Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2352-0965
  • E-ISSN: 2352-0973

Abstract

Introduction

The rise of ultra-high voltage AC grids creates corona noise, which is crucial for assessing transmission line environments.

Methods

This paper analyzes corona noise distribution around AC transmission lines using a 3D model for quantitative assessment. We employ the Finite Element Method, and factors like electric field intensity, conductor splitting, and sag are considered. Corona noise is calculated using CEPRI prediction equations and validated with field data.

Results

We found strong corona noise concentrating within a 20 m lateral and 240 m vertical radius. Within 50 m, lateral attenuation is 3.6%, and longitudinal attenuation is 3.3%.

Conclusion

This research provides insights for monitoring and controlling corona noise in transmission line design and operation.

Loading

Article metrics loading...

/content/journals/raeeng/10.2174/0123520965266930231121152013
2024-01-19
2025-05-10
Loading full text...

Full text loading...

References

  1. ShilongH. YunpengL. ShaoshuaiC. WanglingH. BaoquanW. LihuaX. YongjieL. Corona loss characteristics of bundle conductors in UHV AC transmission lines at 2200 m altitude.Electr. Power Syst. Res.2019166838710.1016/j.epsr.2018.10.004
    [Google Scholar]
  2. ZhuY.M. SunQ. ZhaoC. WeiS.T. YinY. SuY.H. Operational modal analysis of two typical UHV transmission towers: A comparative study by fast Bayesian FFT method.Eng. Struct.202327711542510.1016/j.engstruct.2022.115425
    [Google Scholar]
  3. JunD. YanpengH. LichengL. An improved method to calculate the radio interference of a transmission line based on the flux-corrected transport and upstream finite element method.J. Electrost.2015751410.1016/j.elstat.2015.02.002
    [Google Scholar]
  4. MaZ. XiaJ. HeX. ZhouY. HeZ. LiQ. BianX. Experimental and numerical study on corona onset threshold under combined AC-DC voltages in Wire-Plane electrodes.Int. J. Electr. Power Energy Syst.202214310847910.1016/j.ijepes.2022.108479
    [Google Scholar]
  5. ZhangH. WuH. HuQ. HeG. ShuLi. Review of Audible Noise of Overhead Transmission Lines.High Voltage Apparatus2022581610.13296/j.1001‑1609.hva.2022.05.001
    [Google Scholar]
  6. HeG. HuQ. DuM. ZhangZ. WuZ. ZhangS. TangC. Experimental Research on the DC Corona Loss and Audible Noise Characteristics of Natural Icing Conductor.Zhongguo Dianji Gongcheng Xuebao2022424633464110.13334/j.0258‑8013.pcsee.211257
    [Google Scholar]
  7. LiuZ. Findings in Development of ±1100kV UHVDC Transmission.Zhongguo Dianji Gongcheng Xuebao2020407782779110.13334/j.0258‑8013.pcsee.201451
    [Google Scholar]
  8. LiX. CuiX. LuT. ZhangD. LiuY. Time-domain characteristics of the audible noise generated by single corona source under positive voltage.IEEE Trans. Dielectr. Electr. Insul.201522287087810.1109/TDEI.2015.7076787
    [Google Scholar]
  9. LugrinG. TkachenkoS.V. RachidiF. RubinsteinM. CherkaouiR. High-Frequency Electromagnetic Coupling to Multiconductor Transmission Lines of Finite Length.IEEE Trans. Electromagn. Compat.20155761714172310.1109/TEMC.2015.2475156
    [Google Scholar]
  10. BhartiS. DubeyS.P. NagwanshiK.K. TurkyR.A. BansalR.C. ChoubeyB.D. Analysis of Electromagnetic Environment in 1200 kV Single Circuit UHVAC Transmission Line by using FACE Software and Semi-empirical Formulae.Ain Shams Eng. J.202213310164210.1016/j.asej.2021.11.011
    [Google Scholar]
  11. MaX. HeK. XieL. LuJ. JuY. Study on Electromagnetic Environment of ±500 kV Triple-circuit Flexible DC Transmission Line on Same Tower.Power System Technology2020441978198410.13335/j.1000‑3673.pst.2019.1247
    [Google Scholar]
  12. DumitranL.M. AttenP. NotingherP.V. DascalescuL. 2-D corona field computation in configurations with ionising and non-ionising electrodes.J. Electrost.2006643-417618610.1016/j.elstat.2005.05.005
    [Google Scholar]
  13. YangB. WangR. Design of electromagnetic induction calculation and auxiliary calculation software under UHV transmission line.Energy Rep.202171159116710.1016/j.egyr.2021.09.151
    [Google Scholar]
  14. XieG. FuW. HeW. LanL. WanB. ZhangY. Calculation and Research of Audible Noise of AC Transmission Lines (I) - Three-dimensional Distribution.High Voltage Engineering2019452990299810.13336/j.1003‑6520.hve.20190831035
    [Google Scholar]
  15. FuW. HeW. XieG. LiangQ. LanL. ChenY. Calculation and Research of Audible Noise of AC Transmission Lines (II) - Distribution Under Crossing Erection.High Voltage Engineering2019454070407810.13336/j.1003‑6520.hve.20181207009
    [Google Scholar]
  16. LanT. LiuY. HeW. LuH. LiangQ. LanL. Calculation of three‐dimensional ion current field of 500 kV AC line crossing ±800 kV DC line.Engineering Journal of Wuhan University20225517518210.14188/j.1671‑8844.2022‑02‑009
    [Google Scholar]
  17. ZhangR. ZhengN. GuoG. FuX. JiangY. Effect of pollution severity class and service year on corona characteristics and electromagnetic environment degradation of aged conductors.J. Electrost.2015771710.1016/j.elstat.2015.06.009
    [Google Scholar]
  18. ChenY. XieH. ZhangY. XuS. ShiY. ZhouC. Audible noise prediction of UHVAC transmission lines based on corona cage.High Voltage Engineering2012382189219410.3969/j.issn.1003‑6520.2012.09.007
    [Google Scholar]
  19. ZhangY. LiR. ZhouB. LiuZ. HeW. Analysis of Long-term Measured Data of Audible Noise on UHV AC Double-circuit Transmission Lines on the Same Tower.High Voltage Engineering201743667110.13336/j.1003‑6520.hve.20170628027
    [Google Scholar]
  20. ZhaoL. XiaoB. WangB. YueS. GaoL. Experimental Research and Conductor Selection on Electromagnetic Environment of ±500kV DC Transmission Line at High Altitude.Power System Technology20214579480110.13335/j.1000‑3673.pst.2020.0110a
    [Google Scholar]
  21. WanB. WuX. PeiC. ChenY. ZhouB. Calculation Method for Acoustic Power Based on Multivariant Regression Method for AC Transmission Lines.High Voltage Engineering2017431345136110.13336/j.1003‑6520.hve.20170328037
    [Google Scholar]
  22. BianX. ChenL. ZhaoX. ChenF. JiJ. WanS. WangL. Comparative study on corona-generated audible noise and radio noise of ac long-term operating conductors with two bundle types.J. Electrost.201574475510.1016/j.elstat.2014.12.005
    [Google Scholar]
  23. WanB. HeW. PeiC. WuX. ChenY. ZhangY. LanL. Audible Noise Performance of Conductor Bundles Based on Cage Test Results and Comparison with Long Term Data.Energies201710795897010.3390/en10070958
    [Google Scholar]
  24. WangD. LuT. ChenB. LiX. XieL. ZhaoL. JuY. Ion flow field distribution near the crossing of two circuit UHVDC transmission lines.Int. J. Appl. Electromagn. Mech.201959240741510.3233/JAE‑171145
    [Google Scholar]
  25. MaruvadaP.S. Influence of Ambient Electric Field on the Corona Performance of HVdc Transmission Lines.IEEE Trans. Power Deliv.201429269169810.1109/TPWRD.2013.2278343
    [Google Scholar]
  26. ZhouX.X. LuT.T. CuiX. ZhenY.Z. LuoZ.N. A Hybrid Method for the Simulation of Ion Flow Field of HVDC Transmission Lines Based on Finite Element Method and Finite Volume Method.Zhongguo Dianji Gongcheng Xuebao20113112713310.13334/j.0258‑8013.pcsee.2011.15.020
    [Google Scholar]
  27. YuZ. LiQ. ZengR. HeJ. ZhangY. LiZ. ZhuangC. LiaoY. Calculation of surface electric field on UHV transmission lines under lightning stroke.Electr. Power Syst. Res.201394798510.1016/j.epsr.2012.05.015
    [Google Scholar]
  28. ZhangS.L. Analysis on Surface Electric Field Distribution and Corona Inception Electric Field Strength of Stranded Conductor.High Voltage Apparatus20185410711210.13296/j.1001‑1609.hva.2018.04.016
    [Google Scholar]
/content/journals/raeeng/10.2174/0123520965266930231121152013
Loading
/content/journals/raeeng/10.2174/0123520965266930231121152013
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test