Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2667-3878
  • E-ISSN: 2667-3886

Abstract

Introduction

Healing full-thickness wounds is often challenging and time-consuming, with complications such as scarring and infections. The standard treatment, split skin grafting, has limitations due to the availability of healthy donors and suitability for immunocompromised patients.

Methods

Autologous platelet lysate (PL) has been popular for tissue regenerative potential because it contains growth factors (GF) and is a safer option for bedridden patients with weak immune systems. However, PL has inconsistent clinical efficacy, high costs, and a short half-life. To address these issues, this study explores a novel delivery system by fabricating a chitosan/nanocrystalline cellulose (CS/NCC) hydrogel to sustainably deliver autologous PL to the wound site. Notably, NCC was prepared from kenaf bast fibers using acid hydrolysis and integrated into the CS matrix through physical entrapment without any chemical crosslinkers. The composite hydrogel was then enriched with autologous PL and further characterized for its physicochemical properties, GF release, and compatibility with skin cells. At the molecular level, gene expression of wound healing genes was facilitated using qPCR, revealing that the PL-supplemented hydrogel upregulated the expression of extracellular matrix genes. An study using a full-thickness wound model demonstrated that the CS-NCC-PL hydrogel dressing achieved 81.8% wound closure within 14 days, compared to the control groups.

Results

Histological analysis indicated enhanced re-epithelialization, angiogenesis, and collagen deposition. Particularly, the CS-NCC-PL hydrogel group showed a significantly higher hydroxyproline content (60.62 ± 11.46 μg/100 mg) by day 14. Immunohistochemistry results revealed elevated levels of α-SMA and CD31, markers of myofibroblast presence and angiogenesis, peaking at day 7.

Conclusion

These findings suggest that the CS-NCC-PL hydrogel is a promising personalized wound dressing for bedridden patients, offering improved healing outcomes in hospital settings.

Loading

Article metrics loading...

/content/journals/raddf/10.2174/0126673878323868240924154455
2024-10-08
2025-06-23
Loading full text...

Full text loading...

References

  1. Chiara BarsottiM. LosiP. BrigantiE. Effect of platelet lysate on human cells involved in different phases of wound healing.PLoS One2013812e8475310.1371/journal.pone.0084753 24386412
    [Google Scholar]
  2. HuangQ. WuT. GuoY. Platelet-rich plasma-loaded bioactive chitosan@sodium alginate@gelatin shell-core fibrous hydrogels with enhanced sustained release of growth factors for diabetic foot ulcer healing.Int. J. Biol. Macromol.202323412372210.1016/j.ijbiomac.2023.123722 36801280
    [Google Scholar]
  3. SenC.K. Human Wounds and Its Burden: An Updated Compendium of Estimates.Adv. Wound Care (New Rochelle)201982394810.1089/wound.2019.0946 30809421
    [Google Scholar]
  4. BrittoE.J. NezwekT.A. PopowiczP. RobinsM. Wound dressings. In: StatPearls.StatPearls Publishing2024 29261956
    [Google Scholar]
  5. LauranoR. BoffitoM. CiardelliG. ChionoV. Wound dressing products: A translational investigation from the bench to the market.Engineered Regeneration20223218220010.1016/j.engreg.2022.04.002
    [Google Scholar]
  6. LiangY. LiangY. ZhangH. GuoB. Antibacterial biomaterials for skin wound dressing.Asian J. Pharm. Sci.202217335338410.1016/j.ajps.2022.01.001 35782328
    [Google Scholar]
  7. TiwariR. PathakK. Local drug delivery strategies towards wound healing.Pharmaceutics202315263410.3390/pharmaceutics15020634 36839956
    [Google Scholar]
  8. NandhiniJ. KarthikeyanE. RajeshkumarS. Nanomaterials for wound healing: Current status and futuristic frontier.Biomedical Technology20246264510.1016/j.bmt.2023.10.001
    [Google Scholar]
  9. GowdaB.H.J. MohantoS. SinghA. Nanoparticle-based therapeutic approaches for wound healing: A review of the state-of-the-art.Mater. Today Chem.20232710131910.1016/j.mtchem.2022.101319
    [Google Scholar]
  10. ZgheibC. HiltonS.A. DewberryL.C. Use of cerium oxide nanoparticles conjugated with microRNA-146a to correct the diabetic wound healing impairment.J. Am. Coll. Surg.2019228110711510.1016/j.jamcollsurg.2018.09.017 30359833
    [Google Scholar]
  11. DewberryL.C. NiemiecS.M. HiltonS.A. Cerium oxide nanoparticle conjugation to microRNA-146a mechanism of correction for impaired diabetic wound healing.Nanomedicine20224010248310.1016/j.nano.2021.102483 34748956
    [Google Scholar]
  12. SenerG. HiltonS.A. OsmondM.J. Injectable, self-healable zwitterionic cryogels with sustained microRNA - cerium oxide nanoparticle release promote accelerated wound healing.Acta Biomater.202010126227210.1016/j.actbio.2019.11.014 31726250
    [Google Scholar]
  13. GuoG. LiX. YeX. EGF and curcumin co-encapsulated nanoparticle/hydrogel system as potent skin regeneration agent.Int. J. Nanomedicine2016113993400910.2147/IJN.S104350 27574428
    [Google Scholar]
  14. HeY. YangW. ZhangC. ROS/pH dual responsive PRP-loaded multifunctional chitosan hydrogels with controlled release of growth factors for skin wound healing.Int. J. Biol. Macromol.2024258Pt 212896210.1016/j.ijbiomac.2023.128962 38145691
    [Google Scholar]
  15. MinK. TaeG. Cellular infiltration in an injectable sulfated cellulose nanocrystal hydrogel and efficient angiogenesis by VEGF loading.Biomater. Res.20232712810.1186/s40824‑023‑00373‑y 37038209
    [Google Scholar]
  16. LiuG. YangY. LiuY. LiY. JiangM. LiY. Injectable and thermosensitive hydrogel with platelet-rich plasma for enhanced biotherapy of skin wound healing.Adv. Healthc. Mater.20241312e230393010.1002/adhm.202303930
    [Google Scholar]
  17. Berry-KilgourC. CabralJ. WiseL. Advancements in the delivery of growth factors and cytokines for the treatment of cutaneous wound indications.Adv. Wound Care (New Rochelle)2021101159662210.1089/wound.2020.1183 33086946
    [Google Scholar]
  18. TanJ.L. LashB. KaramiR. Restoration of the healing microenvironment in diabetic wounds with matrix-binding IL-1 receptor antagonist.Commun. Biol.20214142210.1038/s42003‑021‑01913‑9 33772102
    [Google Scholar]
  19. AzizT. UllahA. AliA. Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field.J. Appl. Polym. Sci.202213929e5262410.1002/app.52624
    [Google Scholar]
  20. MendesB.B. Gómez-FloritM. AraújoA.C. Intrinsically bioactive cryogels based on platelet lysate nanocomposites for hemostasis applications.Biomacromolecules20202193678369210.1021/acs.biomac.0c00787 32786530
    [Google Scholar]
  21. Garcia-OrueI. GainzaG. GutierrezF.B. Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications.Int. J. Pharm.2017523255656610.1016/j.ijpharm.2016.11.006 27825864
    [Google Scholar]
  22. LiY. LengQ. PangX. Therapeutic effects of EGF-modified curcumin/chitosan nano-spray on wound healing.Regen. Biomater.202182rbab00910.1093/rb/rbab009 33738123
    [Google Scholar]
  23. CertelliA. ValenteP. UccelliA. Robust angiogenesis and arteriogenesis in the skin of diabetic mice by transient delivery of engineered VEGF and PDGF-BB proteins in fibrin hydrogels.Front. Bioeng. Biotechnol.2021968846710.3389/fbioe.2021.688467 34277588
    [Google Scholar]
  24. JinT. FuZ. ZhouL. GelMA loaded with platelet lysate promotes skin regeneration and angiogenesis in pressure ulcers by activating STAT3.Sci. Rep.20241411834510.1038/s41598‑024‑67304‑2 39112598
    [Google Scholar]
  25. BhatnagarP. LawJ.X. NgS.F. Chitosan reinforced with kenaf nanocrystalline cellulose as an effective carrier for the delivery of platelet lysate in the acceleration of wound healing.Polymers (Basel)20211324439210.3390/polym13244392 34960943
    [Google Scholar]
  26. DahlA. SultanM. JungA. Quantitative PCR based expression analysis on a nanoliter scale using polymer nano-well chips.Biomed. Microdevices20079330731410.1007/s10544‑006‑9034‑2 17203381
    [Google Scholar]
  27. NiX. ShanX. XuL. Adipose-derived stem cells combined with platelet-rich plasma enhance wound healing in a rat model of full-thickness skin defects.Stem Cell Res. Ther.202112122610.1186/s13287‑021‑02257‑1 33823915
    [Google Scholar]
  28. TruongA-T.N. Kowal-VernA. LatenserB.A. WileyD.E. WalterR.J. Comparison of dermal substitutes in wound healing utilizing a nude mouse model.J. Burns Wounds20054e4 16921409
    [Google Scholar]
  29. RezvanianM. NgS.F. AlaviT. AhmadW. In-vivo evaluation of Alginate-Pectin hydrogel film loaded with Simvastatin for diabetic wound healing in Streptozotocin-induced diabetic rats.Int. J. Biol. Macromol.202117130831910.1016/j.ijbiomac.2020.12.221 33421467
    [Google Scholar]
  30. KhanN.U. ChengfengX. JiangM.Q. α-Lactalbumin based scaffolds for infected wound healing and tissue regeneration.Int. J. Pharm.202466312457810.1016/j.ijpharm.2024.124578 39153643
    [Google Scholar]
  31. PakyariM. FarrokhiA. MaharlooeiM.K. GhaharyA. Critical role of transforming growth factor beta in different phases of wound healing.Adv. Wound Care (New Rochelle)20132521522410.1089/wound.2012.0406 24527344
    [Google Scholar]
  32. KandhwalM. BehlT. SinghS. Role of matrix metalloproteinase in wound healing.Am. J. Transl. Res.202214743914405 35958464
    [Google Scholar]
  33. CaleyM.P. MartinsV.L.C. O’TooleE.A. Metalloproteinases and wound healing.Adv. Wound Care (New Rochelle)20154422523410.1089/wound.2014.0581 25945285
    [Google Scholar]
  34. Freitas-RodríguezS. FolguerasA.R. López-OtínC. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond.Biochim. Biophys. Acta Mol. Cell Res.20171864112015202510.1016/j.bbamcr.2017.05.007 28499917
    [Google Scholar]
  35. PennJ.W. GrobbelaarA.O. RolfeK.J. The role of the TGF-β family in wound healing, burns and scarring: A review.Int. J. Burns Trauma2012211828 22928164
    [Google Scholar]
  36. LohE.Y.X. MohamadN. FauziM.B. NgM.H. NgS.F. Mohd AminM.C.I. Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing.Sci. Rep.201881287510.1038/s41598‑018‑21174‑7 29440678
    [Google Scholar]
  37. LiJ. ChenJ. KirsnerR. Pathophysiology of acute wound healing.Clin. Dermatol.200725191810.1016/j.clindermatol.2006.09.007 17276196
    [Google Scholar]
  38. AraiM MatsuzakiT IharaS Wound closure on the neonatal rat skin I. The modulation of the thickness of epidermis at the closing incisional wounds.Cell Bio.20132424825610.4236/cellbio.2013.24027
    [Google Scholar]
  39. XuS. GuM. WuK. LiG. Unraveling the role of hydroxyproline in maintaining the thermal stability of the collagen triple helix structure using simulation.J. Phys. Chem. B2019123367754776310.1021/acs.jpcb.9b05006 31418574
    [Google Scholar]
  40. SummaM. RussoD. PennaI. A biocompatible sodium alginate/povidone iodine film enhances wound healing.Eur. J. Pharm. Biopharm.2018122172410.1016/j.ejpb.2017.10.004 29017952
    [Google Scholar]
  41. DarbyI.A. LaverdetB. BontéF. DesmoulièreA. Fibroblasts and myofibroblasts in wound healing.Clin. Cosmet. Investig. Dermatol.20147301311 25395868
    [Google Scholar]
  42. DonovanC. CogswellD. SunM. Collagen XII regulates stromal wound closure.Exp. Eye Res.202323010945610.1016/j.exer.2023.109456 36967080
    [Google Scholar]
  43. LertkiatmongkolP. LiaoD. MeiH. HuY. NewmanP.J. Endothelial functions of PECAM-1 (CD31).Curr. Opin. Hematol.201623
    [Google Scholar]
  44. WuJ. YeJ. ZhuJ. Heparin-based coacervate of FGF2 improves dermal regeneration by asserting a synergistic role with cell proliferation and endogenous facilitated VEGF for cutaneous wound healing.Biomacromolecules20161762168217710.1021/acs.biomac.6b00398 27196997
    [Google Scholar]
  45. MotegiS. LeitnerW.W. LuM. Pericyte-derived MFG-E8 regulates pathologic angiogenesis.Arterioscler. Thromb. Vasc. Biol.20113192024203410.1161/ATVBAHA.111.232587 21737783
    [Google Scholar]
/content/journals/raddf/10.2174/0126673878323868240924154455
Loading
/content/journals/raddf/10.2174/0126673878323868240924154455
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Chitosan; hydrogel; nanocrystalline cellulose; platelet lysate; wound healing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test