Skip to content
2000
Volume 17, Issue 10
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Background

One of the key challenges in maximizing the performance of PV systems is the efficient tracking of the maximum power point (MPP) under varying operational conditions, including changes in solar irradiance and temperature. Accurate MPP tracking is essential for achieving optimal energy conversion efficiency and maximizing the electricity generation potential of the PV array, even during partial shading conditions. Traditional maximum power point tracking (MPPT) algorithms, such as the incremental conductance (INC) method, often struggle to efficiently handle partial shading conditions. As a result, there is a need for more sophisticated and robust optimization techniques that can effectively address this challenge. This study presents a novel and innovative Giza Pyramid Construction (GPC) algorithm to solve the partial shading-induced MPP tracking problem.

Objective

This study aims to apply the Giza Pyramid Construction (GPC) algorithm for optimized maximum power point tracking in photovoltaic systems under partial shading conditions, aiming to enhance energy conversion efficiency and overall system performance.

Methods

The methodology involves implementing the Giza Pyramid Construction (GPC) algorithm as the core optimization technique for maximum power point tracking (MPPT) in photovoltaic (PV) systems. The GPC algorithms are utilized to iteratively adjust the duty cycle of the boost converter, enabling efficient power extraction from the PV array under varying shading conditions. The performance of the GPC algorithm is evaluated through simulations in MATLAB/SIMULINK and compared against conventional MPPT methods like INC and DGO techniques.

Results

The successful application of the Giza Pyramid Construction (GPC) algorithm for optimized maximum power point tracking in PV systems under partial shading led to significantly reduced optimization time, faster settling times, and minimized output ripples. With the proposed GPC MPPT, optimization time is reduced to 41ms, settling time is reduced to 93ms, and ripples are minimized to 0.092%.

Conclusion

The Giza Pyramid Construction (GPC) algorithm demonstrates its effectiveness as a robust and efficient maximum power point tracking method in photovoltaic systems, particularly under partial shading conditions. The improved optimization speed, reduced settling times, and minimized output ripples underscore the GPC algorithm's potential to enhance the overall efficiency and reliability of PV systems, paving the way for its practical implementation in real-world renewable energy applications.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965271915231204114710
2024-01-24
2025-06-16
Loading full text...

Full text loading...

References

  1. AbasN. KalairA. KhanN. Review of fossil fuels and future energy technologies.Futures201569314910.1016/j.futures.2015.03.003
    [Google Scholar]
  2. NatarajanK. KumarB.P. KumarV.S. Fault detection of solar system using svm and thermal image processing.Int. J. Renew. Energy Res.2020102111
    [Google Scholar]
  3. RanabhatK. PatrikeevL. Antal’evna-RevinaA. AndrianovK. LapshinskyV. SofronovaE. An introduction to solar cell technology.Projektovanja za Privredu201614448149110.5937/jaes14‑10879
    [Google Scholar]
  4. DhimishM. TyrrellA.M. Power loss and hotspot analysis for photovoltaic modules affected by potential induced degradation.NPJ Mater. Degrad.2022611110.1038/s41529‑022‑00221‑9
    [Google Scholar]
  5. JahangiriM. "Analysis of standalone PV-based hybrid systems for power generation in Rural areaInternational conference on fundamental research in electrical engineering2017Tehran, Iran
    [Google Scholar]
  6. FaraL. CraciunescuD. Output analysis of stand-alone PV systems: Modeling, simulation and control.Energy Procedia201711259560510.1016/j.egypro.2017.03.1125
    [Google Scholar]
  7. TazayA.F. IbrahimA.M.A. NoureldeenO. HamdanI. Modeling, control, and performance evaluation of grid-tied hybrid PV/wind power generation system: Case study of Gabel El-Zeit region, Egypt.IEEE Access20208965289654210.1109/ACCESS.2020.2993919
    [Google Scholar]
  8. LambaR. KaushikS.C. Modeling and performance analysis of a concentrated photovoltaic–thermoelectric hybrid power generation system.Energy Convers. Manage.201611528829810.1016/j.enconman.2016.02.061
    [Google Scholar]
  9. ChengC. DongK. WangZ. LiuS. JuraszJ. ZhangH. Rethinking the evaluation of solar photovoltaic projects under YieldCo mode: A real option perspective.Appl. Energy202333612083910.1016/j.apenergy.2023.120839
    [Google Scholar]
  10. ChaibiY. AllouhiA. MalvoniM. SalhiM. SaadaniR. Solar irradiance and temperature influence on the photovoltaic cell equivalent-circuit models.Sol. Energy20191881102111010.1016/j.solener.2019.07.005
    [Google Scholar]
  11. HumadaA.M. DarweeshS.Y. MohammedK.G. KamilM. MohammedS.F. KasimN.K. TahseenT.A. AwadO.I. MekhilefS. Modeling of PV system and parameter extraction based on experimental data: Review and investigation.Sol. Energy202019974276010.1016/j.solener.2020.02.068
    [Google Scholar]
  12. SharmaA. A comprehensive study of solar power in India and World.Renew. Sustain. Energy Rev.20111541767177610.1016/j.rser.2010.12.017
    [Google Scholar]
  13. TianH. Mancilla-DavidF. EllisK. MuljadiE. JenkinsP. A cell-to-module-to-array detailed model for photovoltaic panels.Sol. Energy20128692695270610.1016/j.solener.2012.06.004
    [Google Scholar]
  14. ErrouissiR. Al-DurraA. MuyeenS.M. A robust continuous-time MPC of a DC–DC boost converter interfaced with a grid-connected photovoltaic system.IEEE J. Photovolt.2016661619162910.1109/JPHOTOV.2016.2598271
    [Google Scholar]
  15. PraveenK.B. Performance enhancement of partial shaded photovoltaic system with the novel screw pattern array configuration scheme.IEEE Access20221017311744
    [Google Scholar]
  16. BaA. EhsseinC.O. MahmoudM.E.M.O.M. HamdounO. ElhassenA. Comparative study of different DC/DC power converter for optimal PV system using MPPT (P&O) method.Appl. Sol. Energy201854423524510.3103/S0003701X18040047
    [Google Scholar]
  17. AmirA. AmirA. CheH.S. ElkhatebA. RahimN.A. Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems.Renew. Energy20191361147116310.1016/j.renene.2018.09.089
    [Google Scholar]
  18. BollipoR.B. MikkiliS. BonthagorlaP.K. Hybrid, optimal, intelligent and classical PV MPPT techniques: A review.CSEE J. Power Energy Syst.202071933
    [Google Scholar]
  19. YapK.Y. SarimuthuC.R. LimJ.M-Y. Artificial intelligence based MPPT techniques for solar power system: A review.J. Mod. Power Syst. Clean Energy2020861043105910.35833/MPCE.2020.000159
    [Google Scholar]
  20. KatcheM.L. A comprehensive review of maximum power point tracking (mppt) techniques used in solar pv systems.Energies2023165220610.3390/en16052206
    [Google Scholar]
  21. VermaP. Meta-heuristic optimization techniques used for maximum power point tracking in solar pv system.Electronics20211019241910.3390/electronics10192419
    [Google Scholar]
  22. PriyadarshiN. Maximum power point tracking for brushless DC motor-driven photovoltaic pumping systems using a hybrid ANFIS-FLOWER pollination optimization algorithm.Energies1151067201810.3390/en11051067
    [Google Scholar]
  23. NkambuleM.S. HasanA.N. AliA. "MPPT under partial shading conditions based on perturb & observe and incremental conductance", 2019 11th International Conference on Electrical and Electronics Engineering (ELECO)201928-30 November 2019, Bursa, Turkey10.23919/ELECO47770.2019.8990426
    [Google Scholar]
  24. LodhiE. "Performance analysis of ‘Perturb and Observe’and ’Incremental Conductance’MPPT algorithms for PV systemIOP Conference Series: Materials Science and Engineering201722023–25 June 2017, Beijing, China.
    [Google Scholar]
  25. AndreanV. PeiC.C. LianK.L. A review and new problems discovery of four simple decentralized maximum power point tracking algorithms—Perturb and observe, incremental conductance, golden section search, and Newton’s quadratic interpolationEnergies20181111296610.3390/en11112966
    [Google Scholar]
  26. YoussefA. El-TelbanyM. ZekryA. The role of artificial intelligence in photo-voltaic systems design and control: A review.Renew. Sustain. Energy Rev.201778727910.1016/j.rser.2017.04.046
    [Google Scholar]
  27. KhanM.J. A novel artificial intelligence maximum power point tracking technique for integrated PV-WT-FC frameworks.Energies2022159335210.3390/en15093352
    [Google Scholar]
  28. SumathiS. KrishnanS. Artificial intelligence for smart solar power irrigation–comprehensive review.Int. J. Adv. Sci. Eng. Inf. Technol.2021731894190310.29294/IJASE.7.3.2021.1894‑1903
    [Google Scholar]
  29. TianA-Q. A novel pigeon-inspired optimization based MPPT technique for PV systems.Processes20208335610.3390/pr8030356
    [Google Scholar]
  30. RamdanB.A. AhmedF.Z. El-ShahatA. DashS.K. A novel MPPT algorithm based on particle swarm optimization for photovoltaic systems.IEEE Trans. Sustain. Energy201682468476
    [Google Scholar]
  31. VermaD. NemaS. ShandilyaA.M. DashS.K. Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems.Renew. Sustain. Energy Rev.2016541018103410.1016/j.rser.2015.10.068
    [Google Scholar]
  32. SarwarS. A novel hybrid MPPT technique to maximize power harvesting from pv system under partial and complex partial shading.Appl. Sci.202212258710.3390/app12020587
    [Google Scholar]
  33. HafeezM.A. A novel hybrid MPPT technique based on Harris hawk optimization (HHO) and perturb and observer (P&O) under partial and complex partial shading conditions.Energies20221515555010.3390/en15155550
    [Google Scholar]
  34. PradhanC. SenapatiM.K. MallaS.G. NayakP.K. GjengedalT. Coordinated power management and control of standalone PV-hybrid system with modified IWO-based MPPT.IEEE Syst. J.20211533585359610.1109/JSYST.2020.3020275
    [Google Scholar]
  35. JatelyV. AzzopardiB. JoshiJ. VenkateswaranV.B. SharmaA. AroraS. Experimental Analysis of hill-climbing MPPT algorithms under low irradiance levels.Renew. Sustain. Energy Rev.202115011146710.1016/j.rser.2021.111467
    [Google Scholar]
  36. BahariM.I. "Modeling and simulation of hill climbing MPPT algorithm for photovoltaic application", 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM)201610.1109/SPEEDAM.2016.7525990
    [Google Scholar]
  37. MohapatraA. NayakB. SaiprakashC. "Adaptive perturb & observe MPPT for PV system with experimental validation", 2019 IEEE International Conference on Sustainable Energy Technologies and Systems (ICSETS)201910.1109/ICSETS.2019.8744819
    [Google Scholar]
  38. KamranM. MudassarM. FazalM.R. AsgharM.U. BilalM. AsgharR. Implementation of improved Perturb & Observe MPPT technique with confined search space for standalone photovoltaic system.J. King Saud Univ. Eng. Sci.202032743244110.1016/j.jksues.2018.04.006
    [Google Scholar]
  39. ZakzoukN.E. ElsahartyM.A. AbdelsalamA.K. HelalA.A. WilliamsB.W. Improved performance low‐cost incremental conductance PV MPPT technique.IET Renew. Power Gener.201610456157410.1049/iet‑rpg.2015.0203
    [Google Scholar]
  40. ElgendyM.A. AtkinsonD.J. ZahawiB. Experimental investigation of the incremental conductance maximum power point tracking algorithm at high perturbation rates.IET Renew. Power Gener.201610213313910.1049/iet‑rpg.2015.0132
    [Google Scholar]
  41. AliA. Review of online and soft computing maximum power point tracking techniques under non-uniform solar irradiation conditionsEnergies20201312325610.3390/en13123256
    [Google Scholar]
  42. KermadiM. SalamZ. EltamalyA.M. AhmedJ. MekhilefS. LarbesC. BerkoukE.M. Recent developments of MPPT techniques for PV systems under partial shading conditions: A critical review and performance evaluation.IET Renew. Power Gener.202014173401341710.1049/iet‑rpg.2020.0454
    [Google Scholar]
  43. KumarN. A state‐of‐the‐art review on conventional, soft computing, and hybrid techniques for shading mitigation in photovoltaic applications.Int. Trans. Electr. Energy Syst.2020309e1242010.1002/2050‑7038.12420
    [Google Scholar]
  44. NabipourM. RazazM. SeifossadatS.G. MortazaviS.S. A new MPPT scheme based on a novel fuzzy approach.Renew. Sustain. Energy Rev.2017741147116910.1016/j.rser.2017.02.054
    [Google Scholar]
  45. BouakkazM.S. "ANN based MPPT algorithm design using real operating climatic condition", 2020 2nd International Conference on Mathematics and Information Technology (ICMIT)202018-19 February 2020, Adrar, Algeria. 10.1109/ICMIT47780.2020.9046972
    [Google Scholar]
  46. BorniA. AbdelkrimT. BouarroudjN. BouchakourA. ZaghbaL. LakhdariA. ZarourL. Optimized MPPT controllers using GA for grid connected photovoltaic systems, comparative study.Energy Procedia201711927829610.1016/j.egypro.2017.07.084
    [Google Scholar]
  47. PriyadarshiN. An ant colony optimized MPPT for standalone hybrid PV-wind power system with single Cuk converter.Energies201912116710.3390/en12010167
    [Google Scholar]
  48. BentataK. MohammediA. BenslimaneT. Development of rapid and reliable cuckoo search algorithm for global maximum power point tracking of solar PV systems in partial shading condition.Arch. Control Sci.2021313495526
    [Google Scholar]
  49. HemalathaC. Valan RajkumarM. Vidhya KrishnanG. Simulation and analysis of MPPT control with modified firefly algorithm for photovoltaic system.Int. J. Innov. Stud. Sci. Eng. Technol2016486326
    [Google Scholar]
  50. LiH. YangD. SuW. LuJ. YuX. An overall distribution particle swarm optimization MPPT algorithm for photovoltaic system under partial shading.IEEE Trans. Ind. Electron.201966126527510.1109/TIE.2018.2829668
    [Google Scholar]
  51. MurdiantoF.D. NansurA.R. AlfisS.L.H. "Modeling and simulation of MPPT coupled inductor sepie converter using Flower Pollination Algorithm (FPA) Method in DC mierogrid system", 2017 International Electronics Symposium on Engineering Technology and Applications (IES-ETA)201710.1109/ELECSYM.2017.8240364
    [Google Scholar]
  52. SubramanianaA. RamanJ. Modified seagull optimization algorithm based MPPT for augmented performance of photovoltaic solar energy systems.Automatika202263111510.1080/00051144.2021.1997253
    [Google Scholar]
  53. ZhaoZ. ZhangM. ZhangZ. WangY. ChengR. GuoJ. YangP. LaiC.S. LiP. LaiL.L. Hierarchical pigeon-inspired optimization-based MPPT method for photovoltaic systems under complex partial shading conditions.IEEE Trans. Ind. Electron.20226910101291014310.1109/TIE.2021.3137595
    [Google Scholar]
  54. MurdiantoF.D. Modeling and simulation of mppt sepic-buck converter series using flower pollination algorithm (fpa)-pi controller in dc microgrid isolated system2018 International Electrical Engineering Congress (iEECON)07-09 March 2018, Krabi, Thailand201810.1109/IEECON.2018.8712290
    [Google Scholar]
  55. SadafS. BhaskarM.S. MerajM. IqbalA. Al-EmadiN. A novel modified switched inductor boost converter with reduced switch voltage stress.IEEE Trans. Ind. Electron.20216821275128910.1109/TIE.2020.2970648
    [Google Scholar]
  56. LiG. A novel quadratic boost converter with low inductor currents.CPSS TPEA20205111010.24295/CPSSTPEA.2020.00001
    [Google Scholar]
  57. PradhanA. PandaB. A simplified design and modeling of boost converter for photovoltaic sytem”.Int. J. Electr. Comput. Eng.20188114110.11591/ijece.v8i1.pp141‑149
    [Google Scholar]
  58. HarifiS. MohammadzadehJ. KhalilianM. EbrahimnejadS. Giza pyramids construction: An ancient-inspired metaheuristic algorithm for optimization.Evol. Intell.20211441743176110.1007/s12065‑020‑00451‑3
    [Google Scholar]
  59. HarifiS. A binary ancient-inspired Giza Pyramids Construction metaheuristic algorithm for solving 0-1 knapsack problem.Soft Comput.20222622127611277810.1007/s00500‑022‑07285‑4
    [Google Scholar]
  60. EbrahimnejadS. HarifiS. An optimized evacuation model with compatibility constraints in the context of disability: an ancient-inspired Giza Pyramids Construction metaheuristic approach.Appl. Intell.20225213150401507310.1007/s10489‑021‑03079‑7
    [Google Scholar]
  61. KrafftC. The Evolution of Labor Supply in Egypt from 1988-2018: A Gendered Analysis.Cairo: Economic Research Forum (ERF),2019
    [Google Scholar]
  62. SinghP. ShuklaN. GaurP. Modified variable step incremental-conductance MPPT technique for photovoltaic system.Int. J. Inf. Technol.20211362483249010.1007/s41870‑020‑00450‑8
    [Google Scholar]
  63. PatilM. "Optimal power point detection in dynamic partial shading of PV systems using darts game optimizer algorithm", 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON)10-12 February 2023, Aligarh, India 202310.1109/PIECON56912.2023.10085785
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965271915231204114710
Loading
/content/journals/raeeng/10.2174/0123520965271915231204114710
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test