Skip to content
2000
image of Formulation Development and Permeation Studies of Vancomycin Hydrochloride-Loaded Nanostructured Lipid Carrier Incorporated Thermoresponsive In-Situ Gel: A Box-Behnken Design Implemented Approach for Ocular Delivery in Endophthalmitis

Abstract

Background

Endophthalmitis, an inflammatory condition of the intraocular cavity, poses a significant challenge in ophthalmology due to its rapid progression and potential for vision loss. Conventional treatment modalities, such as systemic antibiotics or oral administration, often face limitations in achieving the required therapeutic levels at the target site. Hence, repeated intravitreal injections of antibiotics are currently the most preferred and recommended therapy for the management of endophthalmitis, which is an invasive technique and has certain shortcomings, elevated intraocular pressure, bleeding inside the eye, heightened likelihood of retinal detachment, retinal toxicity, and many more. Vancomycin is the first choice drug for the management of endophthalmitis and is given through intravitreal injection.

Aim

The work aims to design, develop, and evaluate Vancomycin-loaded NLCs incorporated into an gel offering a new non-invasive therapeutic option for the management of Endophthalmitis.

Method

The Vancomycin-loaded NLCs were successfully produced through a double emulsion/solvent evaporation method employing a Box Behnken design. The optimized formulations were incorporated into an gel system by varying the concentration of Pluronic F127. The formulated gels were characterized for several parameters such as physical appearance, pH, viscosity, gelling strength, gelation temperature, release profile, and permeation study.

Results

The result revealed that the formulation had a smooth appearance with a pH range from 7 to 7.5, was near the physiological pH of the eye, had content in the range of 97.5 ± 1.0%to 99.2 ± 1.0% and gelation temperature near body temperature. The data of release study formulation (VISG2) revealed sustained drug release compared to the control gel. The data permeation study revealed that there was approximately a 3 folds increase in permeation of drug form (VISG2) compared to control gel (p˂0.0001) and significant (2.02folds) permeation compared to commercially available formulation (p˂0.0001).

Conclusion

In conclusion, the Vancomycin-loaded NLCs incorporated gel may serve as a feasible alternative to invasive intravitreal injection for the management of endophthalmitis.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878339109250219072409
2025-02-21
2025-06-12
Loading full text...

Full text loading...

References

  1. Durand M.L. Endophthalmitis. Clin. Microbiol. Infect. 2013 19 3 227 234 10.1111/1469‑0691.12118 23438028
    [Google Scholar]
  2. Callegan M. Gilmore M. Gregory M. Ramadan R. Wiskur B. Moyer A. Hunt J. Novosad B. Bacterial endophthalmitis: Therapeutic challenges and host–pathogen interactions. Prog. Retin. Eye Res. 2007 26 2 189 203 10.1016/j.preteyeres.2006.12.001 17236804
    [Google Scholar]
  3. Jounaki K. Makhmalzadeh B.S. Feghhi M. Heidarian A. Topical ocular delivery of vancomycin loaded cationic lipid nanocarriers as a promising and non-invasive alternative approach to intravitreal injection for enhanced bacterial endophthalmitis management. Eur. J. Pharm. Sci. 2021 167 167 105991 10.1016/j.ejps.2021.105991 34517103
    [Google Scholar]
  4. Kodjikian L. Renaud F.N.R. Roques C. Garweg J.G. Pellon G. Freney J. Burillon C. In vitro influence of vancomycin on adhesion of a Staphylococcus epidermidis strain encoding intercellular adhesion locus ica to intraocular lenses. J. Cataract Refract. Surg. 2005 31 5 1050 1058 10.1016/j.jcrs.2004.07.026 15975477
    [Google Scholar]
  5. Souli M. Kopsinis G. Kavouklis E. Gabriel L. Giamarellou H. Vancomycin levels in human aqueous humour after intravenous and subconjunctival administration. Int. J. Antimicrob. Agents 2001 18 3 239 243 10.1016/S0924‑8579(01)00375‑2 11673036
    [Google Scholar]
  6. Rao S. Kupfer Y. Pagala M. Chapnick E. Tessler S. Systemic absorption of oral vancomycin in patients with Clostridium difficile infection. Scand. J. Infect. Dis. 2011 43 5 386 388 10.3109/00365548.2010.544671 21198337
    [Google Scholar]
  7. Yousry C. Elkheshen S.A. El-laithy H.M. Essam T. Fahmy R.H. Studying the influence of formulation and process variables on Vancomycin-loaded polymeric nanoparticles as potential carrier for enhanced ophthalmic delivery. Eur. J. Pharm. Sci. 2017 100 100 142 154 10.1016/j.ejps.2017.01.013 28089661
    [Google Scholar]
  8. Hachicha W. Kodjikian L. Fessi H. Preparation of vancomycin microparticles: Importance of preparation parameters. Int. J. Pharm. 2006 324 2 176 184 10.1016/j.ijpharm.2006.06.005 16876347
    [Google Scholar]
  9. Gavini E. Chetoni P. Cossu M. Alvarez M.G. Saettone M.F. Giunchedi P. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: In vitro/in vivo studies. Eur. J. Pharm. Biopharm. 2004 57 2 207 212 10.1016/j.ejpb.2003.10.018 15018976
    [Google Scholar]
  10. Yousry C. Fahmy R.H. Essam T. El-laithy H.M. Elkheshen S.A. Nanoparticles as tool for enhanced ophthalmic delivery of vancomycin: A multidistrict-based microbiological study, solid lipid nanoparticles formulation and evaluation. Drug Dev. Ind. Pharm. 2016 42 11 1752 1762 10.3109/03639045.2016.1171335 27093938
    [Google Scholar]
  11. Platania C.B.M. Dei Cas M. Cianciolo S. Fidilio A. Lazzara F. Paroni R. Pignatello R. Strettoi E. Ghidoni R. Drago F. Bucolo C. Novel ophthalmic formulation of myriocin: Implications in retinitis pigmentosa. Drug Deliv. 2019 26 1 237 243 10.1080/10717544.2019.1574936 30883241
    [Google Scholar]
  12. Balguri S.P. Adelli G.R. Majumdar S. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur. J. Pharm. Biopharm. 2016 109 224 235 10.1016/j.ejpb.2016.10.015 27793755
    [Google Scholar]
  13. Araújo J. Nikolic S. Egea M.A. Souto E.B. Garcia M.L. Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surf. B Biointerfaces 2011 88 1 150 157 10.1016/j.colsurfb.2011.06.025 21764568
    [Google Scholar]
  14. Ewii U.E. Onugwu A.L. Nwokpor V.C. Akpaso I. Ogbulie T.E. Aharanwa B. Chijioke C. Verla N. Iheme C. Ujowundu C. Anyiam C. Attama A.A. Novel drug delivery systems: Insight into self-powered and nano-enabled drug delivery systems. Nano TransMed 2024 3 100042 10.1016/j.ntm.2024.100042
    [Google Scholar]
  15. Lakhani P. Patil A. Wu K.W. Sweeney C. Tripathi S. Avula B. Taskar P. Khan S. Majumdar S. Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery. Int. J. Pharm. 2019 572 118771 10.1016/j.ijpharm.2019.118771 31669555
    [Google Scholar]
  16. L Kiss E. Berkó S. Gácsi A. Kovács A. Katona G. Soós J. Csányi E. Gróf I. Harazin A. Deli M.A. Budai-Szűcs M. Design and optimization of nanostructured lipid carrier containing dexamethasone for ophthalmic use. Pharmaceutics 2019 11 12 679 10.3390/pharmaceutics11120679 31847336
    [Google Scholar]
  17. Seyfoddin A. Al-Kassas R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev. Ind. Pharm. 2013 39 4 508 519 10.3109/03639045.2012.665460 22424312
    [Google Scholar]
  18. Varela-Fernández R. García-Otero X. Díaz-Tomé V. Regueiro U. López-López M. González-Barcia M. Isabel Lema M. Javier Otero-Espinar F. Lactoferrin-loaded nanostructured lipid carriers (NLCs) as a new formulation for optimized ocular drug delivery. Eur. J. Pharm. Biopharm. 2022 172 144 156 10.1016/j.ejpb.2022.02.010 35183717
    [Google Scholar]
  19. Swarnakar N.K. Jain V. Dubey V. Mishra D. Jain N.K. Enhanced oromucosal delivery of progesterone via hexosomes. Pharm. Res. 2007 24 12 2223 2230 10.1007/s11095‑007‑9409‑y 17828445
    [Google Scholar]
  20. Jithan A.V. Madhavi K. Madhavi M. Prabhakar K. Preparation and characterization of albumin nanoparticles encapsulating curcumin intended for the treatment of breast cancer. Int. J. Pharm. Investig. 2011 1 2 119 125 10.4103/2230‑973X.82432 23071931
    [Google Scholar]
  21. Chaudhary S. Garg T. Rath G. Murthy R.R. Goyal A.K. Enhancing the bioavailability of mebendazole by integrating the principles solid dispersion and nanocrystal techniques, for safe and effective management of human echinococcosis. Artif. Cells Nanomed. Biotechnol. 2016 44 3 937 942 25783855
    [Google Scholar]
  22. Permana A.D. Utami R.N. Layadi P. Himawan A. Juniarti N. Anjani Q.K. Utomo E. Mardikasari S.A. Arjuna A. Donnelly R.F. Thermosensitive and mucoadhesive in situ ocular gel for effective local delivery and antifungal activity of itraconazole nanocrystal in the treatment of fungal keratitis. Int. J. Pharm. 2021 602 120623 10.1016/j.ijpharm.2021.120623 33892058
    [Google Scholar]
  23. Liu R. Sun L. Fang S. Wang S. Chen J. Xiao X. Liu C. Thermosensitive in situ nanogel as ophthalmic delivery system of curcumin: Development, characterization, in vitro permeation and in vivo pharmacokinetic studies. Pharm. Dev. Technol. 2016 21 5 576 582 10.3109/10837450.2015.1026607 26024239
    [Google Scholar]
  24. Gadad A.P. Wadklar P.D. Dandghi P. Patil A. Thermosensitive in situ gel for ocular delivery of lomefloxacin. Indian J Pharm Educ Res. 2016 50 2 S96 S105
    [Google Scholar]
  25. Hu Z. Shan J. Jin X. Sun W. Cheng L. Chen X.L. Wang X. Nanoarchitectonics of in situ antibiotic-releasing acicular nanozymes for targeting and inducing cuproptosis-like death to eliminate drug-resistant bacteria. ACS Nano 2024 18 35 24327 24349 10.1021/acsnano.4c06565 39169538
    [Google Scholar]
  26. Saxenaa P. Kushwaha S.K.S. Temperature sensitive ophthalmic hydrogels of Levofloxacin hemihydrate with enhanced solubility and prolonged retention time. Int. J. Pharm. Pharm. Sci. 2013 5 Suppl. 3 877 883
    [Google Scholar]
  27. Varshosaz J. Tabbakhian M. Salmani Z. Designing of a thermosensitive chitosan/poloxamer in situ gel for ocular delivery of ciprofloxacin. Open Drug Deliv. J. 2008 2 1 61 70 10.2174/1874126600802010061
    [Google Scholar]
  28. Makwana S.B. Patel V.A. Parmar S.J. Development and characterization of in-situ gel for ophthalmic formulation containing ciprofloxacin hydrochloride. Results Pharma Sci. 2016 6 1 6 10.1016/j.rinphs.2015.06.001 26949596
    [Google Scholar]
  29. Tiwari A. Gangwar N.K. Pathak K. Fast-dissolving ocular films of riboflavin acetate conjugate for treatment of keratoconus in UVA-CXL procedure: Ex vivo permeation, hemolytic toxicity and apoptosis detection. Expert Opin. Drug Deliv. 2014 11 3 325 343 10.1517/17425247.2014.873028 24386903
    [Google Scholar]
  30. El Sayeh F Abou El Ela A. Abbas Ibrahim M. Alqahtani Y. Almomen A. Sfouq Aleanizy F. Fluconazole nanoparticles prepared by antisolvent precipitation technique: Physicochemical, in vitro, ex vivo and in vivo ocular evaluation. Saudi Pharm. J. 2021 29 6 576 585 10.1016/j.jsps.2021.04.018 34194264
    [Google Scholar]
  31. Akbari J A. Curcumin Niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery. J. Drug Deliv. Sci. Technol. 2020 60 102035
    [Google Scholar]
  32. Mura P. Maestrelli F. D’Ambrosio M. Luceri C. Cirri M. Evaluation and comparison of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as vectors to develop hydrochlorothiazide effective and safe pediatric oral liquid formulations. Pharmaceutics 2021 13 4 437 10.3390/pharmaceutics13040437 33804945
    [Google Scholar]
  33. Abdellatif M.M. Ahmed S.M. El-Nabarawi M.A. Teaima M. Oral bioavailability enhancement of vancomycin hydrochloride with cationic nanocarrier (Leciplex): Optimization, in vitro, ex vivo, and in vivo studies. Sci. Pharm. 2022 91 1 1 18 10.3390/scipharm91010001
    [Google Scholar]
  34. Ferrari F. Sorrenti M. Rossi S. Catenacci L. Sandri G. Bonferoni M.C. Caramella C. Bettinetti G. Vancomycin-triacetyl cyclodextrin interaction products for prolonged drug delivery. Pharm. Dev. Technol. 2008 13 1 65 73 10.1080/10837450701703014 18300101
    [Google Scholar]
  35. Mahboobian M.M. Mohammadi M. Mansouri Z. Mohammadi M. Mansouri Z. Development of thermosensitive in situ gel nanoemulsions for ocular delivery of acyclovir. J. Drug Deliv. Sci. Technol. 2020 55 101400 10.1016/j.jddst.2019.101400
    [Google Scholar]
  36. Abelson M.B. Udell I.J. Weston J.H. Normal human tear pH by direct measurement. Arch. Ophthalmol. 1981 99 2 301 10.1001/archopht.1981.03930010303017 7469869
    [Google Scholar]
  37. Daithankar A.V. Shiradkar M.R. Thermoreversibal anesthetic gel for periodontal intrapocket delivery of mepivacaine hydrochloride. Pharm. Lett. 2012 4 3 889 896
    [Google Scholar]
  38. Üstündağ-Okur N. Gökçe E.H. Bozbıyık D.İ. Eğrilmez S. Özer Ö. Ertan G. Preparation and in vitro–in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur. J. Pharm. Sci. 2014 63 204 215 10.1016/j.ejps.2014.07.013 25111119
    [Google Scholar]
  39. Lupu A. Rosca I. Gradinaru V.R. Bercea M. Temperature induced gelation and antimicrobial properties of pluronic F127 based systems. Polymers 2023 15 2 355 10.3390/polym15020355 36679236
    [Google Scholar]
  40. Pradines B. Djabourov M. Vauthier C. Loiseau P.M. Ponchel G. Bouchemal K. Gelation and micellization behaviors of pluronic® F127 hydrogel containing poly(isobutylcyanoacrylate) nanoparticles specifically designed for mucosal application. Colloids Surf. B Biointerfaces 2015 135 669 676 10.1016/j.colsurfb.2015.08.021 26340355
    [Google Scholar]
  41. Balan G.A. Precupas A. Matei I. Gelation behaviour of pluronic f127/polysaccharide systems revealed via thioflavin T fluorescence. Gels 2023 9 12 939 10.3390/gels9120939 38131925
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878339109250219072409
Loading
/content/journals/raddf/10.2174/0126673878339109250219072409
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Box behnken composite design ; in-situ gel ; nanolipid carrier ; endophthalmitis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test