Skip to content
2000
image of Exploring Potential Use of Banana Peel Extract (Musa Species) as a New Polymer to Create Sustainable Materials and Innovative Drug Delivery Applications: An Updated Review

Abstract

Introduction/ Objective

The Musa genus, which includes bananas and plantains, offers a natural source of polymers. These polymers are finding applications in various industries, such as pharmaceuticals, where they are used as drug delivery systems. Additionally, Musa species are used in the creation of biopolymer composites, which are eco-friendly materials, and in the production of nanocellulose, a nanomaterial with promising properties. The versatility of Musa species makes it a valuable resource for developing sustainable materials and exploring new applications. This review aims to highlight recent advances in the applications of bio-polymers, biocomposites, nanocellulose, and novel drug delivery systems using Musa species.

Methods

The review likely examines existing literature, research studies, and experimental findings related to Musa species. It may analyze the characterization, treatment, and fabrication techniques of Musa species for these applications.

Results

The multifaceted role of Musa species is emphasized, including its contribution to pharmaceutical advancements, eco-friendly polymer production, and innovative nanocellulose applications.

Conclusion

In summary, this review paper explores how Musa species can be harnessed for various technological and scientific purposes, particularly in the fields of biopolymers, biocomposites, and drug delivery systems. The tropical plant’s versatility and significance are underscored throughout the review.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878329777250311072638
2025-03-21
2025-05-25
Loading full text...

Full text loading...

References

  1. Jain N. K. Controlled and Novel drug delivery. 4th Ed. CBS Publishers New Delhi, India 2019 1 6
    [Google Scholar]
  2. Ganesan P. Deepa John A.J. Sabapathy L. Duraikannu A. Review on microsphere. Amer. J. Drug Discov. Develop. 2014 4 3 153 179 10.3923/ajdd.2014.153.179
    [Google Scholar]
  3. Whelehan M. Marison I.W. Microencapsulation using vibrating technology. J. Microencapsul. 2011 28 8 669 688 10.3109/02652048.2011.586068 22047545
    [Google Scholar]
  4. Yang Q. Forrest L. Drug delivery to the lymphatic system. Drug Delivery Principles and Applications. 2nd Ed. Wang B. Hu L. Siahaan T.J. Hoboken John Wiley and Sons Inc 2016 503 548 10.1002/9781118833322.ch21
    [Google Scholar]
  5. Vijaya Shanti B. Mrudula T.P.K.V. An imperative note on novel drug delivery systems. J. Nanomed. Nanotechnol. 2011 2 7 1000125 10.4172/2157‑7439
    [Google Scholar]
  6. Zahra Z. Habib Z. Chung S. Badshah M.A. Exposure route of TIO2 nps from industrial applications to wastewater treatment and their impacts on the agro-environment. Nanomaterials (Basel) 2020 10 8 1469 10.3390/nano10081469 32727126
    [Google Scholar]
  7. Liu Z. Tabakman S. Welsher K. Dai H. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009 2 2 85 120 10.1007/s12274‑009‑9009‑8 20174481
    [Google Scholar]
  8. Orive G. Gascón A.R. Hernández R.M. Domínguez-Gil A. Pedraz J.L. Techniques: New approaches to the delivery of biopharmaceuticals. Trends Pharmacol. Sci. 2004 25 7 382 387 10.1016/j.tips.2004.05.006 15219981
    [Google Scholar]
  9. Zafar Razzacki S. Thwar P.K. Yang M. Ugaz V.M. Burns M.A. Integrated microsystems for controlled drug delivery. Adv. Drug Deliv. Rev. 2004 56 2 185 198 10.1016/j.addr.2003.08.012 14741115
    [Google Scholar]
  10. Arayne M.S. Sultana N. Qureshi F. Review: Nanoparticles in delivery of cardiovascular drugs. Pak. J. Pharm. Sci. 2007 20 4 340 348 17604260
    [Google Scholar]
  11. Patra J.K. Baek K.H. Green nanobiotechnology: Factors afecting synthesis and characterization techniques. J. Nanomater. 2014 2014 1 417305 10.1155/2014/417305
    [Google Scholar]
  12. Joseph R.R. Venkatraman S.S. Drug delivery to the eye: What benefits do nanocarriers offer? Nanomedicine (Lond.) 2017 12 6 683 702 10.2217/nnm‑2016‑0379 28186436
    [Google Scholar]
  13. Mirza A.Z. Siddiqui F.A. Nanomedicine and drug delivery: A mini review. Int. Nano Lett. 2014 4 1 94 10.1007/s40089‑014‑0094‑7
    [Google Scholar]
  14. Rudramurthy G. Swamy M. Sinniah U. Ghasemzadeh A. Nano- particles: Alternatives against drug-resistant pathogenic microbes. Molecules 2016 21 7 836 10.3390/molecules21070836 27355939
    [Google Scholar]
  15. Govaerts R. Nic Lughadha E. Black N. Turner R. Paton A. The world checklist of vascular plants, a continuously updated resource for exploring global plant diversity. Sci. Data 2021 8 1 215 10.1038/s41597‑021‑00997‑6 34389730
    [Google Scholar]
  16. Taylor J.L.S. Rabe T. McGaw L.J. Jäger A.K. van Staden J. Towards the scientific validation of traditional medicinal plants. Plant Growth Regul. 2001 34 1 23 37 10.1023/A:1013310809275
    [Google Scholar]
  17. Scotland R.W. Wortley A.H. How many species of seed plants are there? Taxon 2003 52 1 101 104 10.2307/3647306
    [Google Scholar]
  18. Paton A.J. Brummitt N. Govaerts R. Harman K. Hinchcliffe H. Allkin B. Towards target 1 of the global strategy for plant conservation: A working list of all known plant species: Progress and prospects. Taxon 2008 57 2 602 611
    [Google Scholar]
  19. Thanaraj T. Terry L.A. Tropical fruit (Banana, pineapple, papaya and mango). Health-promoting properties of fruit and vegetables. Terry L.A. Oxfordshire CAB Int 2011 352 370 10.1079/9781845935283.0352
    [Google Scholar]
  20. Gupta R.K. Kumar S. Trivedi A. Verma R. Yogesh Vitamin c and its role in body. Int. J. Pharm. Pharm. Sci. 2022 14 2 1 5 10.22159/ijpps.2022v14i2.43394
    [Google Scholar]
  21. López G.B. Montano F.J.G. Propiedadesfuncionales del plátano (Musa sp). Rev Med UV 2014 14 22 26
    [Google Scholar]
  22. Shepherd K. Observations on musa taxonomy identification of genetic diversity in the genus musa Proceedings of an International Workshop Held at Los Baos Los Baos, Philippines, 5–10 Sept 1988, pp. 158–165.
    [Google Scholar]
  23. Simmonds N.W. Shepherd K. The taxonomy and origins of the cultivated bananas. J. Linn. Soc. Lond. Bot. 1955 55 359 302 312 10.1111/j.1095‑8339.1955.tb00015.x
    [Google Scholar]
  24. Alves E.J. A cultura da banana: Aspectostécnicos, socioeconômicos e agroindustriais. 2nd Ed. Brasília EMBRAPA 1999
    [Google Scholar]
  25. Revadigar V. Al-Mansoub M.A Asif M. Anti-oxidative and cytotoxic attributes of phenolic rich ethanol extract of musa balbisiana colla inflorescence J. Appl. Pharm. Sci. 2017 7 103 110 10.7324/JAPS.2017.70518
    [Google Scholar]
  26. Ssebuliba R. Talengera D. Makumbi D. Namanya P. Tenkouano A. Tushemereirwe W. Pillay M. Reproductive efficiency and breeding potential of east african highland (Musa AAA-EA) bananas. Field Crops Res. 2006 95 2-3 250 255 10.1016/j.fcr.2005.03.004
    [Google Scholar]
  27. Price N.S. The origin and development of banana and plantain cultivation. Bananas and plantains. Cham Springer 1995 1 13 10.1007/978‑94‑011‑0737‑2_1
    [Google Scholar]
  28. Cheviron P. Gouanvé F. Espuche E. Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites. Carbohydr. Polym. 2014 108 291 298 10.1016/j.carbpol.2014.02.059 24751276
    [Google Scholar]
  29. Huang H. Yang X. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydr. Res. 2004 339 15 2627 2631 10.1016/j.carres.2004.08.005 15476726
    [Google Scholar]
  30. Shukla M.K. Singh R.P. Reddy C.R.K. Jha B. Synthesis and characterization of agar-based silver nanoparticles and nanocomposite film with antibacterial applications. Bioresour. Technol. 2012 107 295 300 10.1016/j.biortech.2011.11.092 22244898
    [Google Scholar]
  31. Pelissari F.M. Andrade-Mahecha M.M. Sobral P.J.A. Menegalli F.C. Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocoll. 2013 30 2 681 690 10.1016/j.foodhyd.2012.08.007
    [Google Scholar]
  32. Pereira A. Maraschin M. Banana (Musa spp) from peel to pulp: Ethnopharmacology, source of bioactive compounds and its relevance for human health. J. Ethnopharmacol. 2015 160 149 163 10.1016/j.jep.2014.11.008 25449450
    [Google Scholar]
  33. Sothornvit R. Pitak N. Oxygen permeability and mechanical properties of banana films. Food Res. Int. 2007 40 3 365 370 10.1016/j.foodres.2006.10.010
    [Google Scholar]
  34. Waliszewski K.N. Aparicio M.A. Bello L.A. Monroy J.A. Changes of banana starch by chemical and physical modification. Carbohydr. Polym. 2003 52 3 237 242 10.1016/S0144‑8617(02)00270‑9
    [Google Scholar]
  35. Yadav A Banana musa acuminata: Most popular and common indian plant with multiple pharmacological potentials J. Pharm. Biol. Sci. 2021 7 1 36 44 10.30574/wjbphs.2021.7.1.0073
    [Google Scholar]
  36. Simmonds N.W. Shepherd K. The taxonomy and origins of the cultivated bananas. . J. Linn. Soci. Lond. Bota. Bann. 1955 55 302 312
    [Google Scholar]
  37. Swennen R. Limits of morphotaxonomy: Names and synonyms of plantain in africa and elsewhere. Proceedings of an International Workshop (INIBAP) Montpellier, France, 1990, pp. 172-210.
    [Google Scholar]
  38. Badanayak P. Jose S. Bose G. Banana pseudostem fiber: A critical review on fiber extraction, characterization, and surface modification. J. Nat. Fibers 2023 20 1 2168821 10.1080/15440478.2023.2168821
    [Google Scholar]
  39. Nguyen T.A. Nguyen T.H. Study on mechanical properties of banana fiberreinforced materials poly (lactic acid) composites. Int. J. Chem. Eng. 2022 1 2022
    [Google Scholar]
  40. Roselan MA Ashari SE Faujan NH Mohd Faudzi SM Mohamad R An improved nanoemulsion formulation containing kojic monooleate: Optimization, characterization and in vitro studies. Molecules 2020 25 11 2616 10.3390/molecules25112616 32512808
    [Google Scholar]
  41. Pelissari F.M. Andrade-Mahecha M.M. Sobral P.J.A. Menegalli F.C. Biodegradable films based on rice starch and rice flour. J. Cere. Sci. 2013 51 2 213 219 10.1016/j.jcs.2009.11.014
    [Google Scholar]
  42. Alothman M. Bhat R. Karim A.A. Antioxidant capacity and phenolic content of selected tropical fruits from malaysia, extracted with different solvents. Food Chem. 2009 115 3 785 788 10.1016/j.foodchem.2008.12.005
    [Google Scholar]
  43. Kalita H Hazarika A. Kandimalla R. Development of banana (musa paradisiaca)pseudo stem fiber as a surgical bio-tool to avert post-operative wound infections RSC Adv. 2018 8 36791 36801
    [Google Scholar]
  44. Orsuwan A. Shankar S. Wang L.F. Sothornvit R. Rhim J.W. One-step preparation of banana powder/silver nanoparticles composite films. J. Food Sci. Technol. 2017 54 2 497 506 10.1007/s13197‑017‑2491‑1 28242949
    [Google Scholar]
  45. Liyanage R. Rizliya V. Jayathilake C. Jayawardana B.C. Vidanarachchi J.K. Hypolipidemic Activity and Hypoglycemic Effects of Banana Blossom (Musa Acuminate Colla) Incorporated Experimental Diets in Wistar Rats. Sri Lanka Association for the Advancement of Science Proceedings of the 71st Annual Sessions, Part I Section E2 601/E2. Gangodawila, Nugegoda, Sri Lanka, 2015, pp. 1-6.
    [Google Scholar]
  46. Okon J.E. Esenowo G.J. Afaha I.P. Umoh N.S. Haematopoietic properties of ethanolic fruit extract of musa acuminata on albino rats. Bull Env Pharmacol Life Sci 2013 2 22 26
    [Google Scholar]
  47. (Musa Acuminata) Peel Flour Affects the Growth, Antioxidant Status, Cytokine Responses, and Disease Susceptibility of Rohu, Labeorohita J. Immunol. Res. 2016 2016 4086591 10.1155/2016/4086591 27294156
    [Google Scholar]
  48. Benny P. Viswanathan G. Thomas S. Nair A. Investigation of immunostimulatory behaviour of musa acuminata peel extract in clarias batrachus. Inst Int Omics Appl Biotech J 2010 1 39 43
    [Google Scholar]
  49. Singhal M. Ratra P. Investigation of immunomodulatory potential of methanolic and hexane extract of musa acuminata peel (plantain) extracts. Glob. J. Pharmacol. 2013 7 69 74 10.5829/idosi.gjp.2013.7.1.71145
    [Google Scholar]
  50. Lee K.H. Padzil A.M. Syahida A. Abdullah N. Zuhainis S.W. Maziah M. Evaluation of anti-inflflammatory, antioxidant and antinociceptive activities of six malaysian medicinal plants. J. Med. Plants Res. 2011 5 5555 5563 10.5897/JMPR.9000612
    [Google Scholar]
  51. Sumathy V. Lachumy S.J. Zakaria Z. Sasidharan S. In vitro bioactivity and phytochemical screening of musa acuminata flower. Pharmacologyonline 2011 2 118 127
    [Google Scholar]
  52. Ling S.S.C. Chang S.K. Sia W.C.M. Yim H.S. Antioxidant effcacy of unripe banana (musa acuminata colla) peel extracts in sunflower oil during accelerated storage. Acta Sci. Pol. Technol. Aliment. 2015 14 4 343 356 10.17306/J.AFS.2015.4.34 28068040
    [Google Scholar]
  53. Anal A.K. Jaisanti S. Noomhorm A. Enhanced yield of phenolic extracts from banana peels (musa acuminata colla aaa) and cinnamon barks (cinnamomum varum) and their antioxidative potentials in fish oil. J. Food Sci. Technol. 2014 51 10 2632 2639 10.1007/s13197‑012‑0793‑x 25328205
    [Google Scholar]
  54. Mohd Rasidek N.A. Mad Nordin M.F. Shameli K. Formulation and evaluation of semisolid jelly produced by musa acuminata colla (aaa group) peels. Asian Pac. J. Trop. Biomed. 2016 6 1 55 59 10.1016/j.apjtb.2015.09.025
    [Google Scholar]
  55. Lee E.H. Yeom H.J. Ha M.S. Bae D.H. Development of banana peel jelly and its antioxidant and textural properties. Food Sci. Biotechnol. 2010 19 2 449 455 10.1007/s10068‑010‑0063‑5
    [Google Scholar]
  56. Ugbogu E.A. Ude V.C. Elekwa I. Arunsi U.O. Uche-Ikonne C. Nwakanma C. Toxicological profile of the aqueous-fermented extract of musa paradisiaca in rats. Avicenna J. Phytomed. 2018 8 6 478 487 30456195
    [Google Scholar]
  57. Jawaid M. Thariq M. Saba N. Durability and life prediction in bio composites, fibre-reinforced composites and hybrid composites. Cambridge, UK Woodhead Publishing 2018 1 6
    [Google Scholar]
  58. Ramesh M. Jafrey Daniel James D. Sathish kumar G. Vijayan V. Raja Narayanan S. Teklemariam A. Synthesis and characterization of banana and pineapple reinforced hybrid polymer composite for reducing environmental pollution. Bioinorg. Chem. Appl. 2022 2022 1 6344179 10.1155/2022/6344179 35601028
    [Google Scholar]
  59. Motaleb K.Z.M.A. Ahad A. Laureckiene G. Milasius R. Innovative banana fiber nonwoven reinforced polymer composites: Pre-and post-treatment effects on physical and mechanical properties. Polymers (Basel) 2021 13 21 3744 10.3390/polym13213744 34771301
    [Google Scholar]
  60. Kenned J.J. Sankaranarayanasamy K. Binoj J.S. Chelliah S.K. Thermo-mechanical and morphological characterization of needle punched non-woven banana fiber reinforced polymer composites. Compos. Sci. Technol. 2020 185 107890 10.1016/j.compscitech.2019.107890
    [Google Scholar]
  61. Subramanya R. Reddy D.N.S. Sathyanarayana P.S. Tensile, impact and fracture toughness properties of banana fibre-reinforced polymer composites. Advances in Materials and Processing Technologies 2020 6 4 661 668 10.1080/2374068X.2020.1734350
    [Google Scholar]
  62. Laksham S. Hitish H. Experimental investigations of epoxy-resin-banana-fiber-saw dust bio-composite material for potential application as partitioning board. Mater. Today Proc. 2023 10.1016/j.matpr.2023.01.237
    [Google Scholar]
  63. Hirpa H.K. Wangatia L.M. Demboba S.M. Synthesizing high-strength biodegradable polymer film from ethiopian false banana pseudo-stem using poss and chitosan as a filler. J. Packa. Technol. Res. 2022 6 2 115 124 10.1007/s41783‑022‑00135‑6
    [Google Scholar]
  64. Balavairavan B. Saravanakumar S.S. Characterization of ecofriendly poly (vinyl alcohol) and green banana peel filler (gbpf) reinforced bio-films. J. Polym. Environ. 2021 29 9 2756 2771 10.1007/s10924‑021‑02056‑y
    [Google Scholar]
  65. Rabbi M.S. Islam T. Islam G.M.S. Injection-molded natural fiber-reinforced polymer composites–a review. Int. J. Mechan. Mater. Enginee. 2021 16 1 15 10.1186/s40712‑021‑00139‑1
    [Google Scholar]
  66. Kuete M.A. Van Velthem P. Ballout W. Nysten B. Devaux J. Ndikontar M.K. Pardoen T. Bailly C. Integrated approach to eco-friendly thermoplastic composites based on chemically recycled pet co-polymers reinforced with treated banana fibres. Polymers (Basel) 2022 14 22 4791 10.3390/polym14224791 36432919
    [Google Scholar]
  67. Arumugam C. Arumugam G.S. Ganesan A. Muthusamy S. Mechanical and water absorption properties of short banana fiber/unsaturated polyester/molecular sieves+ zno nanorod hybrid nanobiocomposites. ACS Omega 2021 6 51 35256 35271 10.1021/acsomega.1c02662 34984258
    [Google Scholar]
  68. Balaji A. Sivaramakrishnan K. Karthikeyan B. Purushothaman R. Swaminathan J. Kannan S. Udhayasankar R. Haja Madieen A. Study on mechanical and morphological properties of sisal/banana/coir fiber-reinforced hybrid polymer composites. J. Braz. Soc. Mech. Sci. Eng. 2019 41 9 386 10.1007/s40430‑019‑1881‑x
    [Google Scholar]
  69. Kumar V. Chakraborty P. Janghu P. Umesh M. Sarojini S. Pasrija R. Kaur K. Lakkaboyana S.K. Sugumar V. Nandhagopal M. Sivalingam A.M. Potential of banana based cellulose materials for advanced applications: A review on properties and technical challenges. Carbohydrate Polymer Technol Appl 2023 6 100366 10.1016/j.carpta.2023.100366
    [Google Scholar]
  70. Tai N.V. Linh M.N. Thuy N.M. Optimization of extraction conditions of phytochemical compounds in “xiem” banana peel powder using response surface methodology. J. Appl. Biol. Biotechnol. 2021 9 6 56 62 10.7324/JABB.2021.9607
    [Google Scholar]
  71. Avram I. Gatea F. Vamanu E. Functional compounds from banana peel used to decrease oxidative stress effects. Processes (Basel) 2022 10 2 248 10.3390/pr10020248
    [Google Scholar]
  72. Eng L. Z. Loo K. P. Microwave-assisted extraction of banana peel bio-flocculant and its potential in wastewater treatment. . Glob. J. Eng. Technol. Adv. 2019 1 001 009 10.30574/gjeta.2019.1.1.0001
    [Google Scholar]
  73. Ajijolakewu K.A. Ayoola A.S. Agbabiaka T.O. Zakariyah F.R. Ahmed N.R. Oyedele O.J. Sani A. A review of the ethnomedicinal, antimicrobial, and phytochemical properties of musa paradisiaca (plantain). Bull. Natl. Res. Cent. 2021 45 1 86 10.1186/s42269‑021‑00549‑3
    [Google Scholar]
  74. Adat J. Vrunal M. Mithun M. Formulation and evaluation of capsules containing herbal extracts of musa paradisiaca for treatment of anaemia. Eur. Chem. Bull. 2023 12 10 2130 2136
    [Google Scholar]
  75. Rizka R. Development of a gel spray formulation based on banana peel (musa paradisiaca l.) as an approach to support environmental sustainability. 2023 IOP Conf. Ser.: Earth Environ. Sci 2023 1241 10.1088/1755‑1315/1241/1/012102
    [Google Scholar]
  76. Al-Hakim NA Fidrianny I Anggadiredja K Effect of banana (Musa sp.) peels extract in nanoemulsion dosage forms for the improvement of memory: In vitro and in vivo studies. Pharm Nanotechnol 2022 10 4 299 10.2174/2211738510666220422135519
    [Google Scholar]
  77. Budi H.S. Anitasari S. Ulfa N.M. Juliastuti W.S. Aljunaid M. Ramadan D.E. Muzari K. Shen Y.K. Topical medicine potency of musa paradisiaca var. sapientum (l.) kuntze as oral gel for wound healing: An in vitro, in vivo study. Eur. J. Dent. 2022 16 4 848 855 10.1055/s‑0041‑1740226 35181871
    [Google Scholar]
  78. Gozalil D Sopyan I Mustarichi R Legowo W P The potential of banana fruit ranggap (musa paradisiaca var. troglodytarum) as an excipient alternative to oral tablet dosage form. Pharmacy. Education. 2021 21 2 98 107 10.46542/pe.2021.212.98107
    [Google Scholar]
  79. Thanyapanich N. Jimtaisong A. Rawdkuen S. Functional properties of banana starch (musa spp.) and its utilization in cosmetics. Molecules 2021 26 12 3637 10.3390/molecules26123637 34198695
    [Google Scholar]
  80. Prasad K D Sujana A. Formulation and evaluation of fast dissolving tablets by using musa paradisiaca. J. Emerg. Technol. Innov. Res. 2020 7 2
    [Google Scholar]
  81. Alamsyah N. Djamil R. Rahmat D. Antioxidant activity of combination banana peel (musa paradisiaca) and watermelon rind (citrullus vulgaris) extract in lotion dosage form. Asian J. Pharm. Clin. Res. 2016 9 9 300 10.22159/ajpcr.2016.v9s3.14926
    [Google Scholar]
  82. Bansal J. Malviya R. Malaviya T. Bhardwaj V. Sharma P.K. Evaluation of banana peel pectin as excipient in solid oral dosage form. Glob. J. Pharmacol. 2014 8 275 278
    [Google Scholar]
  83. Reddy V. R Evaluation of musa paradisiaca (banana peel) mucilage as pharmaceutical excipient. Int. J. Pharm. Sci. 2013 2 4 1 6
    [Google Scholar]
  84. Porzio S Caselli G Pellegrini L Pallottini V. Efficacy of a new topical gel-spray formulation of ketoprofen lysine salt in the rat: Percutaneous permeation in vitro and in vivo and pharmacological activity. Pharmacol. Res. 1998 37 1 47 10.1006/phrs.1997.0260
    [Google Scholar]
  85. Alrabiah A. Albalawi F. Aljazea S.A. Barri R.M.A. Alquraishi S.I. Alharthi A. Barri A.M.A. Alanazi M. Alqahtani A. Effect of banana peels on dental bleaching: An in vitro study. Annals of Dental Specialty 2024 12 1 21 25 10.51847/Wr7Ti8B3yO
    [Google Scholar]
  86. Salman S. G. Bokhari S. W. A. Ahmed H. Asad U. Naqvi S. Kiran R. Shah S. F. Gilani S. U. Noor A. Abidi S. Mujahid S. Formulation and evaluation of novel herbal toothpaste in oral care cosmetology. J. Pharm. Negat. 2022 2022 2310 2323 10.47750/pnr.2022.13.S10.271.
    [Google Scholar]
  87. Benahmed A.G. Gasmi A. Menzel A. A review on natural teeth whitening. J. Oral Biosci 2021 12 2 232 235 10.1016/j.job.2021.12.002
    [Google Scholar]
  88. Kumar P.S. Durgadevi S. Saravanan A. Uma S. Antioxidant potential and antitumour activities of nendran banana peels in breast cancer cell line. Indian J. Pharm. Sci. 2019 81 3 464 473 10.36468/pharmaceutical‑sciences.531
    [Google Scholar]
  89. Rathinamoorthy R. Keerthana S. Design and development of anti-heel crack band using banana peel extract. Int. J. Mech. Eng. 2021 6 3 0974 5823
    [Google Scholar]
  90. Adetuyi B.O. Ogundipe A.E. Ogunlana O.O. Egbuna C. Estella O.U. Mishra A.P. Akram M. Achar R.R. Banana Peel as a Source of Nutraceuticals. Food and Agricultural Byproducts as Important Source of Valuable Nutraceuticals. Cham Springer 2022 243 250 10.1007/978‑3‑030‑98760‑2_17
    [Google Scholar]
  91. Prashanthi D. Chaitanya M. A review on multiple uses of banana peel. Int. J. Sci. Res. 2020 5 3 120 122
    [Google Scholar]
  92. Cendana W. Diadora A.D.S. Martinus A.R. Ikhtiari R. Potential effect of musa paradisiaca peel extract on skin hydration. Semant. Schol. 2020 1 1 6 10.5220/0009515803790386
    [Google Scholar]
  93. Maske A.O. Formulation and evaluation of herbal face pack for glowing skin. Int. J. Adv. Pharm 2019 8 01 e5184 10.7439/ijap.v8i1.5184
    [Google Scholar]
  94. Wahyuni D.F. Mustary M. Syafruddin S. Deviyanti D. Formulasi masker gel peel off dari kulit pisang ambon (musa paradisiaca var). Jurnal Sains dan Kesehatan 2022 4 1 48 55 10.25026/jsk.v4i1.875
    [Google Scholar]
  95. Agustina L. Pertiwi D.M.A. Yuliati N. Optimasi dan uji mutu fisik formulasi masker gel peel – off kulit pisang (Musa paradisiaca l). J of Pharm Sci and Tech 2022 3 1 163 171 10.30649/pst.v3i1.36
    [Google Scholar]
  96. Broto W. Arifan F. Wardani O.K. Faisal M.M. Nugraheni A. Shampoo formulation based on banana extract using the maceration method. Water Technol. 2022 10 2 67 70 10.14710/10.2.67‑70
    [Google Scholar]
  97. Adeel S. Habiba M. Kiran S. Iqbal S. Abrar S. Hassan C.M. Utilization of colored extracts for the formulation of ecological friendly plant-based green products. Sustainability (Basel) 2022 14 18 11758 10.3390/su141811758
    [Google Scholar]
  98. Savitri D. Wahyuni S. Bukhari A. Djawad K. Hatta M. Riyanto P. Bahar B. Wahab S. Hamid F. Rifai Y. Anti-inflammatory effects of banana (musa balbisiana) peel extract on acne vulgaris: in vivo and in silico study. J. Taibah Univ. Med. Sci. 2023 18 6 1586 1598 10.1016/j.jtumed.2023.07.008 37693819
    [Google Scholar]
  99. Fitria Apriani E. Miksusanti M. Fransiska N. Formulation and optimization peel-off gel mask with polyvinyl alcohol and gelatin based using factorial design from banana peel flour (musa paradisiaca l) as antioxidant. Indones. J. Pharm. 2022 33 2 261 268
    [Google Scholar]
  100. Indrawati T. Simanjuntak L. Pratami D.K. Hair tonic shampoo formulation with ambon banana (musa acuminata colla) corm extract. Int. J. Appl. Pharma. 2020 12 5 279 285 10.22159/ijap.2020v12i5.37918
    [Google Scholar]
  101. Choi D.Y. Lee Y.J. Hong J.T. Lee H.J. Antioxidant properties of natural polyphenols and their therapeutic potentials for alzheimer’s disease. Brain Res. Bull. 2012 87 2-3 144 153 10.1016/j.brainresbull.2011.11.014 22155297
    [Google Scholar]
  102. Pilus S. S. B. M. Rosli N. F. B. M. Hassan N. F. B. Banana skin and glutinous rice (banana peelskin refine 2 in 1): An innovation in the field of beauty. 2021 Available from: https://scholar.google.com/scholar?
  103. Bhavani M. Morya S. Saxena D. Awuchi C.G. Bioactive, antioxidant, industrial, and nutraceutical applications of banana peel. Int. J. Food Prop. 2023 26 1 1277 1289 10.1080/10942912.2023.2209701
    [Google Scholar]
  104. Farooq M.A. Ali S. Hassan A. Tahir H.M. Mumtaz S. Mumtaz S. Biosynthesis and industrial applications of α-amylase: A review. Arch. Microbiol. 2021 203 4 1281 1292 10.1007/s00203‑020‑02128‑y 33481073
    [Google Scholar]
  105. Singh A. Bajar S. Devi A. Pant D. An overview on the recent developments in fungal cellulase production and their industrial applications. Bioresour. Technol. Rep. 2021 14 100652 10.1016/j.biteb.2021.100652
    [Google Scholar]
  106. Zaini H.B.M. Sintang M.D.B. Pindi W. The roles of banana peel powders to alter technological functionality, sensory and nutritional quality of chicken sausage. Food Sci. Nutr. 2020 8 10 5497 5507 10.1002/fsn3.1847 33133552
    [Google Scholar]
  107. Saeed S. Ur Rehman Baig U. Tayyab M. Altaf I. Irfan M. Raza S.Q. Nadeem F. Mehmood T. Valorization of banana peels waste into biovanillin and optimization of process parameters using submerged fermentation. Biocatal. Agric. Biotechnol. 2021 36 102154 10.1016/j.bcab.2021.102154
    [Google Scholar]
  108. Kumar Rana G. Singh Y. Mishra S.P. Rahangdale H.K. Potential use of banana and its by-products: A review. Int. J. Curr. Microbiol. Appl. Sci. 2018 7 6 1827 1832 10.20546/ijcmas.2018.706.218
    [Google Scholar]
  109. Radzi H. Incorporation of Banana Peel Fiber in Jelly as a Functional Food Precursor. Kedah, Malaysia Malaysian Academic Library Institutional Repository 2020 1 6 10.3390/foods10071486
    [Google Scholar]
  110. Ramli S. Alkarkhi A.F.M. Shin Y.Y. Min-Tze L. Easa A.M. Effect of banana peel flour substitution on physical characteristic of yellow noodles. Int. J. Food Sci. 2009 1 60 326 340 10.1080/09637480903183503 19757248
    [Google Scholar]
  111. Shafi A. Ahmad F. Mohammad Z.H. Effect of the addition of banana peel flour on the shelf life and antioxidant properties of cookies. ACS Food Science & Technology 2022 2 8 1355 1363 10.1021/acsfoodscitech.2c00159
    [Google Scholar]
  112. Ahmad M.S. Siddiqui M.W. Singh J.P. Mir H. Nayyer M.A. Pre-treatments maintain the quality of banana flakes. Curr. J. Appl. Sci. Technol. 2019 33 2 1 8 10.9734/cjast/2019/v33i230055
    [Google Scholar]
  113. Dhake K. Jain S.K. Lakhawat S.S. Value addition in green banana for rural employment generation. Food Eng. Rev. 2019 59 1 1 11
    [Google Scholar]
  114. Maseko K.M. Regnier T. Meiring B. Musa species variation, production, and the application of its processed flour: A review. Scientia Horticulturae 2024 325 2 112688 10.1016/j.scienta.2023.112688
    [Google Scholar]
  115. Kabir M.R. Hasan M.M. Islam M.R. Haque A.R. Hasan S.M.K. Formulation of yogurt with banana peel extracts to enhance storability and bioactive properties. J. Food Process. Preserv. 2021 45 3 e15191 10.1111/jfpp.15191
    [Google Scholar]
  116. Sijabat E.K. Nuruddin A. Aditiawati P. Purwasasmita B.S. 2019 Synthesis and characterization of bacterial nanocellulose from banana peel for water filtration membrane application. J. Phys. Conf. Series. 1230 012085 10.1088/1742‑6596/1230/1/012085
    [Google Scholar]
  117. Ahmad K. Preparation and characterization of bio-based nanocomposites packaging films reinforced with cellulose nanofibers from unripe banana peels. Starch-Starke 2022 74 2100283 10.1002/star.202100283
    [Google Scholar]
  118. Flores-Jerónimo G. Silva-Mendoza J. Morales-San Claudio P.C. Toxqui-Terán A. Aguilar-Martínez J.A. Chávez-Guerrero L. Chemical and mechanical properties of films made of cellulose nanoplatelets and cellulose fibers obtained from banana pseudostem. Waste Biomass Valoriz. 2021 12 10 5715 5723 10.1007/s12649‑021‑01377‑2
    [Google Scholar]
  119. Srivastava K. Dixit S. Pal D. Mishra P. Srivastava P. Srivastava N. Effect of nanocellulose on mechanical and barrier properties of pva–banana pseudostem fiber composite films. Environ. Technol. Innov. 2021 21 101312 10.1016/j.eti.2020.101312
    [Google Scholar]
  120. Zhang M. Guo N. Sun Y. Shao J. Liu Q. Zhuang X. Twebaze C.B. Nanocellulose aerogels from banana pseudo-stem as a wound dressing. Ind. Crops Prod. 2023 194 116383 10.1016/j.indcrop.2023.116383
    [Google Scholar]
  121. Faradilla R.H.F. Risaldi Tamrin T.A.M. Salfia Rejeki S. Rahmi A. Arcot J. Low energy and solvent free technique for the development of nanocellulose based bioplastic from banana pseudostem juice. Carbohydr. Polym. Technol. Appl. 2022 4 100261 10.1016/j.carpta.2022.100261
    [Google Scholar]
  122. Harini K. Ramya K. Sukumar M. Extraction of nano cellulose fibers from the banana peel and bract for production of acetyl and lauroyl cellulose. Carbohydr. Polym. 2018 201 329 339 10.1016/j.carbpol.2018.08.081 30241826
    [Google Scholar]
  123. Shreedhana K. Ilavarasi R. 2020 Fabrication of nanocrystalline cellulose from banana peel obtained from unripe plantain bananas. j. phys. conf. series. 1644 012002 10.1088/1742‑6596/1644/1/012002
    [Google Scholar]
  124. Alzate-Arbeláez A.F. Dorta E. López-Alarcón C. Cortés F.B. Rojano B.A. Immobilization of andean berry (vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food Chem. 2019 294 503 517 10.1016/j.foodchem.2019.05.085 31126493
    [Google Scholar]
  125. Basumatary B. Mahanta C.L. Isolation of cellulose and synthesis of nanocellulose from banana (musa acuminata) rachis fibre and their utilization and characterization as bioactive aerogels. Biomass Convers. Biorefin. 2023 1 2023
    [Google Scholar]
  126. Khan H. Raghuvanshi S. Saroha V. Singh S. Baba W.N. Mudgil P. Dutt D. Biotransformation of banana peel waste into bacterial nanocellulose and its modification for active antimicrobial packaging using polyvinyl alcohol with in-situ generated silver nanoparticles. Food Packag. Shelf Life 2023 38 101115 10.1016/j.fpsl.2023.101115
    [Google Scholar]
  127. Fiallos-Cardenas M. Perez-Martínez S. Ramirez A.D. Prospectives for the development of a circular bioeconomy around the banana value chain. sustainable production and consumption. Carbohydrate Polymer Technologies and Applications. 2022 30 541 555
    [Google Scholar]
  128. Merais M.S. Khairuddin N. Salehudin M.H. Mobin Siddique M.B. Lepun P. Chuong W.S. Preparation and characterization of cellulose nanofibers from banana pseudostem by acid hydrolysis: Physico-chemical and thermal properties. Membranes (Basel) 2022 12 5 451 10.3390/membranes12050451 35629777
    [Google Scholar]
  129. Chávez-Guerrero L. Silva-Mendoza J. Toxqui-Terán A. Vega-Becerra O.E. Salinas-Montelongo J.A. Pérez-Camacho O. Direct observation of endoglucanase fibrillation and rapid thickness identification of cellulose nanoplatelets using constructive interference. Carbohydr. Polym. 2021 254 9 117463 10.1016/j.carbpol.2020.117463 33357922
    [Google Scholar]
  130. Thokchom R. Das M.J. Muchahary S. Ghosh T. Deka S.C. Nanocellulose fibers derived from culinary banana flower (musa abb) waste: Its characterization and application. J. Packa. Technol. Res. 2023 7 3 113 125 10.1007/s41783‑023‑00156‑9
    [Google Scholar]
  131. Sonawane A. Bhambar R. Nehete J. A comprehensive review of the phytochemistry and pharmacological profiles of Musa acuminata (family: Musaceae). Int. J. Pharm. Sci. Drug Res. 2024 16 5 888 899 10.25004/IJPSDR.2024.160516
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878329777250311072638
Loading
/content/journals/raddf/10.2174/0126673878329777250311072638
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test