Skip to content
2000
Volume 20, Issue 2
  • ISSN: 2772-4344
  • E-ISSN: 2772-4352

Abstract

Medicinal plants are an integral part of the medical system in many countries around the world. Natural products have been used as important biological sources for drug discovery over the past half-century. Alkaloids are a group of natural compounds that contain a basic nitrogen atom. Oxoglaucine is a phytochemical of the oxoaporphines class phytochemical isolated from Maxim, and The purpose of this study is to analyze all the scientific information about oxoglaucine in order to know the health-beneficial potential of oxoglaucine in medicine. The detailed pharmacological activities of oxoglaucine are analyzed and discussed in this review. The scientific data of the present review about oxoglaucine were collected from PubMed, Scopus, Science Direct, and Google using the terms oxoglaucine, oxoaporphines, alkaloid, phytochemical, pharmacological, and herbal medicine. The scientific findings of the present review article describe the biological importance and therapeutic effectiveness of oxoglaucine in medicine. The present article scientific data signified the biological potential of oxoglaucine against inflammatory diseases, arthritis, osteoarthritis, immune response, enterovirus, and poliovirus. Furthermore, its anticancer, antiaggregation, antifungal, antiprotozoal, and cytotoxic potential are also described in this review article. The scientific information in this article will be helpful to all the scientific peoples of biological science to understand the therapeutic potential of oxoglaucine in medicine.

Loading

Article metrics loading...

/content/journals/raaidd/10.2174/0127724344297762240815073618
2024-08-21
2025-06-22
Loading full text...

Full text loading...

References

  1. PatelD.K. Biological potential and therapeutic benefit of Chrysosplenetin: An Applications of polymetho-xylated flavonoid in medicine from natural sources.Pharmacol. Res. Mod. Chin. Med.2022410015510.1016/j.prmcm.2022.100155
    [Google Scholar]
  2. PatelD.K. Health beneficial aspect and therapeutic potential of cirsimaritin in the medicine for the treatment of human health complications.Curr. Bioact. Compd.2022187e27012220056610.2174/1573407218666220127092925
    [Google Scholar]
  3. ZhangZ. LiY. SunY. WangW. SongX. ZhangD. Chemical diversity and biological activities of marine-derived sulphur containing alkaloids: A comprehensive update.Arab. J. Chem.202316910501110.1016/j.arabjc.2023.105011
    [Google Scholar]
  4. PatelK. PatelD.K. Biological potential of aromadendrin against human disorders: Recent development in pharmacological activities and analytical aspects.Pharmacol. Res. Mod. Chin. Med.20241110042410.1016/j.prmcm.2024.100424
    [Google Scholar]
  5. PatelD.K. Biological importance of bioactive phytochemical ‘Cimifugin’ as potential active pharmaceutical ingredients against human disorders: A natural phytochemical for new therapeutic alternatives.Pharmacol. Res. Mod. Chin. Med.2023710023210.1016/j.prmcm.2023.100232
    [Google Scholar]
  6. PatelD.K. Biological importance and therapeutic potential of Trilobatin in the management of human disorders and associated secondary complications.Pharmacol. Res. Mod. Chin. Med.20225100185
    [Google Scholar]
  7. NagyK. DarkóÉ. SzalaiG. UPLC-ESI-QTOF-MS assisted targeted metabolomics to study the enrichment of vinca alkaloids and related metabolites in Catharanthus roseus plants grown under controlled LED environment.J. Pharm. Biomed. Anal.202323511561110.1016/j.jpba.2023.115611 37542828
    [Google Scholar]
  8. PatelD.K. Grandisin and its therapeutic potential and pharmacological activities: A review.Pharmacol. Res. Mod. Chin. Med.20225100176
    [Google Scholar]
  9. PatelD.K. Biological importance of a biflavonoid ‘bilobetin’ in the medicine: Medicinal importance, pharmacological activities and analytical aspects.Infect. Disord. Drug Targets2022225e21032220249010.2174/1871526522666220321152036 35319397
    [Google Scholar]
  10. PatelD.K. Therapeutic effectiveness of Magnolin on cancers and other human complications.Pharmacol. Res. Mod. Chin. Med.20236100203
    [Google Scholar]
  11. PatelK. PatelD.K. Biological potential and therapeutic effectiveness of pteryxin in medicine. A viable alternative to current remedies for the treatment of human disorders.Pharmacol. Res. Mod. Chin. Med.20241010040510.1016/j.prmcm.2024.100405
    [Google Scholar]
  12. PatelD.K. PatelK. Biological importance and therapeutic potential of calycopterin from dracocephalum kotschyi: An overview of current scientific research work.Recent Adv. Antiinfect. Drug Discov.2024191122010.2174/2772434418666230406092739
    [Google Scholar]
  13. PatelD.K. Biological importance, therapeutic benefits, and analytical aspects of active flavonoidal compounds ‘corylin’ from psoralea corylifolia in the field of medicine.Infect. Disord. Drug Targets2023231e25082220800510.2174/1871526522666220825160906 36028973
    [Google Scholar]
  14. PatelD.K. Health benefits, therapeutic applications, and recent advances of cirsilineol in the medicine: Potential bioactive natural flavonoids of genus artemisia.Endocr. Metab. Immune Disord. Drug Targets202323789490710.2174/1871530323666221122123456 36415094
    [Google Scholar]
  15. PatelD.K. Therapeutic role of columbianadin in human disorders: Medicinal importance, biological properties and analytical aspects.Pharmacol. Res. Mod. Chin. Med.2023610021210.1016/j.prmcm.2022.100212
    [Google Scholar]
  16. PatelD.K. PatelK. Health benefits of avicularin in the medicine against cancerous disorders and other complications: Biological importance, therapeutic benefit and analytical aspects.Curr. Cancer Ther. Rev.2022181415010.2174/1573394717666210831163322
    [Google Scholar]
  17. PatelD.K. PatelK. Potential therapeutic applications of eudesmin in medicine: An overview on medicinal importance, pharmacological activities and analytical prospects.Pharmacol. Res. Mod. Chin. Med.2022510017510.1016/j.prmcm.2022.100175
    [Google Scholar]
  18. PatelD.K. Biological importance, therapeutic benefit, and medicinal importance of flavonoid, cirsiliol for the development of remedies against human disorders.Curr. Bioact. Compd.2022183e24082119580410.2174/1573407217666210824125427
    [Google Scholar]
  19. MaheriH. HashemzadehF. ShakibapourN. Glucokinase activity enhancement by cellulose nanocrystals isolated from jujube seed: A novel perspective for type II diabetes mellitus treatment (In vitro).J. Mol. Struct.2022126913380310.1016/j.molstruc.2022.133803
    [Google Scholar]
  20. KalhoriF. YazdyaniH. KhademorezaeianF. Enzyme activity inhibition properties of new cellulose nanocrystals from Citrus medica L. pericarp: A perspective of cholesterol lowering.Luminescence202237111836184510.1002/bio.4360 35946171
    [Google Scholar]
  21. ArmanS. HadaviM. Rezvani-NoghaniA. Cellulose nanocrystals from celery stalk as quercetin scaffolds: A novel perspective of human holo‐transferrin adsorption and digestion behaviours.Luminescence2024391e463410.1002/bio.4634 38286605
    [Google Scholar]
  22. WhaleyA.O. WhaleyA.K. ToporkovaV. Bracteatinine and isogroenlandicine, two new isoquinoline alkaloids isolated from Corydalis bracteata and their effect on platelet function.Fitoterapia202317110569710.1016/j.fitote.2023.105697 37797794
    [Google Scholar]
  23. WangH. ZhaoY. XuH. WangP. ChenS. Structural modification may be a way to make isoquinoline alkaloids efficient antibacterial drugs.Arab. J. Chem.2023161110520410.1016/j.arabjc.2023.105204
    [Google Scholar]
  24. Katchborian-NetoA. NicácioK.J. CruzJ.C. Bioprospecting-based untargeted metabolomics identifies alkaloids as potential anti-inflammatory bioactive markers of Ocotea species (Lauraceae).Phytomedicine202312015506010.1016/j.phymed.2023.155060 37717309
    [Google Scholar]
  25. FuQ. DongW. GeD. KeY. JinY. Supercritical fluid chromatography based on reversed-phase/ion chromatography mixed-mode stationary phase for separation of spirooxindole alkaloids.J. Chromatogr. A2023170546416310.1016/j.chroma.2023.464163 37348226
    [Google Scholar]
  26. WeiD. YangY. XiR. Hunteriasines A – D, tryptamine-derived alkaloids from Hunteria umbellata.Phytochemistry202321311375210.1016/j.phytochem.2023.113752 37330032
    [Google Scholar]
  27. ZhangS. ChenS. ZhuF. Rapid determination of five common toxic alkaloids in blood by UPLC–MRM–IDA–EPI: Application to poisoning case.Leg. Med.20236310226710.1016/j.legalmed.2023.102267 37201269
    [Google Scholar]
  28. JiangH. LiuY. WangC. Decoloration and alkaloid enrichment of Dactylicapnos scandens extracts based on the use of strong anion-exchange resins in tandem with strong cation-exchange silica-based materials.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2023121812363710.1016/j.jchromb.2023.123637 36809736
    [Google Scholar]
  29. TeerapongpisanP. SuthiphasilpV. PhukhatmuenP. Dimeric aporphine alkaloids from the twigs of Trivalvaria costata (Hook.f. & Thomson) I.M.Turner.Phytochemistry202320711358610.1016/j.phytochem.2023.113586 36632950
    [Google Scholar]
  30. RibeiroR.A. LeiteJ.R. Nantenine alkaloid presents anticonvulsant effect on two classical animal models.Phytomedicine2003106-756356810.1078/094471103322331557 13678244
    [Google Scholar]
  31. PatelD.K. Biological importance and therapeutic potential of delicaflavone against cancerous disorders: A rare naturally occurring biflavonoids of selaginella species.Curr. Tradit. Med.2024105e08062321778510.2174/2215083810666230608104601
    [Google Scholar]
  32. PonnalaS. ChaudharyS. González-SarriasA. SeeramN.P. HardingW.W. Cytotoxicity of aporphines in human colon cancer cell lines HCT-116 and Caco-2: An SAR study.Bioorg. Med. Chem. Lett.201121154462446410.1016/j.bmcl.2011.06.005 21724394
    [Google Scholar]
  33. YanQ. LiR. XinA. Design, synthesis, and anticancer properties of isocorydine derivatives.Bioorg. Med. Chem.201725246542655310.1016/j.bmc.2017.10.027 29103873
    [Google Scholar]
  34. StévignyC. BaillyC. Quetin-LeclercqJ. Cytotoxic and antitumor potentialities of aporphinoid alkaloids.Curr. Med. Chem. Anticancer Agents20055217318210.2174/1568011053174864 15777224
    [Google Scholar]
  35. ZhaoQ. ZhaoY. WangK. Antinociceptive and free radical scavenging activities of alkaloids isolated from Lindera angustifolia Chen.J. Ethnopharmacol.2006106340841310.1016/j.jep.2006.01.019 16513307
    [Google Scholar]
  36. LinC.J. ChenC.H. LiuF.W. Inhibition of intestinal glucose uptake by aporphines and secoaporphines.Life Sci.200679214415310.1016/j.lfs.2005.12.031 16426640
    [Google Scholar]
  37. PerecimG.P. DeflonV.M. MartinsG.R. Stereoselective total synthesis of (S)- and (R)-nuciferine using benzyne chemistry.Tetrahedron2020763813146110.1016/j.tet.2020.131461
    [Google Scholar]
  38. PonnalaS. GonzalesJ. KapadiaN. NavarroH.A. HardingW.W. Evaluation of structural effects on 5-HT2A receptor antagonism by aporphines: Identification of a new aporphine with 5-HT2A antagonist activity.Bioorg. Med. Chem. Lett.20142471664166710.1016/j.bmcl.2014.02.066 24630561
    [Google Scholar]
  39. PonnalaS. KapadiaN. MadapaS. AlbertsI.L. HardingW.W. Synthesis and evaluation of aporphine analogs containing C1 allyl isosteres at the h5-HT2A receptor.Bioorg. Med. Chem. Lett.201525225102510610.1016/j.bmcl.2015.10.012 26475518
    [Google Scholar]
  40. BraccaA.B.J. KaufmanT.S. Synthetic approaches to carnegine, a simple tetrahydroisoquinoline alkaloid.Tetrahedron20046047105751061010.1016/j.tet.2004.08.033
    [Google Scholar]
  41. XuY. SromekA.W. NeumeyerJ.L. Identification of fluorinated (R)-(−)-aporphine derivatives as potent and selective ligands at serotonin 5-HT2C receptor.Bioorg. Med. Chem. Lett.201929223023310.1016/j.bmcl.2018.11.050 30545651
    [Google Scholar]
  42. KarkiA. JuarezR. NamballaH.K. AlbertsI. HardingW.W. Identification of C10 nitrogen-containing aporphines with dopamine D1 versus D5 receptor selectivity.Bioorg. Med. Chem. Lett.202030812705310.1016/j.bmcl.2020.127053 32107165
    [Google Scholar]
  43. LiuZ. ChenX. YuL. ZhenX. ZhangA. Synthesis and pharmacological investigation of novel 2-aminothiazole-privileged aporphines.Bioorg. Med. Chem.200816146675668110.1016/j.bmc.2008.05.077 18562201
    [Google Scholar]
  44. PerecimG.P. RodriguesA. RaminelliC. A convenient formation of aporphine core via benzyne chemistry: Conformational analysis and synthesis of (R)-aporphine.Tetrahedron Lett.201556496848685110.1016/j.tetlet.2015.10.083
    [Google Scholar]
  45. ZhuR. JiangG. TangW. Aporphines: A privileged scaffold in CNS drug discovery.Eur. J. Med. Chem.202325611541410.1016/j.ejmech.2023.115414 37172474
    [Google Scholar]
  46. da SilvaD.B. TulliE.C.O. MilitãoG.C.G. The antitumoral, trypanocidal and antileishmanial activities of extract and alkaloids isolated from Duguetia furfuracea.Phytomedicine200916111059106310.1016/j.phymed.2009.03.019 19423311
    [Google Scholar]
  47. SinghO.V. HuangW.J. ChenC.H. LeeS.S. Manganese(III) acetate mediated oxidation of aporphines: A convenient and useful synthesis of oxoaporphines.Tetrahedron Lett.200748468166816910.1016/j.tetlet.2007.09.096
    [Google Scholar]
  48. DutraL.M. CostaE.V. MoraesV.R.S. Chemical constituents from the leaves of Annona pickelii (Annonaceae).Biochem. Syst. Ecol.20124111511810.1016/j.bse.2011.12.011
    [Google Scholar]
  49. CamposF.R. BatistaR.L. BatistaC.L. Isoquinoline alkaloids from leaves of Annona sericea (Annonaceae).Biochem. Syst. Ecol.2008361080480610.1016/j.bse.2008.07.005
    [Google Scholar]
  50. LimaJ.M. LemeG.M. CostaE.V. CassQ.B. LC-HRMS and acetylcholinesterase affinity assay as a workflow for profiling alkaloids in Annona salzmannii extract.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2021116412249310.1016/j.jchromb.2020.122493 33485157
    [Google Scholar]
  51. PhamH.G. HaM.T. CaoT.Q. LeT.T. MinB.S. Alkaloids from Houttuynia cordata Thunb. and their chemotaxonomic significance.Biochem. Syst. Ecol.202310910466510.1016/j.bse.2023.104665
    [Google Scholar]
  52. da SilvaF.M.A. BataglionG.A. de AlmeidaR.A. Positive electrospray ionization ion trap mass spectrometry and ab initio computational studies of the multi-pathway fragmentation of oxoaporphine alkaloids.Int. J. Mass Spectrom.2017418303610.1016/j.ijms.2016.12.004
    [Google Scholar]
  53. TangH. WeiY.B. ZhangC. Synthesis, biological evaluation and molecular modeling of oxoisoaporphine and oxoaporphine derivatives as new dual inhibitors of acetylcholinesterase/butyryl-cholinesterase.Eur. J. Med. Chem.20094462523253210.1016/j.ejmech.2009.01.021 19243862
    [Google Scholar]
  54. LiaoL.S. TanL.J. ChenY. One-pot synthesis of oxoaporphines as potent antitumor agents and investigation of their mechanisms of actions.Eur. J. Med. Chem.202223111414110.1016/j.ejmech.2022.114141 35092899
    [Google Scholar]
  55. RabêloS.V. CostaE.V. BarisonA. Alkaloids isolated from the leaves of atemoya (Annona cherimola×Annona squamosa).Rev. Bras. Farmacogn.201525441942110.1016/j.bjp.2015.07.006
    [Google Scholar]
  56. XuC. ZhangY. TanR.X. A new oxoaporphine alkaloid from Sinofranchetia chinensis.Fitoterapia200475223924110.1016/j.fitote.2003.12.001 15030935
    [Google Scholar]
  57. do SantosR.C. de SouzaA.V. Andrade-SilvaM. Antioxidant, anti-rheumatic and anti-inflammatory investigation of extract and dicentrinone from Duguetia furfuracea (A. St.-Hil.) Benth. & Hook. f.J. Ethnopharmacol.201821191610.1016/j.jep.2017.09.019 28942134
    [Google Scholar]
  58. ChenJ.J. HungH.C. SungP.J. ChenI.S. KuoW.L. Aporphine alkaloids and cytotoxic lignans from the roots of Illigera luzonensis.Phytochemistry201172652353210.1016/j.phytochem.2010.12.015 21315382
    [Google Scholar]
  59. dos SantosÉ.L. SantanaA.C. MichelettiA.C. FreireT.V. GuterresZ.R. YoshidaN.C. Metabolomic profiling and assessment of antimicrobial, antioxidant and genotoxic potential of Unonopsis guatterioides R.E.Fr. (Annonaceae) fruits.Arab. J. Chem.2023161010513310.1016/j.arabjc.2023.105133
    [Google Scholar]
  60. MishraS.K. TripathiG. KishoreN. SinghR.K. SinghA. TiwariV.K. Drug development against tuberculosis: Impact of alkaloids.Eur. J. Med. Chem.201713750454410.1016/j.ejmech.2017.06.005 28628823
    [Google Scholar]
  61. LiL. ZuoW.T. LiuH. Oxoaporphine Pr(III) complex inhibits hepatocellular carcinoma progression and metastasis by disrupting tumor cell–macrophage crosstalk.Biomed. Pharmacother.202316911584910.1016/j.biopha.2023.115849 37976890
    [Google Scholar]
  62. AnsariM.F. KhanH.Y. TabassumS. ArjmandF. Advances in anticancer alkaloid-derived metallo-chemotherapeutic agents in the last decade: Mechanism of action and future prospects.Pharmacol. Ther.202324110833510.1016/j.pharmthera.2022.108335 36567056
    [Google Scholar]
  63. MishraB.B. KaleR.R. SinghR.K. TiwariV.K. Alkaloids: Future prospective to combat leishmaniasis.Fitoterapia2009802819010.1016/j.fitote.2008.10.009 19015012
    [Google Scholar]
  64. Amala DevA.R. JosephS.M. Anticancer potential of Annona genus: A detailed review.J. Indian Chem. Soc.2021981210023110.1016/j.jics.2021.100231
    [Google Scholar]
  65. MajrashiT.A. AshpoleN.M. KhanS.I. SandersM. FantoukhO.I. KhanI.A. In vitro cytotoxicity and neurotoxicity assessment of the alkaloidal constituents derived from Asimina triloba twigs.S. Afr. J. Bot.202114020420910.1016/j.sajb.2021.04.010
    [Google Scholar]
  66. LiuY-C. ChenZ-F. ShiY-F. HuangK-B. GengB. LiangH. Oxoglaucine-lanthanide complexes: Synthesis, crystal structure and cytotoxicity.Anticancer Res.2014341531536 24403512
    [Google Scholar]
  67. FlorsC. PratC. SuauR. NájeraF. NonellS. Photochemistry of phytoalexins containing phenalenone-like chromophores: photophysics and singlet oxygen photosensitizing properties of the plant oxoaporphine alkaloid oxoglaucine.Photochem. Photobiol.2005811120124 15493958
    [Google Scholar]
  68. ChenZ.F. ShiY.F. LiuY.C. TCM active ingredient oxoglaucine metal complexes: Crystal structure, cytotoxicity, and interaction with DNA.Inorg. Chem.20125141998200910.1021/ic200443p 22309171
    [Google Scholar]
  69. ChenT ChenH ZhangL ZhouB YangC HuangX Analysis of oxoglaucine in the treatment of breast cancer based on network pharmacology and bioinformatics.E3S Web Conf202127103078
    [Google Scholar]
  70. WeiJ.H. ChenZ.F. QinJ.L. Water-soluble oxoglaucine-Y(iii), Dy(iii) complexes: In vitro and in vivo anticancer activities by triggering DNA damage, leading to S phase arrest and apoptosis.Dalton Trans.20154425114081141910.1039/C5DT00926J 26017376
    [Google Scholar]
  71. RemichkovaM. DimitrovaP. PhilipovS. IvanovskaN. Toll-like receptor-mediated anti-inflammatory action of glaucine and oxoglaucine.Fitoterapia200980741141410.1016/j.fitote.2009.05.016 19481591
    [Google Scholar]
  72. StoyanovaA. NikolovaI. GalabovA.S. Effect of consecutive alternating administration (CAA) of a triple anti-enteroviral combination on Coxsackievirus B1 neuroinfection in mice.Antiviral Res.201512113814410.1016/j.antiviral.2015.07.004 26196747
    [Google Scholar]
  73. ZhongG. LongH. ChenF. YuY. Oxoglaucine mediates Ca2+ influx and activates autophagy to alleviate osteoarthritis through the TRPV5/calm-odulin/CAMK‐II pathway.Br. J. Pharmacol.2021178152931294710.1111/bph.15466 33786819
    [Google Scholar]
  74. IvanovskaN. HristovaM. Treatment with oxoglaucine can enhance host resistance to Candida albicans infection of mice with adjuvant arthritis.Diagn. Microbiol. Infect. Dis.2000381172010.1016/S0732‑8893(00)00167‑X 11025179
    [Google Scholar]
  75. ZhengB. QuH.Y. MengT.Z. Novel total syntheses of oxoaporphine alkaloids enabled by mild Cu-catalyzed tandem oxidation/aromatization of 1-Bn-DHIQs.RSC Advances2018851289972900710.1039/C8RA05338C 35548004
    [Google Scholar]
  76. OhiriF. VerpoorteR. Baerheim SvendsenA. Alkaloids from Chasmanthera dependens.Planta Med.1982461222823010.1055/s‑2007‑971220 17396979
    [Google Scholar]
  77. LuZ. SunW. DuanX. YangZ. LiuY. TuP. Chemical constituents from Corydalis yanhusuo.Zhongguo Zhongyao Zazhi2012372235237 22737858
    [Google Scholar]
  78. HarriganG.G. GunatilakaA.A.L. KingstonD.G.I. ChanG.W. JohnsonR.K. Isolation of bioactive and other oxoaporphine alkaloids from two annonaceous plants, Xylopia aethiopica and Miliusa cf. banacea.J. Nat. Prod.1994571687310.1021/np50103a009 8158166
    [Google Scholar]
  79. WangX-Y. DingX. YuanY-F. Comprehensive two-dimensional APTES-decorated MCF7-cell membrane chromatographic system for characterizing potential anti-breast-cancer components from Yuanhu-Baizhi herbal medicine pair.Yao Wu Shi Pin Fen Xi2018262823833 29567254
    [Google Scholar]
  80. TzengC.C. WuY.C. SuT.L. WatanabeK.A. LuS.T. ChouT.C. Inhibitory effects of isoquinoline-type alkaloids on leukemic cell growth and macromolecule biosynthesis.Kao Hsiung I Hsueh Ko Hsueh Tsa Chih1990625865 2352316
    [Google Scholar]
  81. YangQ.Y. MaR. GuY.Q. XuX.F. ChenZ.F. LiangH. Arene‐Ruthenium(II)/Osmium(II) complexes potentiate the anticancer efficacy of metformin via glucose metabolism reprogramming.Angew. Chem. Int. Ed.20226138e20220857010.1002/anie.202208570 35900359
    [Google Scholar]
  82. PhilipovS. IvanovskaN. NikolovaP. Glaucine analogues as inhibitors of mouse splenocyte activity.Pharmazie19985310694698 9812336
    [Google Scholar]
  83. MenezesL. CostaC. RodriguesA. Cytotoxic alkaloids from the stem of xylopia laevigata.Molecules201621789010.3390/molecules21070890 27399666
    [Google Scholar]
  84. StoyanovaA. NikolovaI. PürstingerG. Anti-enteroviral triple combination of viral replication inhibitors: Activity against coxsackievirus B1 neuroinfection in mice.Antivir. Chem. Chemother.2015245-613614710.1177/2040206616671571 27815331
    [Google Scholar]
  85. StoyanovaA. GalabovA.S. Effects of double combinations of enterovirus replication inhibitors against Coxsackie B viruses.Acta Virol.202265441141910.4149/av_2021_410 34978843
    [Google Scholar]
  86. GalabovA.S. NikolovaI. Vassileva-PenchevaR. StoyanovaA. Antiviral combination approach as a perspective to combat enterovirus infections.Adj201536919910.1515/prilozi‑2015‑0057
    [Google Scholar]
  87. StoyanovaA. GalabovA.S. Consecutive alternating administration as an effective anti-coxsackievirus B3 in vivo treatment scheme.Arch. Virol.202116671869187510.1007/s00705‑021‑05057‑3 33877422
    [Google Scholar]
  88. GrozdanovP. JoffretM.L. StoyanovaA. Genome analysis of coxsackievirus B1 isolates during the consecutive alternating administration course of triple antiviral combination in newborn mice.Antivir. Chem. Chemother.20202810.1177/2040206620906061 32041425
    [Google Scholar]
  89. StoyanovaA. GalabovA.S. Effect of consecutive alternating administration of a triple combination of anti-enteroviral compounds in mice infected with coxsackievirus B3.Pathog. Dis.2020789ftaa06510.1093/femspd/ftaa065 33090201
    [Google Scholar]
  90. Vassileva-PenchevaR. GalabovA. Effectiveness of the consecutive alternating administration course of a triple antiviral combination in coxsackievirus B3 infections in mice.Drug Res.2016661263964310.1055/s‑0042‑112970 27552486
    [Google Scholar]
  91. IvanovskaN. PhilipovS. GeorgievaP. Immunopharmacological activity of aporphinoid alkaloid oxoglaucine.Pharmacol. Res.199735426727210.1006/phrs.1996.9994 9264041
    [Google Scholar]
  92. IvanovskaN. PhilipovS. A low dose immunorestorative effect of aporphinoid alkaloid oxoglaucine on experimentally immunosuppressed and infected mice.Methods Find. Exp. Clin. Pharmacol.1997199579583 9500120
    [Google Scholar]
  93. IvanovskaN. HristovaM. PhilipovS. Immunosuppression and recovery of drug-impaired host resistance against Candida albicans infection by oxoglaucine.Pharmacol. Res.20004119910510.1006/phrs.1999.0567 10712834
    [Google Scholar]
  94. BaiR. YaoC. ZhongZ. Discovery of natural anti-inflammatory alkaloids: Potential leads for the drug discovery for the treatment of inflammation.Eur. J. Med. Chem.202121311316510.1016/j.ejmech.2021.113165 33454546
    [Google Scholar]
  95. AzamovB. LeeK.M. HurJ. Oxoglaucine suppresses hepatic fibrosis by inhibiting TGFβ-induced Smad2 phosphorylation and ROS generation.Molecules20232813497110.3390/molecules28134971 37446633
    [Google Scholar]
  96. AritaM. PhilipovS. GalabovA.S. Phosphatidylinositol 4‐kinase III beta is the target of oxoglaucine and pachypodol (Ro 09‐0179) for their anti‐poliovirus activities, and is located at upstream of the target step of brefeldin A.Microbiol. Immunol.201559633834710.1111/1348‑0421.12261 25891300
    [Google Scholar]
  97. ChangF.R. WeiJ.L. TengC.M. WuY.C. Antiplatelet aggregation constituents from Annona purpurea.J. Nat. Prod.199861121457146110.1021/np9800046 9868142
    [Google Scholar]
  98. ChenK.S. KoF.N. TengC.M. WuY.C. Antiplatelet and vasorelaxing actions of some aporphinoids.Planta Med.199662213313610.1055/s‑2006‑957835 8657745
    [Google Scholar]
  99. ClarkA.M. WatsonE.S. AshfaqM.K. HuffordC.D. In vivo efficacy of antifungal oxoaporphine alkaloids in experimental disseminated candidiasis.Pharm. Res.19874649549810.1023/A:1016479622383 3508563
    [Google Scholar]
  100. GrazioseR. RathinasabapathyT. LateganC. Antiplasmodial activity of aporphine alkaloids and sesquiterpene lactones from Liriodendron tulipifera L.J. Ethnopharmacol.20111331263010.1016/j.jep.2010.08.059 20826204
    [Google Scholar]
  101. DuW. JinL. LiL. Development and validation of a HPLC-ESI-MS/MS method for simultaneous quantification of fourteen alkaloids in mouse plasma after oral administration of the extract of corydalis yanhusuo tuber: Application to pharmacokinetic study.Molecules201823471410.3390/molecules23040714 29561801
    [Google Scholar]
/content/journals/raaidd/10.2174/0127724344297762240815073618
Loading
/content/journals/raaidd/10.2174/0127724344297762240815073618
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test