Skip to content
2000
Volume 20, Issue 1
  • ISSN: 2772-4344
  • E-ISSN: 2772-4352

Abstract

Background

The aim of this study was to investigate the antimicrobial photodynamic, sonodynamic, and combined photodynamic and sonodynamic potentials of IR780 iodide loaded mesoporous silica nanoparticles against gram-negative () and multi drug resistant MDR ).

Methods

IR780 iodide loaded mesoporous silica nanoparticles were synthesized, and their antimicrobial photodynamic and sonodynamic potentials against one strain, and one MDR strain were investigated. Laser irradiation was achieved a 785 nm diode laser (500 mW/cm2, 5 min). Ultrasound irradiation was achieved a 1-MHz ultrasound unit (1.5 W/cm2, 50% duty cycle, 3 min). Viable bacterial cells were counted by serial dilution method. Data were analyzed by ANOVA followed by Tukey's test ( ≤ 0.05).

Results

The results revealed that for , the combined photodynamic therapy (PDT) and sonodynamic therapy (SDT) showed a 44% reduction in bacterial cell viability as compared to 18% and 31% when exposed to SDT alone and PDT alone, respectively. For MDR. the combined treatment resulted in a 45% reduction in bacterial cell viability, as compared to 14% and 30% when exposed to SDT alone and PDT alone, respectively. The killing effect was mainly due to the photodynamic and sonodynamic effects of the nanoparticles, mainly caused by singlet oxygen. No photothermal effect was involved in the killing.

Conclusion

The results of this study demonstrated that IR780 iodide-loaded mesoporous silica nanoparticles have the potential to be utilized as photo/sono therapeutic agents for the inactivation of drug-resistant bacteria.

Loading

Article metrics loading...

/content/journals/raaidd/10.2174/0127724344309438240529064221
2024-06-13
2025-06-26
Loading full text...

Full text loading...

References

  1. AloushV. Navon-VeneziaS. Seigman-IgraY. CabiliS. CarmeliY. Multidrug-resistant Pseudomonas aeruginosa: Risk factors and clinical impact.Antimicrob. Agents Chemother.2006501434810.1128/AAC.50.1.43‑48.200616377665
    [Google Scholar]
  2. DriscollJ.A. BrodyS.L. KollefM.H. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections.Drugs200767335136810.2165/00003495‑200767030‑0000317335295
    [Google Scholar]
  3. MatosE.C.O. AndrioloR.B. RodriguesY.C. LimaP.D.L. CarneiroI.C.R.S. LimaK.V.B. Mortality in patients with multidrug-resistant Pseudomonas aeruginosa infections: A meta-analysis.Rev. Soc. Bras. Med. Trop.201851441542010.1590/0037‑8682‑0506‑201730133622
    [Google Scholar]
  4. Centers for Disease Control and Prevention, Multidrug-resistant Pseudomonas aeruginosa.Available from: https://arpsp.cdc.gov/profile/antibiotic-resistance/mdr-pseudomonas-aeruginosa?redirect=true (accessed 1 December 2023).
  5. KesselD. Photodynamic therapy: from the beginning.Photodiagn. Photodyn. Ther.2004113710.1016/S1572‑1000(04)00003‑125048058
    [Google Scholar]
  6. JoriG. FabrisC. SoncinM. FerroS. CoppellottiO. DeiD. FantettiL. ChitiG. RoncucciG. Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications.Lasers Surg. Med.200638546848110.1002/lsm.2036116788934
    [Google Scholar]
  7. FuX. FangY. YaoM. Antimicrobial photodynamic therapy for methicillin-resistant Staphylococcus aureus infection.BioMed Res. Int.201320131910.1155/2013/15915723555074
    [Google Scholar]
  8. TopalogluN. GulsoyM. YukselS. Antimicrobial photodynamic therapy of resistant bacterial strains by indocyanine green and 809-nm diode laser.Photomed. Laser Surg.201331415516210.1089/pho.2012.343023402392
    [Google Scholar]
  9. Pereira RosaL. da SilvaF.C. Antimicrobial photodynamic therapy: A new therapeutic option to combat infections.J. Med. Microbiol. Diagn.201434110.4172/2161‑0703.1000158
    [Google Scholar]
  10. de Souza da FonsecaA. de PaoliF. MencalhaA.L. Photodynamic therapy for treatment of infected burns.Photodiagn. Photodyn. Ther.20223810283110.1016/j.pdpdt.2022.10283135341978
    [Google Scholar]
  11. JaoY. DingS.J. ChenC.C. Antimicrobial photodynamic therapy for the treatment of oral infections: A systematic review.J. Dent. Sci.20231841453146610.1016/j.jds.2023.07.00237799910
    [Google Scholar]
  12. RibeiroI.P. PintoJ.G. SouzaB.M.N. MiñánA.G. Ferreira-StrixinoJ. Antimicrobial photodynamic therapy with curcumin on methicillin-resistant Staphylococcus aureus biofilm.Photodiagn. Photodyn. Ther.20223710272910.1016/j.pdpdt.2022.10272935041982
    [Google Scholar]
  13. GulíasÒ. McKenzieG. BayóM. AgutM. NonellS. Effective photodynamic inactivation of 26 Escherichia coli strains with different antibiotic susceptibility profiles: A planktonic and biofilm study.Antibiotics (Basel)2020939810.3390/antibiotics903009832106485
    [Google Scholar]
  14. BuchovecI. VyčaitėE. BadokasK. SužiedelienėE. BagdonasS. Application of antimicrobial photodynamic therapy for inactivation of Acinetobacter baumannii biofilms.Int. J. Mol. Sci.202224172210.3390/ijms2401072236614160
    [Google Scholar]
  15. GilaberteY. RezustaA. JuarranzA. HamblinM.R. Antimicrobial photodynamic therapy: A new paradigm in the fight against infections.Front. Med.2021878888810.3389/fmed.2021.78888834778330
    [Google Scholar]
  16. LiJ. QinM. LiuC. MaW. ZengX. JiY. Antimicrobial photodynamic therapy against multidrug-resistant Acinetobacter baumannii clinical isolates mediated by aloe-emodin: An in vitro study.Photodiagn. Photodyn. Ther.20202910163210.1016/j.pdpdt.2019.10163231870894
    [Google Scholar]
  17. AlaghaH.Z. GülsoyM. Inactivation of planktonic cells and inhibitory effect on post-treatment biofilm formation of methicillin-resistant Staphylococcus aureus by photodynamic treatment with IR780 iodide loaded mesoporous silica nanoparticles and near infrared light.J. Microbiol. Methods202321110677310.1016/j.mimet.2023.10677337354952
    [Google Scholar]
  18. QuirkB.J. BrandalG. DonlonS. VeraJ.C. MangT.S. FoyA.B. LewS.M. GirottiA.W. JogalS. LaVioletteP.S. ConnellyJ.M. WhelanH.T. Photodynamic therapy (PDT) for malignant brain tumors : Where do we stand?Photodiagn. Photodyn. Ther.201512353054410.1016/j.pdpdt.2015.04.00925960361
    [Google Scholar]
  19. National Cancer Institute, Photodynamic Therapy to Treat Cancer. Available from: https://www.cancer.gov/about-cancer/treatment/types/photodynamic-therapy (accessed 8 December 2023).
  20. RosenthalI. SostaricJ.Z. RieszP. Sonodynamic therapy––a review of the synergistic effects of drugs and ultrasound.Ultrason. Sonochem.200411634936310.1016/j.ultsonch.2004.03.00415302020
    [Google Scholar]
  21. KurokiM. HachimineK. AbeH. ShibaguchiH. KurokiM. MaekawaS. YanagisawaJ. KinugasaT. TanakaT. YamashitaY. Sonodynamic therapy of cancer using novel sonosensitizers.Anticancer Res.2007276A3673367717970027
    [Google Scholar]
  22. SerpeL. GiuntiniF. Sonodynamic antimicrobial chemotherapy: First steps towards a sound approach for microbe inactivation.J. Photochem. Photobiol. B2015150444910.1016/j.jphotobiol.2015.05.01226037696
    [Google Scholar]
  23. XuH. ZhangX. HanR. YangP. MaH. SongY. LuZ. YinW. WuX.X. WangH. Nanoparticles in sonodynamic therapy: state of the art review.RSC Advances2016656506975070510.1039/C6RA06862F
    [Google Scholar]
  24. CieplikF. DengD. CrielaardW. BuchallaW. HellwigE. Al-AhmadA. MaischT. Antimicrobial photodynamic therapy : what we know and what we don’t.Crit. Rev. Microbiol.201844557158910.1080/1040841X.2018.146787629749263
    [Google Scholar]
  25. HarrisF. DennisonS.R. PhoenixD.A. Using sound for microbial eradication : light at the end of the tunnel?FEMS Microbiol. Lett.20143561202210.1111/1574‑6968.1248424861483
    [Google Scholar]
  26. ZhuangD. HouC. BiL. HanJ. HaoY. CaoW. ZhouQ. Sonodynamic effects of hematoporphyrin monomethyl ether on Staphylococcus aureus in vitro.FEMS Microbiol. Lett.2014361217418010.1111/1574‑6968.1262825319068
    [Google Scholar]
  27. WangX. IpM. LeungA.W. XuC. Sonodynamic inactivation of methicillin-resistant Staphylococcus aureus in planktonic condition by curcumin under ultrasound sonication.Ultrasonics20145482109211410.1016/j.ultras.2014.06.01725059434
    [Google Scholar]
  28. WangX. IpM. LeungA.W. YangZ. WangP. ZhangB. IpS. XuC. Sonodynamic action of curcumin on foodborne bacteria Bacillus cereus and Escherichia coli.Ultrasonics201562757910.1016/j.ultras.2015.05.00326026869
    [Google Scholar]
  29. WangX. LeungA.W. HuaH. XuC. IpM. Sonodynamic action of hypocrellin B on biofilm-producing Staphylococcus epidermidis in planktonic condition.J. Acoust. Soc. Am.201513842548255310.1121/1.493201426520337
    [Google Scholar]
  30. RoyJ. PandeyV. GuptaI. ShekharH. Antibacterial sonodynamic therapy: current status and future perspectives.ACS Biomater. Sci. Eng.20217125326533810.1021/acsbiomaterials.1c0058734714638
    [Google Scholar]
  31. WangR. LiuQ. GaoA. TangN. ZhangQ. ZhangA. CuiD. Recent developments of sonodynamic therapy in antibacterial application.Nanoscale20221436129991301710.1039/D2NR01847K36052726
    [Google Scholar]
  32. WangM. WangX. LiuB. LangC. WangW. LiuY. WangX. Synthesis of ciprofloxacin-capped gold nanoparticles conjugates with enhanced sonodynamic antimicrobial activity in vitro.J. Pharm. Sci.2023112133634310.1016/j.xphs.2022.08.00435948155
    [Google Scholar]
  33. PourhajibagherM. BahramiR. BahadorA. Application of antimicrobial sonodynamic therapy as a potential treatment modality in dentistry: A literature review.J. Dent. Sci.202310.1016/j.jds.2023.11.00638618114
    [Google Scholar]
  34. PourhajibagherM. BahadorA. Synergistic biocidal effects of metal oxide nanoparticles-assisted ultrasound irradiation: Antimicrobial sonodynamic therapy against Streptococcus mutans biofilms.Photodiagn. Photodyn. Ther.20213510243210.1016/j.pdpdt.2021.10243234246828
    [Google Scholar]
  35. PourhajibagherM. Rahimi-esboeiB. AhmadiH. BahadorA. The anti-biofilm capability of nano-emodin-mediated sonodynamic therapy on multi-species biofilms produced by burn wound bacterial strains.Photodiagn. Photodyn. Ther.20213410228810.1016/j.pdpdt.2021.10228833836275
    [Google Scholar]
  36. XuP.Y. Kumar kR. WangS.B. ChenA.Z. Sonodynamic therapy-based nanoplatforms for combating bacterial infections.Ultrason. Sonochem.202310010661710.1016/j.ultsonch.2023.10661737769588
    [Google Scholar]
  37. JinZ. MiyoshiN. IshiguroK. UmemuraS. KawabataK. YumitaN. SakataI. TakaokaK. UdagawaT. NakajimaS. TajiriH. UedaK. FukudaM. KumakiriM. Combination effect of photodynamic and sonodynamic therapy on experimental skin squamous cell carcinoma in C3H/HeN mice.J. Dermatol.200027529430610.1111/j.1346‑8138.2000.tb02171.x10875195
    [Google Scholar]
  38. KolarovaH. TomankovaK. BajgarR. KolarP. KubinekR. Photodynamic and sonodynamic treatment by phthalocyanine on cancer cell lines.Ultrasound Med. Biol.20093581397140410.1016/j.ultrasmedbio.2009.03.00419515482
    [Google Scholar]
  39. WangX. ZhangW. XuZ. LuoY. MitchellD. MossR.W. Sonodynamic and photodynamic therapy in advanced breast carcinoma: A report of 3 cases.Integr. Cancer Ther.20098328328710.1177/153473540934369319815599
    [Google Scholar]
  40. TserkovskyD.A. AlexandrovaE.N. ChalauV.N. IstominY.P. Effects of combined sonodynamic and photodynamic therapies with photolon on a glioma C6 tumor model.Exp. Oncol.201234433233523302991
    [Google Scholar]
  41. LiQ. WangX. WangP. ZhangK. WangH. FengX. LiuQ. Efficacy of chlorin e6-mediated sono-photodynamic therapy on 4T1 cells.Cancer Biother. Radiopharm.2014291425210.1089/cbr.2013.152624206161
    [Google Scholar]
  42. Ponce AE.T. Alves Dias de SousaF. Vollet-FilhoJ.D. Rodrigues GarciaM. de BoniL. Salvador BagnatoV. PratavieiraS. Photodynamic and sonodynamic therapy with protoporphyrin IX: In vitro and in vivo studies.Ultrasound Med. Biol.20214741032104410.1016/j.ultrasmedbio.2020.12.00633446374
    [Google Scholar]
  43. NeneL.C. NyokongT. Photo-sonodynamic combination activity of cationic morpholino-phthalocyanines conjugated to nitrogen and nitrogen-sulfur doped graphene quantum dots against MCF-7 breast cancer cell line in vitro.Photodiagn. Photodyn. Ther.20213610257310.1016/j.pdpdt.2021.10257334628070
    [Google Scholar]
  44. NeneL.C. ButheleziK. PrinslooE. NyokongT. The In vitro photo-sonodynamic combinatorial therapy activity of cationic and zwitterionic phthalocyanines on MCF-7 and HeLa cancer cell lines.J. Photochem. Photobiol. Chem.202243211411610.1016/j.jphotochem.2022.114116
    [Google Scholar]
  45. ZhaoG. ChenS. ZhengJ. LiC. ZhongX. CaoY. ZhengY. SunJ. ZhuS. ChangS. Photo-sonodynamic therapy mediated with OLI_NPs to induce HPV16E7-specific immune response and inhibit cervical cancer in a Tc-1-grafted murine model.J. Photochem. Photobiol. B202323811258310.1016/j.jphotobiol.2022.11258336436360
    [Google Scholar]
  46. AtmacaG.Y. AkselM. BilginM.D. ErdoğmuşA. Comparison of sonodynamic, photodynamic and sonophotodynamic therapy activity of fluorinated pyridine substituted silicon phthalocyanines on PC3 prostate cancer cell line.Photodiagn. Photodyn. Ther.20234210333910.1016/j.pdpdt.2023.10333936781009
    [Google Scholar]
  47. XuF. HuM. LiuC. ChoiS.K. Yolk-structured multifunctional up-conversion nanoparticles for synergistic photodynamic–sonodynamic antibacterial resistance therapy.Biomater. Sci.20175467868510.1039/C7BM00030H28280817
    [Google Scholar]
  48. WangZ. LiuC. ZhaoY. HuM. MaD. ZhangP. XueY. LiX. Photomagnetic nanoparticles in dual-modality imaging and photo-sonodynamic activity against bacteria.Chem. Eng. J.201935681181810.1016/j.cej.2018.09.077
    [Google Scholar]
  49. AlvesF. GuimarãesG. Mayumi N. PratavieiraS. BagnatoV. KurachiC. Strategies to improve the antimicrobial efficacy of photodynamic, sonodynamic, and sonophotodynamic therapies.Lasers Surg. Med.20215381113112110.1002/lsm.2338333508146
    [Google Scholar]
  50. BahramiR. PourhajibagherM. ParkerS. EsmaeiliD. BahadorA. Anti-biofilm and bystander effects of antimicrobial photo-sonodynamic therapy against polymicrobial periopathogenic biofilms formed on coated orthodontic mini-screws with zinc oxide nanoparticles.Photodiagn. Photodyn. Ther.20234110328810.1016/j.pdpdt.2023.10328836640857
    [Google Scholar]
  51. ZientalD. WysockiM. MichalakM. DlugaszewskaJ. GüzelE. SobottaL. The dual synergy of photodynamic and sonodynamic therapy in the eradication of methicillin-resistant staphylococcus aureus.Appl. Sci.2023136381010.3390/app13063810
    [Google Scholar]
  52. EntradasT. WaldronS. VolkM. The detection sensitivity of commonly used singlet oxygen probes in aqueous environments.J. Photochem. Photobiol. B202020411178710.1016/j.jphotobiol.2020.11178731958676
    [Google Scholar]
  53. WangX. ZhongX. GongF. ChaoY. ChengL. Newly developed strategies for improving sonodynamic therapy.Mater. Horiz.2020782028204610.1039/D0MH00613K
    [Google Scholar]
  54. GongZ. DaiZ. Design and challenges of sonodynamic therapy system for cancer theranostics: From equipment to sensitizers.Adv. Sci.2021810200217810.1002/advs.20200217834026428
    [Google Scholar]
  55. ZhouZ. ZhangL. ZhangZ. LiuZ. Advances in photosensitizer-related design for photodynamic therapy.Asi. J. Pharmac. Sci.202116666868610.1016/j.ajps.2020.12.00335027948
    [Google Scholar]
  56. ChenH. ZhouX. GaoY. ZhengB. TangF. HuangJ. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy.Drug Discov. Today201419450250910.1016/j.drudis.2014.01.01024486324
    [Google Scholar]
  57. PhamT.C. NguyenV.N. ChoiY. LeeS. YoonJ. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy.Chem. Rev.202112121134541361910.1021/acs.chemrev.1c0038134582186
    [Google Scholar]
  58. WangX. XuX. YangZ. XuX. HanS. ZhangH. Improvement of the effectiveness of sonodynamic therapy: By optimizing components and combination with other treatments.Biomater. Sci.202311237489751110.1039/D3BM00738C37873617
    [Google Scholar]
  59. HigginsS.L.H. BrewerK.J. Designing red-light-activated multifunctional agents for the photodynamic therapy.Angew. Chem. Int. Ed.20125146114201142210.1002/anie.20120493323055391
    [Google Scholar]
  60. JiangC. ChengH. YuanA. TangX. WuJ. HuY. Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy.Acta Biomater.201514616910.1016/j.actbio.2014.11.04125463484
    [Google Scholar]
  61. ChenY. LiZ. WangH. WangY. HanH. JinQ. JiJ. IR-780 loaded phospholipid mimicking homopolymeric micelles for near-IR imaging and photothermal therapy of pancreatic cancer.ACS Appl. Mater. Interfaces20168116852685810.1021/acsami.6b0025126918365
    [Google Scholar]
  62. TranT.H. NguyenH.T. Phuong TranT.T. KuS.K. JeongJ.H. ChoiH.G. YongC.S. KimJ.O. Combined photothermal and photodynamic therapy by hyaluronic acid-decorated polypyrrole nanoparticles.Nanomedicine201712121511152310.2217/nnm‑2016‑043828573923
    [Google Scholar]
  63. Nagy-SimonT. PotaraM. CraciunA.M. LicareteE. AstileanS. IR780-dye loaded gold nanoparticles as new near infrared activatable nanotheranostic agents for simultaneous photodynamic and photothermal therapy and intracellular tracking by surface enhanced resonant Raman scattering imaging.J. Colloid Interface Sci.201851723925010.1016/j.jcis.2018.02.00729428811
    [Google Scholar]
  64. ParasuramanP. AntonyA.P. BS.L.S. SharanA. SiddhardhaB. KasinathanK. BahkaliN.A. DawoudT.M.S. SyedA. Antimicrobial photodynamic activity of toluidine blue encapsulated in mesoporous silica nanoparticles against Pseudomonas aeruginosa and Staphylococcus aureus.Biofouling20193518910310.1080/08927014.2019.157050130835535
    [Google Scholar]
  65. SahuK. BansalH. MukherjeeC. SharmaM. GuptaP.K. Atomic force microscopic study on morphological alterations induced by photodynamic action of Toluidine Blue O in Staphylococcus aureus and Escherichia coli.J. Photochem. Photobiol. B200996191610.1016/j.jphotobiol.2009.03.00819423358
    [Google Scholar]
  66. UsachevaM. LayekB. Rahman NirzhorS.S. PrabhaS. Nanoparticle-mediated photodynamic therapy for mixed biofilms.J. Nanomater.2016201611110.1155/2016/4752894
    [Google Scholar]
  67. SilhavyT.J. KahneD. WalkerS. The bacterial cell envelope.Cold Spring Harb. Perspect. Biol.201025a00041410.1101/cshperspect.a00041420452953
    [Google Scholar]
  68. DrantantiyasN.D.G. AstutiS.D. NasutionA.M. Comparison microbial killing efficacy between sonodynamic therapy and photodynamic therapy.Second International Seminar on Photonics, Optics, and Its Applications (ISPhOA 2016)20161015022623210.1117/12.2248503
    [Google Scholar]
  69. AlvesF. PavarinaA.C. MimaE.G.O. McHaleA.P. CallanJ.F. Antimicrobial sonodynamic and photodynamic therapies against Candida albicans.Biofouling201834435736710.1080/08927014.2018.143993529671631
    [Google Scholar]
  70. HuangB. WangL. TangK. ChenS. XuY. LiaoH. NiuC. IR780 based sonotherapeutic nanoparticles to combat multidrug-resistant bacterial infections.Front Chem.20221084059810.3389/fchem.2022.84059835141201
    [Google Scholar]
/content/journals/raaidd/10.2174/0127724344309438240529064221
Loading
/content/journals/raaidd/10.2174/0127724344309438240529064221
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test