Skip to content
2000
Volume 19, Issue 2
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Transdermal Drug Delivery Systems (TDDSs) offer non-invasive administration and sustained drug release, enhancing patient compliance. However, the skin's natural barrier, particularly the stratum corneum, limits the effectiveness of TDDS for high molecular weight and hydrophilic substances. Innovations in material science, particularly hybrid nanophotonic graphene systems, present promising solutions. Nanophotonics generate localized photothermal effects to create microchannels in the skin, while graphene enhances permeability through its electrical and thermal conductivity. Hybrid nanophotonic systems, such as photonic crystals, plasmonic nanoparticles, metamaterials, quantum dots, nanowires, fiber optic nanosensors, and nanoantennas, offer precise control and real-time monitoring for applications in cancer therapy, chronic pain management, targeted drug delivery, and personalized medicine. This perspective examines the design, effectiveness, biocompatibility, and clinical implications of these hybrid systems, highlighting their potential to expand transdermal drug delivery and revolutionize treatment in personalized medicine. This particular formulation holds patentability, as supported by product patents that highlight the advancements in hybrid nanophotonic graphene systems for transdermal drug delivery.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105329862240919075834
2024-09-22
2025-07-08
Loading full text...

Full text loading...

References

  1. FanX. JiaoG. GaoL. JinP. LiX. The preparation and drug delivery of a graphene–carbon nanotube–Fe3O4 nanoparticle hybrid.J. Mater. Chem. B Mater. Biol. Med.20131202658266410.1039/c3tb00493g32260953
    [Google Scholar]
  2. JinJ. GuoM. LiuJ. LiuJ. ZhouH. LiJ. WangL. LiuH. LiY. ZhaoY. ChenC. Graphdiyne nanosheet-based drug delivery platform for photothermal/chemotherapy combination treatment of cancer.ACS Appl. Mater. Interfaces201810108436844210.1021/acsami.7b1721929457450
    [Google Scholar]
  3. MohamedA.T. HameedR.A. EL-MoslamyS.H. FareidM. OthmanM. LoutfyS.A. KamounE.A. ElnoubyM. Facile synthesis of Fe2O3, Fe2O3@CuO and WO3 nanoparticles: Characterization, structure determination and evaluation of their biological activity.Sci. Rep.2024141608110.1038/s41598‑024‑55319‑838480834
    [Google Scholar]
  4. OthmanM.S. ObeidatS.T. Al-BagawiA.H. FareidM.A. FehaidA. Abdel MoneimA.E. Green-synthetized selenium nanoparticles using berberine as a promising anticancer agent.J. Integr. Med.2022201657210.1016/j.joim.2021.11.00234802980
    [Google Scholar]
  5. MoR. JiangT. SunW. GuZ. ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery.Biomaterials201550677410.1016/j.biomaterials.2015.01.05325736497
    [Google Scholar]
  6. WangC. ZhangZ. ChenB. GuL. LiY. YuS. Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system.J. Colloid Interface Sci.201851633234110.1016/j.jcis.2018.01.07329408121
    [Google Scholar]
  7. QureshiM.T. TehseenA. IqbalT. AfsheenS. AhsanS. MaryamI. HuwaimelB. HameedR.A. FarghalyO. AttaA. Enhanced photocatalytic efficiency and biosensing in plasmonic nanostructures for the detection of bacteria in various analytes.Opt. Quantum Electron.20235513114710.1007/s11082‑023‑05345‑z
    [Google Scholar]
  8. Abdel HameedR. FarideM. OthmanM. HuwaimelB. Al-MhyawiS. ShamroukhA. AlshammaryF. AljuhaniE. AbdallahM. Green synthesis of zinc sulfide nanoparticles-organic heterocyclic polyol system as eco-friendly anti corrosion and anti-bacterial corrosion inhibitor for steel in acidic environment.Green Chem. Lett. Rev.202215384786210.1080/17518253.2022.2141585
    [Google Scholar]
  9. WeaverC.L. LaRosaJ.M. LuoX. CuiX.T. Electrically controlled drug delivery from graphene oxide nanocomposite films.ACS Nano2014821834184310.1021/nn406223e24428340
    [Google Scholar]
  10. RuiyiL. ZaijunL. XiulanS. JanJ. LinL. ZhiguoG. GuangliW. Graphene quantum dot-rare earth upconversion nanocages with extremely high efficiency of upconversion luminescence, stability and drug loading towards controlled delivery and cancer theranostics.Chem. Eng. J.202038212299210.1016/j.cej.2019.122992
    [Google Scholar]
  11. OthmanM.S. ObeidatS.T. AleidG.M. Al-BagawiA.H. FareidM.A. HameedR.A. MohamedK.M. AbdelfattahM.S. FehaidA. HusseinM.M. AboelnagaS.M.H. Abdel MoneimA.E. Green synthetized selenium nanoparticles using Syzygium aromaticum (clove) extract reduce pentylenetetrazol-induced epilepsy and associated cortical damage in rats.Appl. Sci. (Basel)2023132105010.3390/app13021050
    [Google Scholar]
  12. ChenY. YangY. XianY. SinghP. FengJ. CuiS. CarrierA. OakesK. LuanT. ZhangX. Multifunctional graphene-oxide-reinforced dissolvable polymeric microneedles for transdermal drug delivery.ACS Appl. Mater. Interfaces202012135236031825580
    [Google Scholar]
  13. JustinR. ChenB. Strong and conductive chitosan–reduced graphene oxide nanocomposites for transdermal drug delivery.J. Mater. Chem. B Mater. Biol. Med.20142243759377010.1039/c4tb00390j32261722
    [Google Scholar]
  14. TangX. ChenZ. ChenY. JiangX. ZhuF. LiuS. WanK. Hybrid bismuth oxide-graphine oxide nanomaterials improve the signal-to-noise response of small molecules analyzed by matrix assisted laser desorption ionization-time-of-flight mass spectrometry.Talanta202325212376810.1016/j.talanta.2022.12376836030736
    [Google Scholar]
  15. SattarT. Current review on synthesis, composites and multifunctional properties of graphene.Top. Curr. Chem. (Cham)201937721010.1007/s41061‑019‑0235‑630874921
    [Google Scholar]
  16. DaiH. LiuZ. LiX. SunX. Transdermal drug delivery using graphene-based materials.U.S. Patent (US9,233,166 B2)2016
  17. ChoiM. KimK.G. HeoJ. JeongH. KimS.Y. HongJ. Multilayered graphene nano-film for controlled protein delivery by desired electro-stimuli.Sci. Rep.2015511763110.1038/srep1763126621344
    [Google Scholar]
  18. DaiH. LiuZ. LiX. SunX. Supramolecular functionalization of graphitic nanoparticles for drug delivery.U.S. Patent (US 8,535,726 B2)2013
  19. LiuJ. CuiL. LosicD. Graphene and graphene oxide as new nanocarriers for drug delivery applications.Acta Biomater.20139129243925710.1016/j.actbio.2013.08.01623958782
    [Google Scholar]
  20. SuY.L. ChenK.T. SheuY.C. SungS.Y. HsuR.S. ChiangC.S. HuS.H. The penetrated delivery of drug and energy to tumors by lipo-graphene nanosponges for photolytic therapy.ACS Nano201610109420943310.1021/acsnano.6b0441427684199
    [Google Scholar]
  21. NelA.E. MengH. MeiK.C. Nano-enabled immunotherapy in cancer.U.S. Patent (US20230241244 A1)2023
  22. TanimolaO.W. Transdermal drug delivery system.U.S. Patent 11,479,466,(US 11,479,466 B2)2022
  23. ShahR.N. JakusA.E. HersamM.C. SecorE.B. Graphene-based ink compositions for three-dimensional printing applications.U.S. Patent (US 10,350,329 B2)2019
  24. HarrisT.J. KimA.A.C. Transdermal drug delivery system.U.S. Patent (US 20200155681 B2)2020
  25. ShankmanR.S. Facile synthesis of graphene, graphene derivatives and abrasive nanoparticles and their various uses, including as tribologically-beneficial lubricant additives.CA Patent (CA2857947C)2015
/content/journals/nanotec/10.2174/0118722105329862240919075834
Loading
/content/journals/nanotec/10.2174/0118722105329862240919075834
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test