Skip to content
2000
Volume 20, Issue 1
  • ISSN: 2772-4344
  • E-ISSN: 2772-4352

Abstract

The human microbiome, a diverse microorganism community, crucially defends against pathogens. Probiotics, postbiotics, and paraprobiotics alone and in combination are potent in countering fungal and waterborne infections, particularly against viral threats. This review focuses on the mechanisms of the microbiome against viral infections, emphasizing probiotic interventions. Certain Lactic Acid Bacteria (LAB) strains effectively eliminate toxic aflatoxin B1 (AFB1) from microfungi-produced mycotoxins. LAB binding to AFB1 persists post-gastric digestion, and pre-incubation with mycotoxins reduces probiotic adhesion to mucus. Oral probiotic administration in animals increases mycotoxin excretion, reducing associated health risks. and show exceptional efficacy in removing cyanobacterial toxin microcystin-LR from drinking water. Engineered probiotics promise advanced therapeutic applications for metabolic disorders, Alzheimer's, and type 1 diabetes, serving as diagnostic tools for detecting pathogens and inflammation markers. In antimicrobial peptide production, genetically modified probiotics producing human β-defensin 2 (HBD2) treat Crohn's disease with implemented biocontainment strategies preventing unintended environmental impacts.

Loading

Article metrics loading...

/content/journals/raaidd/10.2174/0127724344308638240530065552
2024-06-12
2025-06-25
Loading full text...

Full text loading...

References

  1. Davani-DavariD. NegahdaripourM. KarimzadehI. Prebiotics: Definition, types, sources, mechanisms, and clinical applications.Foods2019839210.3390/foods8030092 30857316
    [Google Scholar]
  2. KandaA. MazumderA. DasS. PrabhakarV. A review on probiotic and microbiota modulation: a promising nutraceutical in the management of neurodegenerative and psychiatric conditions.J. Nat. Rem.20232341209122210.18311/jnr/2023/33944
    [Google Scholar]
  3. LiL. HanZ. NiuX. Probiotic supplementation for prevention of atopic dermatitis in infants and children: a systematic review and meta-analysis.Am. J. Clin. Dermatol.201920336737710.1007/s40257‑018‑0404‑3 30465329
    [Google Scholar]
  4. LynchS.V. PedersenO. The human intestinal microbiome in health and disease.N. Engl. J. Med.2016375242369237910.1056/NEJMra1600266 27974040
    [Google Scholar]
  5. AbdukhakimovaD. DossybayevaK. PoddigheD. Fecal and duodenal microbiota in pediatric celiac disease.Front Pediatr.2021965220810.3389/fped.2021.652208 33968854
    [Google Scholar]
  6. KassamZ. LeeC.H. YuanY. HuntR.H. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis.Am. J. Gastroenterol.2013108450050810.1038/ajg.2013.59 23511459
    [Google Scholar]
  7. YoungV.B. The role of the microbiome in human health and disease: an introduction for clinicians.BMJ2017356j83110.1136/bmj.j831 28298355
    [Google Scholar]
  8. RooksM.G. GarrettW.S. Gut microbiota, metabolites and host immunity.Nat. Rev. Immunol.201616634135210.1038/nri.2016.42 27231050
    [Google Scholar]
  9. VétizouM. PittJ.M. DaillèreR. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota.Science201535062641079108410.1126/science.aad1329 26541610
    [Google Scholar]
  10. O’TooleP.W. MarchesiJ.R. HillC. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics.Nat. Microbiol.2017251705710.1038/nmicrobiol.2017.57 28440276
    [Google Scholar]
  11. AggarwalN. BreedonA.M.E. DavisC.M. HwangI.Y. ChangM.W. Engineering probiotics for therapeutic applications: recent examples and translational outlook.Curr. Opin. Biotechnol.20206517117910.1016/j.copbio.2020.02.016 32304955
    [Google Scholar]
  12. GarciaV.G. KnollL.R. LongoM. Effect of the probiotic Saccharomyces cerevisiae on ligature‐induced periodontitis in rats.J. Periodontal Res.2016511263710.1111/jre.12274 25918871
    [Google Scholar]
  13. SafariR. AdelM. LazadoC.C. CaipangC.M.A. DadarM. Host-derived probiotics Enterococcus casseliflavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation.Fish Shellfish Immunol.20165219820510.1016/j.fsi.2016.03.020 26997202
    [Google Scholar]
  14. FangK. JinX. HongS.H. Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP.Sci. Rep.201881493910.1038/s41598‑018‑23180‑1 29563542
    [Google Scholar]
  15. Sola-OladokunB. CulliganE.P. SleatorR.D. Engineered probiotics: applications and biological containment.Annu. Rev. Food Sci. Technol.20178135337010.1146/annurev‑food‑030216‑030256 28125354
    [Google Scholar]
  16. McFarlandL.V. EvansC.T. GoldsteinE.J.C. Strain-specificity and disease-specificity of probiotic efficacy: A Systematic Review and Meta-Analysis.Front. Med. (Lausanne)2018512410.3389/fmed.2018.00124 29868585
    [Google Scholar]
  17. GibsonG.R. HutkinsR. SandersM.E. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nat. Rev. Gastroenterol. Hepatol.201714849150210.1038/nrgastro.2017.75 28611480
    [Google Scholar]
  18. GuJ. Thomas-AhnerJ.M. RiedlK.M. Dietary black raspberries impact the colonic microbiome and phytochemical metabolites in mice.Mol. Nutr. Food Res.2019638180063610.1002/mnfr.201800636 30763455
    [Google Scholar]
  19. CockburnD.W. KoropatkinN.M. Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease.J. Mol. Biol.2016428163230325210.1016/j.jmb.2016.06.021 27393306
    [Google Scholar]
  20. GuarinoM. AltomareA. EmerenzianiS. Mechanisms of action of prebiotics and their effects on gastro-intestinal disorders in adults.Nutrients2020124103710.3390/nu12041037 32283802
    [Google Scholar]
  21. SánchezB. DelgadoS. Blanco-MíguezA. LourençoA. GueimondeM. MargollesA. Probiotics, gut microbiota, and their influence on host health and disease.Mol. Nutr. Food Res.2017611160024010.1002/mnfr.201600240 27500859
    [Google Scholar]
  22. YadavM.K. KumariI. SinghB. SharmaK.K. TiwariS.K. Probiotics, prebiotics and synbiotics: Safe options for next-generation therapeutics.Appl. Microbiol. Biotechnol.2022106250552110.1007/s00253‑021‑11646‑8 35015145
    [Google Scholar]
  23. Vázquez-RodríguezB. Santos-ZeaL. Heredia-OleaE. Effects of phlorotannin and polysaccharide fractions of brown seaweed Silvetia compressa on human gut microbiota composition using an in vitro colonic model.J. Funct. Foods20218410459610.1016/j.jff.2021.104596
    [Google Scholar]
  24. LiuZ. YanC. LinX. Responses of the gut microbiota and metabolite profiles to sulfated polysaccharides from sea cucumber in humanized microbiota mice.Food Funct.20221374171418310.1039/D1FO04443E 35316318
    [Google Scholar]
  25. Pacheco-OrdazR. Wall-MedranoA. GoñiM.G. Ramos-Clamont-MontfortG. Ayala-ZavalaJ.F. González-AguilarG.A. Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria.Lett. Appl. Microbiol.2018661253110.1111/lam.12814 29063625
    [Google Scholar]
  26. LianZ. ZhangQ. XuY. ZhouX. JiangK. biorefinery cascade processing for converting corncob to xylooligosaccharides and glucose by maleic acid pretreatment.Appl. Biochem. Biotechnol.2022194104946495810.1007/s12010‑022‑03985‑7 35674923
    [Google Scholar]
  27. LiS. HengX. GuoL. LessingD.J. ChuW. SCFAs improve disease resistance via modulate gut microbiota, enhance immune response and increase antioxidative capacity in the host.Fish Shellfish Immunol.202212056056810.1016/j.fsi.2021.12.035 34958920
    [Google Scholar]
  28. SiddiquiM.T. CresciG.A.M. The Immunomodulatory Functions of Butyrate.J. Inflamm. Res.2021146025604110.2147/JIR.S300989 34819742
    [Google Scholar]
  29. YouS. MaY. YanB. The promotion mechanism of prebiotics for probiotics: A review.Front. Nutr.20229100051710.3389/fnut.2022.1000517 36276830
    [Google Scholar]
  30. HuY. YanB. Stephen ChenZ. WangL. Tang and Caoxing Huang W. Recent technologies for the extraction and separation of polyphenols in different plants: A Review.J. Renew. Mater.20221061471149010.32604/jrm.2022.018811
    [Google Scholar]
  31. Lopez-SilesM. DuncanS.H. Garcia-GilL.J. Martinez-MedinaM. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics.ISME J.201711484185210.1038/ismej.2016.176 28045459
    [Google Scholar]
  32. SemyonovD. RamonO. KaplunZ. Levin-BrenerL. GurevichN. ShimoniE. Microencapsulation of Lactobacillus paracasei by spray freeze drying.Food Res. Int.201043119320210.1016/j.foodres.2009.09.028
    [Google Scholar]
  33. SavedbowornW. KerdwanN. SakornA. CharoenR. TipkanonS. PattayakornK. Role of protective agents on the viability of probiotic lactobacillus plantarum during freeze drying and subsequent storage.Int. Food Res. J.20172787794
    [Google Scholar]
  34. ForbesJ.D. Van DomselaarG. BernsteinC.N. The gut microbiota in immune-mediated inflammatory diseases.Front. Microbiol.20167108110.3389/fmicb.2016.01081 27462309
    [Google Scholar]
  35. FrankD.N. St AmandA.L. FeldmanR.A. BoedekerE.C. HarpazN. PaceN.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases.Proc. Natl. Acad. Sci. USA200710434137801378510.1073/pnas.0706625104 17699621
    [Google Scholar]
  36. StecherB. RobbianiR. WalkerA.W. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota.PLoS Biol.2007510e24410.1371/journal.pbio.0050244 17760501
    [Google Scholar]
  37. WuH.J. WuE. The role of gut microbiota in immune homeostasis and autoimmunity.Gut Microbes20123141410.4161/gmic.19320 22356853
    [Google Scholar]
  38. YukselM. WangY. TaiN. A novel “humanized mouse” model for autoimmune hepatitis and the association of gut microbiota with liver inflammation.Hepatology20156251536155010.1002/hep.27998 26185095
    [Google Scholar]
  39. LinR. ZhouL. ZhangJ. WangB. Abnormal intestinal permeability and microbiota in patients with autoimmune hepatitis.Int. J. Clin. Exp. Pathol.20158551535160 26191211
    [Google Scholar]
  40. PoddigheD. MaulenkulT. ZhubanovaG. AkhmaldtinovaL. DossybayevaK. Natural killer T (NKT) cells in autoimmune hepatitis: Current Evidence from Basic and Clinical Research.Cells20231224285410.3390/cells12242854 38132174
    [Google Scholar]
  41. ChenJ. LiX. ZengP. Lamina propria interleukin 17 A aggravates natural killer T‐cell activation in autoimmune hepatitis.FASEB J.2022366e2234610.1096/fj.202101734RRR 35583908
    [Google Scholar]
  42. BiagioliM. CarinoA. FiorucciC. GPBAR1 Functions as gatekeeper for liver NKT cells and provides counterregulatory signals in mouse models of immune-mediated hepatitis.Cell. Mol. Gastroenterol. Hepatol.20198344747310.1016/j.jcmgh.2019.06.003 31226434
    [Google Scholar]
  43. GebruY.A. ChoiM.R. RajaG. Pathophysiological roles of mucosal-associated invariant t cells in the context of gut microbiota-liver axis.Microorganisms20219229610.3390/microorganisms9020296 33535703
    [Google Scholar]
  44. TastanC. KarhanE. ZhouW. Tuning of human MAIT cell activation by commensal bacteria species and MR1-dependent T-cell presentation.Mucosal Immunol.20181161591160510.1038/s41385‑018‑0072‑x 30115998
    [Google Scholar]
  45. LiH. XuH. LiY. Alterations of gut microbiota contribute to the progression of unruptured intracranial aneurysms.Nat. Commun.2020111321810.1038/s41467‑020‑16990‑3 32587239
    [Google Scholar]
  46. ToubalA. KiafB. BeaudoinL. Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity.Nat. Commun.2020111375510.1038/s41467‑020‑17307‑0 32709874
    [Google Scholar]
  47. Maldonado GaldeanoC. CazorlaS.I. Lemme dumit JM, vélez E, perdigón G. beneficial effects of probiotic consumption on the immune system.Ann. Nutr. Metab.201974211512410.1159/000496426 30673668
    [Google Scholar]
  48. Monteagudo-MeraA. RastallR.A. GibsonG.R. CharalampopoulosD. ChatzifragkouA. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health.Appl. Microbiol. Biotechnol.2019103166463647210.1007/s00253‑019‑09978‑7 31267231
    [Google Scholar]
  49. VlasovaA.N. TakanashiS. MiyazakiA. RajashekaraG. SaifL.J. How the gut microbiome regulates host immune responses to viral vaccines.Curr. Opin. Virol.201937162510.1016/j.coviro.2019.05.001 31163292
    [Google Scholar]
  50. WangX. ZhangP. ZhangX. Probiotics Regulate gut microbiota: An effective method to improve immunity.Molecules20212619607610.3390/molecules26196076 34641619
    [Google Scholar]
  51. GaldeanoC.M. PerdigónG. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity.Clin. Vaccine Immunol.200613221922610.1128/CVI.13.2.219‑226.2006 16467329
    [Google Scholar]
  52. MazziottaC. TognonM. MartiniF. TorreggianiE. RotondoJ.C. probiotics mechanism of action on immune cells and beneficial effects on human health.Cells202312118410.3390/cells12010184 36611977
    [Google Scholar]
  53. KajanderK. HatakkaK. PoussaT. FärkkiläM. KorpelaR. A probiotic mixture alleviates symptoms in irritable bowel syndrome patients: a controlled 6‐month intervention.Aliment. Pharmacol. Ther.200522538739410.1111/j.1365‑2036.2005.02579.x 16128676
    [Google Scholar]
  54. YooJ-W. ShinY-J. MaX. The alleviation of gut microbiota-induced depression and colitis in mice by anti-inflammatory probiotics NK151, NK173, and NK175.Nutrients20221410208010.3390/nu14102080
    [Google Scholar]
  55. YangA. LiaoY. ZhuJ. Screening of anti-allergy lactobacillus and its effect on allergic reactions in BALB/c mice sensitized by soybean protein.J. Funct. Foods20218710485810.1016/j.jff.2021.104858
    [Google Scholar]
  56. CordeiroB.F. AlvesJ.L. BeloG.A. Therapeutic effects of probiotic minas frescal cheese on the attenuation of ulcerative colitis in a murine model.Front. Microbiol.20211262392010.3389/fmicb.2021.623920 33737918
    [Google Scholar]
  57. N.; Darwish, A. M.; Khattab, A. E.-N. Assessment of two potential probiotic strains as antiobesity supplements under high-fat feeding conditions.Probiotics Antimicrob. Proteins202315485686710.1007/s12602‑022‑09912‑w 35088380
    [Google Scholar]
  58. MaX. ShinY.J. ParkH.S. Lactobacillus casei and its supplement alleviate stress-induced depression and anxiety in mice by the regulation of BDNF Expression and NF-κB Activation.Nutrients20231511248810.3390/nu15112488 37299451
    [Google Scholar]
  59. MasolehA KhoshnoodS HaddadiM Potential role of lactobacillus and bifidobacterium for preventing kidney stones. Clin Lab 202369(05/2023)10.7754/Clin.Lab.2022.22064537145061
    [Google Scholar]
  60. ZhengY. ZhangS. ZhangT. A Bifidobacterium animalis subsp. lactis strain that can suppress Helicobacter pylori: isolation, in vitro and in vivo validation.Lett. Appl. Microbiol.2024771ovae00510.1093/lambio/ovae005 38242846
    [Google Scholar]
  61. MojganiN. BagheriM. VasejiN. In vitro and In vivo Analysis of human milk lactic acid bacteria isolates for their anti-hypercholesterolemia actions.Indian J. Microbiol.202464117518510.1007/s12088‑023‑01150‑0 38468725
    [Google Scholar]
  62. YangB. YueY. ChenY. Lactobacillus plantarum CCFM1143 Alleviates chronic diarrhea via inflammation regulation and gut microbiota modulation: A double-blind, randomized, placebo-controlled study.Front. Immunol.20211274658510.3389/fimmu.2021.746585 34721416
    [Google Scholar]
  63. BarigelaA. BhukyaB.J.B. Probiotic Pediococcus acidilactici strain from tomato pickle displays anticancer activity and alleviates gut inflammation in vitro .Biotech 20211112310.1007/s13205‑020‑02570‑1
    [Google Scholar]
  64. ZhengY. ZhangL. BonfiliL. de VivoL. EleuteriA.M. BellesiM. Probiotics supplementation attenuates inflammation and oxidative stress induced by chronic sleep restriction.Nutrients2023156151810.3390/nu15061518 36986248
    [Google Scholar]
  65. ParkM. KwonB. KuS. JiG. The Efficacy of Bifidobacterium longum BORI and Lactobacillus acidophilus AD031 probiotic treatment in infants with rotavirus infection.Nutrients20179888710.3390/nu9080887 28813007
    [Google Scholar]
  66. HarperA. VijayakumarV. OuwehandA.C. Viral infections, the microbiome, and probiotics.Front. Cell. Infect. Microbiol.20211059616610.3389/fcimb.2020.596166 33643929
    [Google Scholar]
  67. WieërsG BelkhirL EnaudR How probiotics affect the microbiota. front cell infect microbiol 2020945410.3389/fcimb.2019.0045432010640
    [Google Scholar]
  68. SinkevičienėJ. MarcinkevičienėA. BaliukonienėV. JovaišienėJ. Fungi and mycotoxins in fresh bee pollen. InRural Development: Proceedings of the International Scientific Conference2019697210.15544/RD.2019.004
    [Google Scholar]
  69. Hernandez-MendozaA. GarciaH.S. SteeleJ.L. Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1.Food Chem. Toxicol.20094761064106810.1016/j.fct.2009.01.042 19425181
    [Google Scholar]
  70. VinderolaG. RitieniA. Role of Probiotics Against Mycotoxins and Their Deleterious Effects.J. Food Res.2014411010.5539/jfr.v4n1p10
    [Google Scholar]
  71. CatherineA. BernardC. SpoofL. BrunoM. Microcystins and Nodularins.Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis 201610726
    [Google Scholar]
  72. NybomS.M.K. ColladoM.C. SuronoI.S. SalminenS.J. MeriluotoJ.A.O. Effect of glucose in removal of microcystin-LR by viable commercial probiotic strains and strains isolated from dadih fermented milk.J. Agric. Food Chem.200856103714372010.1021/jf071835x 18459790
    [Google Scholar]
  73. NybomS.M.K. SalminenS.J. MeriluotoJ.A.O. Removal of microcystin-LR by strains of metabolically active probiotic bacteria.FEMS Microbiol. Lett.20072701273310.1111/j.1574‑6968.2007.00644.x 17263839
    [Google Scholar]
  74. NybomS.M.K. SalminenS.J. MeriluotoJ.A.O. Specific strains of probiotic bacteria are efficient in removal of several different cyanobacterial toxins from solution.Toxicon200852221422010.1016/j.toxicon.2008.04.169 18639912
    [Google Scholar]
  75. SalminenS. NybomS. MeriluotoJ. ColladoM.C. VesterlundS. El-NezamiH. Interaction of probiotics and pathogens—benefits to human health?Curr. Opin. Biotechnol.201021215716710.1016/j.copbio.2010.03.016 20413293
    [Google Scholar]
  76. TriantafillidisJ.K. TzouvalaM. TriantafyllidiE. Enteral nutrition supplemented with transforming growth factor-β, colostrum, probiotics, and other nutritional compounds in the treatment of patients with inflammatory bowel disease.Nutrients2020124104810.3390/nu12041048 32290232
    [Google Scholar]
  77. MartínR. LangellaP. Emerging health concepts in the probiotics field: Streamlining the definitions.Front. Microbiol.201910104710.3389/fmicb.2019.01047 31164874
    [Google Scholar]
  78. SharmaM. ShuklaG. Metabiotics: One step ahead of probiotics; an insight into mechanisms involved in anticancerous effect in colorectal cancer.Front. Microbiol.20167194010.3389/fmicb.2016.01940 27994577
    [Google Scholar]
  79. AkterS. ParkJ.H. JungH.K. Potential Health-Promoting Benefits of Paraprobiotics, Inactivated Probiotic Cells.J. Microbiol. Biotechnol.202030447748110.4014/jmb.1911.11019 31986247
    [Google Scholar]
  80. de AlmadaC.N. AlmadaC.N. MartinezR.C.R. Sant’AnaA.S. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods.Trends Food Sci. Technol.2016589611410.1016/j.tifs.2016.09.011
    [Google Scholar]
  81. AsoodehA. Memarpoor YazdiM. ChamaniJ. Purification and characterisation of angiotensin I converting enzyme inhibitory peptides from lysozyme hydrolysates.Food Chem.2012131129129510.1016/j.foodchem.2011.08.039 23265490
    [Google Scholar]
  82. SalminenS. ColladoM.C. EndoA. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics.Nat. Rev. Gastroenterol. Hepatol.202118964966710.1038/s41575‑021‑00440‑6 33948025
    [Google Scholar]
  83. OleskinA.V. ShenderovB.A. Microbial communication and microbiota-host interactivity: Neurophysiological, biotechnological, and Biopolitical Implications.Nova202038910.52305/EGCB8622
    [Google Scholar]
  84. MaL. TuH. ChenT. Postbiotics in human health: A Narrative Review.Nutrients202315229110.3390/nu15020291 36678162
    [Google Scholar]
  85. AsoodehA. ZardiniH.Z. ChamaniJ. Identification and characterization of two novel antimicrobial peptides, temporin‐Ra and temporin‐Rb, from skin secretions of the marsh frog (Rana ridibunda).J. Pept. Sci.2012181101610.1002/psc.1409 21956830
    [Google Scholar]
  86. MartorellP. AlvarezB. LlopisS. Heat-Treated Bifidobacterium longum CECT-7347: A whole-cell postbiotic with antioxidant, anti-inflammatory, and gut-barrier protection properties.Antioxidants202110453610.3390/antiox10040536 33808122
    [Google Scholar]
  87. MehtaJ.P. AyakarS. SinghalR.S. The potential of paraprobiotics and postbiotics to modulate the immune system: A Review.Microbiol. Res.202327512744910.1016/j.micres.2023.127449 37454427
    [Google Scholar]
  88. ZuckoJ. StarcevicA. DiminicJ. OrosD. MortazavianA.M. PutnikP. Probiotic – friend or foe?Curr. Opin. Food Sci.202032454910.1016/j.cofs.2020.01.007
    [Google Scholar]
  89. HradickaP. AdamkovaP. LenhardtL. GancarcikovaS. IannacconeS.F. DemeckovaV. Addressing safety concerns of long-term probiotic use: In vivo evidence from a rat model.J. Funct. Foods202310410552110.1016/j.jff.2023.105521
    [Google Scholar]
  90. OuwehandA.C. ForsstenS. HibberdA.A. LyraA. StahlB. Probiotic approach to prevent antibiotic resistance.Ann. Med.201648424625510.3109/07853890.2016.1161232 27092975
    [Google Scholar]
  91. SharmaP. TomarS.K. GoswamiP. SangwanV. SinghR. Antibiotic resistance among commercially available probiotics.Food Res. Int.20145717619510.1016/j.foodres.2014.01.025
    [Google Scholar]
  92. RahmanM.S. MustariA. SalauddinM. RahmanM.M. Effects of probiotics and enzymes on growth performance and haematobiochemical parameters in broilers.J. Bangladesh Agric. Univ.201411111111810.3329/jbau.v11i1.18221
    [Google Scholar]
  93. GhodratiM. HosseiniS.S.P. RajabiI.H. ShenavarM.A. ShamsaieM.M. Singular or combined dietary administration of multi‐strain probiotics and multi‐enzyme influences growth, body composition, digestive enzyme activity, and intestinal morphology in Siberian sturgeon (Acipenser baerii).Aquacult. Nutr.202127496697610.1111/anu.13238
    [Google Scholar]
  94. MorshediV. NafisiB.M. AzodiM. ModaresiM. CheraghiS. Effects of dietary probiotic (Lactobacillus plantarum) on body composition, serum biochemical parameters and liver enzymes of Asian sea bass (Lates calcarifer, Bloch 1790).Aqua Docs1790142115
    [Google Scholar]
  95. Dehghani SaniF. ShakibapourN. BeigoliS. SadeghianH. HosainzadehM. ChamaniJ. Changes in binding affinity between ofloxacin and calf thymus DNA in the presence of histone H1: Spectroscopic and molecular modeling investigations.J. Lumin.201820359960810.1016/j.jlumin.2018.06.083
    [Google Scholar]
  96. PaturiG. ButtsC.A. Bentley-HewittK.L. HedderleyD. StoklosinskiH. AnsellJ. Differential effects of probiotics, prebiotics, and synbiotics on gut microbiota and gene expression in rats.J. Funct. Foods20151320421310.1016/j.jff.2014.12.034
    [Google Scholar]
  97. MaJ. LyuY. LiuX. Engineered probiotics.Microb. Cell Fact.20222117210.1186/s12934‑022‑01799‑0 35477497
    [Google Scholar]
  98. KurtzC.B. MilletY.A. PuurunenM.K. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans.Sci. Transl. Med.201911475eaau797510.1126/scitranslmed.aau7975 30651324
    [Google Scholar]
  99. CecariniV. BonfiliL. GogoiO. Neuroprotective effects of p62(SQSTM1)-engineered lactic acid bacteria in Alzheimer’s disease: a pre-clinical study.Aging (Albany NY)20201216159951602010.18632/aging.103900 32855357
    [Google Scholar]
  100. RobertS. GysemansC. TakiishiT. Oral delivery of glutamic acid decarboxylase (GAD)-65 and IL10 by Lactococcus lactis reverses diabetes in recent-onset NOD mice.Diabetes20146382876288710.2337/db13‑1236 24677716
    [Google Scholar]
  101. MaoN. Cubillos-RuizA. CameronD.E. CollinsJ.J. Probiotic strains detect and suppress cholera in mice.Sci. Transl. Med.201810445eaao258610.1126/scitranslmed.aao2586 29899022
    [Google Scholar]
  102. RiedelC.U. CaseyP.G. MulcahyH. O’GaraF. GahanC.G.M. HillC. Construction of p16Slux, a novel vector for improved bioluminescent labeling of gram-negative bacteria.Appl. Environ. Microbiol.200773217092709510.1128/AEM.01394‑07 17766445
    [Google Scholar]
  103. DaninoT. PrindleA. KwongG.A. Programmable probiotics for detection of cancer in urine.Sci. Transl. Med.20157289289ra8410.1126/scitranslmed.aaa3519 26019220
    [Google Scholar]
  104. McKayR. HaukP. QuanD. BentleyW.E. Development of cell-based sentinels for nitric oxide: ensuring marker expression and unimodality.ACS Synth. Biol.2018771694170110.1021/acssynbio.8b00146 29975512
    [Google Scholar]
  105. RiglarD.T. BaymM. KernsS.J. NiederhuberM.J. BronsonR.T. KotulaJ.W. Long-Term monitoring of inflammation in the mammalian gut using programmable commensal bacteria.bioRxiv201610.1101/075051
    [Google Scholar]
  106. ZhouZ. ChenX. ShengH. Engineering probiotics as living diagnostics and therapeutics for improving human health.Microb. Cell Fact.20201915610.1186/s12934‑020‑01318‑z 32131831
    [Google Scholar]
  107. MahlapuuM. HåkanssonJ. RingstadL. BjörnC. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents.Front. Cell. Infect. Microbiol.2016619410.3389/fcimb.2016.00194
    [Google Scholar]
  108. KleinkaufH. Von DöhrenH. Peptide Antibiotics. Biotechnology: Products of secondary metabolism.VCH2008
    [Google Scholar]
  109. PalmerJ.D. PiattelliE. McCormickB.A. SilbyM.W. BrighamC.J. BucciV. Engineered probiotic for the inhibition of Salmonella via tetrathionate-induced production of microcin H47.ACS Infect. Dis.201841394510.1021/acsinfecdis.7b00114 28918634
    [Google Scholar]
  110. ForkusB. RitterS. VlysidisM. GeldartK. KaznessisY.N. Antimicrobial probiotics reduce Salmonella enterica in turkey gastrointestinal tracts.Sci. Rep.2017714069510.1038/srep40695 28094807
    [Google Scholar]
  111. GeldartK. ForkusB. McChesneyE. McCueM. KaznessisY. pMPES: A modular peptide expression system for the delivery of antimicrobial peptides to the site of gastrointestinal infections using probiotics.Pharmaceuticals (Basel)2016946010.3390/ph9040060 27782051
    [Google Scholar]
  112. LuongH.X. ThanhT.T. TranT.H. antimicrobial peptides – advances in development of therapeutic applications.Life Sci.202026011840710.1016/j.lfs.2020.118407 32931796
    [Google Scholar]
  113. LeeJ.W. ChanC.T.Y. SlomovicS. CollinsJ.J. Next-generation biocontainment systems for engineered organisms.Nat. Chem. Biol.201814653053710.1038/s41589‑018‑0056‑x 29769737
    [Google Scholar]
  114. BraatH. RottiersP. HommesD.W. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease.Clin. Gastroenterol. Hepatol.20064675475910.1016/j.cgh.2006.03.028 16716759
    [Google Scholar]
  115. PedrolliD.B. RibeiroN.V. SquizatoP.N. Engineering microbial living therapeutics: The synthetic biology toolbox.Trends Biotechnol.201937110011510.1016/j.tibtech.2018.09.005 30318171
    [Google Scholar]
  116. ZhangG. BrokxS. WeinerJ.H. Extracellular accumulation of recombinant proteins fused to the carrier protein YebF in Escherichia coli.Nat. Biotechnol.200624110010410.1038/nbt1174 16369539
    [Google Scholar]
  117. QiaoN. DuG. ZhongX. SunX. Recombinant Lactic Acid Bacteria as Promising Vectors for Mucosal Vaccination.Exploration2021122021002610.1002/EXP.20210026
    [Google Scholar]
  118. AntunesL.C.M. FerreiraR.B.R. LostrohC.P. GreenbergE.P. A mutational analysis defines Vibrio fischeri LuxR binding sites.J. Bacteriol.2008190134392439710.1128/JB.01443‑07 18083819
    [Google Scholar]
  119. HwangI.Y. KohE. WongA. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models.Nat. Commun.2017811502810.1038/ncomms15028 28398304
    [Google Scholar]
  120. BintsisT. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics.AIMS Microbiol.20184466568410.3934/microbiol.2018.4.665 31294241
    [Google Scholar]
  121. Alvarez-SieiroP. Montalbán-LópezM. MuD. KuipersO.P. Bacteriocins of lactic acid bacteria: extending the family.Appl. Microbiol. Biotechnol.201610072939295110.1007/s00253‑016‑7343‑9 26860942
    [Google Scholar]
  122. TanhaeianA. MirzaiiM. PirkhezranianZ. SekhavatiM.H. Generation of an engineered food-grade Lactococcus lactis strain for production of an antimicrobial peptide: in vitro and in silico evaluation.BMC Biotechnol.20202011910.1186/s12896‑020‑00612‑3 32228563
    [Google Scholar]
  123. JainS. ChatterjeeA. PanwarS. YadavA.K. MajumdarR.S. KumarA. Metabolic Engineering approaches for improvement of probiotics functionality. Advances in probiotics for sustainable food and medicine.Springer202110.1007/978‑981‑15‑6795‑7_10
    [Google Scholar]
  124. RavnP. ArnauJ. MadsenS.M. VrangA. IsraelsenH. Optimization of signal peptide SP310 for heterologous protein production in Lactococcus lactis.Microbiology (Reading)200314982193220110.1099/mic.0.26299‑0 12904559
    [Google Scholar]
/content/journals/raaidd/10.2174/0127724344308638240530065552
Loading
/content/journals/raaidd/10.2174/0127724344308638240530065552
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test