1109/IRSEC.2015.7454956
    [Google Scholar]
  59. Lodhe P.C. Munje R.K. Date T.N. Sliding mode control for direct power regulation of doubly fed induction generator. 2014 Annual IEEE India Conference (INDICON) Pune, India, 2014, pp. 1-6. 10.1109/INDICON.2014.7030494
    [Google Scholar]
  60. Mahboub M.A. Drid S. Sliding mode control of a Brushless doubly fed induction generator. 3rd International Conference on Systems and Control Algiers, Algeria, 2013, pp. 308-313. 10.1109/ICoSC.2013.6750876
    [Google Scholar]
  61. Ji K. Long W. He J. A direct control for stand-alone operation brushless doubly fed induction generator using sliding-mode control approach. 2019 22nd International Conference on Electrical Machines and Systems (ICEMS) 11-14 August 2019, Harbin, China, 2019. 10.1109/ICEMS.2019.8922197
    [Google Scholar]
  62. Khan S.G. Jalani J. Herrmann G. Task space integral sliding mode controller implementation for 4DOF of a humanoid BERT II arm with posture control[C]//Towards Autonomous Robotic Systems. 12th Annual Conference, TAROS 2011 August 31–September 2, 2011, Sheffield, UK, 2011.
    [Google Scholar]
  63. Hou P. Wang X. Sheng Y. Research on flux-weakening control system of interior permanent magnet synchronous motor based on fuzzy sliding mode control. 2019 Chinese Control And Decision Conference (CCDC) Nanchang, China, 2019, pp. 3151-3156 10.1109/CCDC.2019.8832483
    [Google Scholar]
  64. Ma Z. Sun G. Cheng Z. Li Z. Linear motor motion control using fractional order sliding mode controller with friction compensation. 2017 36th Chinese Control Conference (CCC) 11 September 2017, Dalian, China, 2017. 10.23919/ChiCC.2017.8027919
    [Google Scholar]
  65. Zhu X. Liu S. Wang Y. Second-order sliding-mode control of DFIG-based wind turbines. 3rd Renewable Power Generation Conference (RPG 2014) Naples, 2014, pp. 1-6. 10.1049/cp.2014.0936
    [Google Scholar]
  66. Xiu C. Yuan L. Li J. A new exponential power combined reaching law sliding-mode control for permanent magnet synchronous motor. 2021 33rd Chinese Control and Decision Conference (CCDC) 22-24 May 2021, Kunming, China, 2021. 10.1109/CCDC52312.2021.9601822
    [Google Scholar]
  67. Pan Y. Yang C. Pan L. Yu H. Integral sliding mode control: Performance, modification, and improvement. IEEE Trans. Industr. Inform. 2018 14 7 3087 3096 10.1109/TII.2017.2761389
    [Google Scholar]
  68. Taluo T. Ristić L. Agha-Kashkooli M.R. Jovanović M. Hardware-in-the-loop testing of brushless doubly fed reluctance generator under unbalanced grid voltage conditions. Int. J. Electr. Power Energy Syst. 2024 158 109940 10.1016/j.ijepes.2024.109940
    [Google Scholar]
  69. Jiang D. Yu W. Wang J. Zhong G. Zhou Z. Dynamic analysis of dfig fault detection and its suppression using sliding mode control. IEEE J. Emerg. Sel. Top. Power Electron. 2023 11 1 643 656 10.1109/JESTPE.2020.3035205
    [Google Scholar]
  70. Osman A.M. Alsokhiry F. Sliding mode control for grid integration of wind power system based on direct drive PMSG. IEEE Access 2022 10 26567 26579 10.1109/ACCESS.2022.3157311
    [Google Scholar]
  71. Liu G. Liu X. Zeng Y. A new fuzzy lyapunov function approach to stability analysis and control synthesis for Takagi-Sugeno fuzzy systems. 2013 25th Chinese Control and Decision Conference (CCDC) 25-27 May 2013, Guiyang, China, 2013. 10.1109/CCDC.2013.6561472
    [Google Scholar]
  72. Zhang T. Jia Y. Adaptive neural network control of uncertain strict-feedback systems with full-state constrains by integral-barrier lyapunov functions. 2018 37th Chinese Control Conference (CCC) 25-27 July 2018, Wuhan, China, 2018. 10.23919/ChiCC.2018.8484146
    [Google Scholar]
  73. Kim K.S. Membership-function-dependent stability conditions using fuzzy lyapunov functions. 2022 22nd International Conference on Control, Automation and Systems (ICCAS) Jeju, Korea, Republic of, 2022, pp. 1416-1420. 10.23919/ICCAS55662.2022.10003823
    [Google Scholar]
  74. Faria F.A. Oliveira V.A. Elias L.J. Capela J.M.V. Tanaka J.S. Less conservative conditions for stabilization of switched TS fuzzy systems using fuzzy Lyapunov functions. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) Rio de Janeiro, Brazil, 2018, pp. 1-7. 10.1109/FUZZ‑IEEE.2018.8491495
    [Google Scholar]
  75. Lanyong Z. Lei L. Lei Z. Methods for constructing lyapunov functions for a class of nonlinear systems. 2019 Chinese Control Conference (CCC) Guangzhou, China, 2019, pp. 606-611. 10.23919/ChiCC.2019.8865841
    [Google Scholar]
  76. Hasan K. Othman M.M. Meraj S.T. Mekhilef S. Abidin A.F.B. Shunt active power filter based on savitzky-golay filter: Pragmatic modelling and performance validation. IEEE Trans. Power Electron. 2023 38 7 8838 8850 10.1109/TPEL.2023.3258457
    [Google Scholar]
  77. Tanzim Meraj S. Zaihar Yahaya N. Hasan K. Hossain Lipu M.S. Madurai Elavarasan R. Hussain A. Hannan M.A. Muttaqi K.M. A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability. Appl. Energy 2022 312 118784 10.1016/j.apenergy.2022.118784
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965321358240919065812
Loading
/content/journals/raeeng/10.2174/0123520965321358240919065812
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test