Skip to content
2000
image of Development of Stabilized and Aqueous Dissolvable Nanosuspension Encompassing BCS Class IV Drug via Optimization of Process and Formulation Variables

Abstract

Background

Nanosuspension has emerged as an effective, lucrative, and unequalled approach for efficiently elevating the dissolution and bioavailability of aqueous soluble drugs. Diverse challenges persist within this domain, demanding further comprehensive investigation and exploration.

Objective

This study aims to design, develop, optimise formulation and process variables, and characterise the stabilised aqueous dissolvable nanosuspension using chlorthalidone as a BCS class-IV drug.

Methods

Nanosuspensions of the chlorthalidone drug were prepared using a combination of top-down and bottom-up approaches. Various polymers such as Pluronic L-64, F-68, F-127, and Synperonic F-108 were used as stabilisers in this research. All important processes and formulation variables, such as ultrasonication intensity and time, the concentration of the drug, organic solvent, and stabilisers that may critically influence the characteristics of the nanosuspensions, were optimised. Formulation screening was performed using the optimisation of process and formulation variables, and the optimised nanosuspension formulation was assessed for particle size, PDI, surface charge, morphology, drug release, and stability.

Results

To select an optimised nanosuspension formulation, the effects of formulation and process variables were investigated. These variables critically influence the development of a stabilised nanosuspension. The outcomes revealed that the nanosuspension formulation containing pluronic F-68 as a stabiliser in 0.6% w/v concentration and the drug in 4 mg/ml concentration were optimized. The particle size and zeta potential of the optimised preparation were 110 nm and -27.5 mV, respectively. The drug release of chlorthalidone drug from the optimised nanoformulation was increased up to 3-fold, approximately (88% in 90 min) compared with pure chlorthalidone drug (27% in 90 min) because of the decrease in particle size. Moreover, stability studies indicated that the crafted nanoformulation was stable at cold (4°C) as well as normal room temperature (25°C) for six months.

Conclusion

From the obtained results, it was concluded that the combination of top-down and bottom-up approaches employed for the fabrication of oral nanosuspension is a remunerative and lucrative approach to successfully resolve the perplexities associated with the dissolution rate of poorly aqueous soluble BCS class-IV drug moieties such as chlorthalidone.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105317594241025052905
2025-01-09
2025-07-08
Loading full text...

Full text loading...

References

  1. Goel S. Sachdeva M. Agarwal V. Development and characterization of oral nanosuspension using esomeprazole magnesium trihydrate. Nano Sci. Nanotech. Asia 2020 6 1 9
    [Google Scholar]
  2. Huang Y. Luo X. You X. Xia Y. Song X. Yu L. The preparation and evaluation of water-soluble SKLB610 nanosuspensions with improved bioavailability. AAPS PharmSciTech 2013 14 3 1236 1243 10.1208/s12249‑013‑0005‑7 23934433
    [Google Scholar]
  3. Al-Kassas R. Bansal M. Shaw J. Nanosizing techniques for improving bioavailability of drugs. J. Control. Release 2017 260 202 212 10.1016/j.jconrel.2017.06.003 28603030
    [Google Scholar]
  4. Ghadi R. Dand N. BCS class IV drugs: Highly notorious candidates for formulation development. J. Control. Release 2017 248 71 95 10.1016/j.jconrel.2017.01.014 28088572
    [Google Scholar]
  5. Geetha G. Poojitha U. Khan U. Various techniques for preparation of nanosuspension- A review. Int. J. Pharma Res. Rev. 2014 3 30 37
    [Google Scholar]
  6. Fasinu P. Pillay V. Ndesendo V.M.K. du Toit L.C. Choonara Y.E. Diverse approaches for the enhancement of oral drug bioavailability. Biopharm. Drug Dispos. 2011 32 4 185 209 10.1002/bdd.750 21480294
    [Google Scholar]
  7. Nakarani M. Misra A.K. Patel J.K. Vaghani S.S. Itraconazole nanosuspension for oral delivery: Formulation, characterization and in vitro comparison with marketed formulation. Daru 2010 18 2 84 90 [PMID: 22615599]. 22615599
    [Google Scholar]
  8. Pawar R.N. Chavan S.N. Menon M.D. Development, characterization and evaluation of tinidazole nanosuspension for treatment of amoebiasis. J. Nanomed. Nanotechnol. 2016 7 6 1 4
    [Google Scholar]
  9. Nagare S.K. A review on Nanosuspension: An innovative acceptable approach in novel delivery system. Univ. J. Pharm 2012 1 1 19 31
    [Google Scholar]
  10. Debjit B. Nanosuspension–A Novel Approaches in Drug Delivery System. Pharm. Innov. J. 2012 1 12 50 63
    [Google Scholar]
  11. Kamble V.A. Nanosuspension: A Novel Drug Delivery System. Int. J. Pharma Bio Sci. 2010 1 352 360
    [Google Scholar]
  12. Soni S. Nanosuspension: An Approach to Enhance Solubility of Drugs. IJPI. J. Pharm. Cos. 2012 2 9 50 63
    [Google Scholar]
  13. Wagh K.S. Patil S.K. Akarte A.K. Nanosuspension-A New Approach of Bioavailability Enhancement. Int. J. Pharm. Sci. Rev. Res. 2011 8 61 65
    [Google Scholar]
  14. Chogale M. Ghodake V. Patravale V. Performance parameters and characterizations of nanocrystals: A brief review. Pharmaceutics 2016 8 3 26 10.3390/pharmaceutics8030026 27589788
    [Google Scholar]
  15. Elsayed I. Abdelbary A.A. Elshafeey A.H. Nanosizing of a poorly soluble drug: technique optimization, factorial analysis, and pharmacokinetic study in healthy human volunteers. Int. J. Nanomedicine 2014 9 2943 2953 24971006
    [Google Scholar]
  16. Chan H.K. Kwok P.C.L. Production methods for nanodrug particles using the bottom-up approach. Adv. Drug Deliv. Rev. 2011 63 6 406 416 10.1016/j.addr.2011.03.011 21457742
    [Google Scholar]
  17. Jarvis M. Krishnan V. Mitragotri S. Nanocrystals: A perspective on translational research and clinical studies. Bioeng. Transl. Med. 2019 4 1 5 16 10.1002/btm2.10122 30680314
    [Google Scholar]
  18. Pardeike J. Strohmeier D.M. Schrödl N. Voura C. Gruber M. Khinast J.G. Zimmer A. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int. J. Pharm. 2011 420 1 93 100 10.1016/j.ijpharm.2011.08.033 21889582
    [Google Scholar]
  19. Lai F. Pini E. Angioni G. Manca M.L. Perricci J. Sinico C. Fadda A.M. Nanocrystals as tool to improve piroxicam dissolution rate in novel orally disintegrating tablets. Eur. J. Pharm. Biopharm. 2011 79 3 552 558 10.1016/j.ejpb.2011.07.005 21820052
    [Google Scholar]
  20. Sharma P. Denny W.A. Garg S. Effect of wet milling process on the solid state of indomethacin and simvastatin. Int. J. Pharm. 2009 380 1-2 40 48 10.1016/j.ijpharm.2009.06.029 19576976
    [Google Scholar]
  21. Verma S. Gokhale R. Burgess D.J. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int. J. Pharm. 2009 380 1-2 216 222 10.1016/j.ijpharm.2009.07.005 19596059
    [Google Scholar]
  22. Roush G.C. Abdelfattah R. Song S. Ernst M.E. Sica D.A. Kostis J.B. Hydrochlorothiazide vs chlorthalidone, indapamide, and potassium‐sparing/hydrochlorothiazide diuretics for reducing left ventricular hypertrophy: A systematic review and meta‐analysis. J. Clin. Hypertens. (Greenwich) 2018 20 10 1507 1515 10.1111/jch.13386 30251403
    [Google Scholar]
  23. Dineva S. Uzunova K. Pavlova V. Filipova E. Kalinov K. Vekov T. Comparative efficacy and safety of chlorthalidone and hydrochlorothiazide—meta-analysis. J. Hum. Hypertens. 2019 33 11 766 774 10.1038/s41371‑019‑0255‑2 31595024
    [Google Scholar]
  24. Jadhav S.P. Dhakad P.K. Gupta T. Gilhotra R. Formulation development and evaluation of paliperidone nanosuspension for solubility enhancement. Inter J App Pharm 2024 16 4 173 181 10.22159/ijap.2024v16i4.51218
    [Google Scholar]
  25. Aldosari B.N. Ibrahim M.A. Alqahtani Y. Abou El Ela A.E.S.F. Formulation and evaluation of Fluconazole Nanosuspensions: In vitro characterization and transcorneal permeability studies. Saudi Pharm. J. 2024 32 7 102104 10.1016/j.jsps.2024.102104 38841107
    [Google Scholar]
  26. Amkar A.J. Rane B.R. Jain A.S. Development and evaluation of nanosuspension loaded nanogel of nortriptyline hcl for brain delivery. Eng. Proc. 2023 56 58 10.3390/ASEC2023‑15311
    [Google Scholar]
  27. Shinde M.E. Sonawane M.P. Maru A.D. Formulation and evaluation of nanosuspension as an alternative approach for solubility enhancement of simvastatin. Int. J. Pharm. Sci. Rev. Res. 2021 71 1 97 101 10.47583/ijpsrr.2021.v71i01.012
    [Google Scholar]
  28. Joshi D.R. Adhikari N. An overview on common organic solvents and their toxicity. J. Pharm. Res. Int. 2019 28 3 1 18 10.9734/jpri/2019/v28i330203
    [Google Scholar]
  29. Thodeti S. Bantikatla H.B. Kumar Y.K. Sathish B. Synthesis and characterization of ZnO nanostructures by oxidation technique. Int. J. Adv. Res. Sci. Engr. 2017 6 539 544
    [Google Scholar]
  30. Agarwal V. Bajpai M. Preparation and Optimization of Esomeprazole Nanosuspension using Evaporative Precipitation– Ultrasonication. Trop. J. Pharm. Res. 2014 13 4 497 503 10.4314/tjpr.v13i4.2
    [Google Scholar]
  31. Papdiwal A.P. Pande V.V. Aher S.J. Investigation of effect of different stabilizers on formulation of zaltoprofen nanosuspension. Int. J. Pharm. Sci. Rev. Res. 2014 27 2 244 249
    [Google Scholar]
  32. Hidenori O. Yukio N. Kazunori K. PEG-ylated nanoparticles for biological and pharmaceutical application. Adv. Drug Del. Res. 2003 24 403 419
    [Google Scholar]
  33. Wang Y. Zhang D. Liu Z. Liu G. Duan C. Jia L. Feng F. Zhang X. Shi Y. Zhang Q. In vitro and in vivo evaluation of silybin nanosuspensions for oral and intravenous delivery. Nanotechnology 2010 21 15 155104 10.1088/0957‑4484/21/15/155104 20332565
    [Google Scholar]
  34. Smith M.C. Crist R.M. Clogston J.D. McNeil S.E. Zeta potential: a case study of cationic, anionic, and neutral liposomes. Anal. Bioanal. Chem. 2017 409 24 5779 5787 10.1007/s00216‑017‑0527‑z 28762066
    [Google Scholar]
  35. Goel S. Sachdeva M. Agarwal V. Nanosuspension Technology: Recent Patents on Drug Delivery and their Characterizations. Recent Pat. Drug Deliv. Formul. 2019 13 2 91 104 10.2174/1872211313666190614151615 31203813
    [Google Scholar]
  36. Kaushik V. Lahiri T. Singha S. Dasgupta A.K. Mishra H. Kumar U. Kumar R. Exploring geometric properties of gold nanoparticles using TEM images to explain their chaperone like activity for citrate synthase. Bioinformation 2011 7 7 320 323 10.6026/97320630007320 22355230
    [Google Scholar]
  37. Mathis U. Kaegi R. Mohr M. Zenobi R. TEM analysis of volatile nanoparticles from particle trap equipped diesel and direct-injection spark-ignition vehicles. Atmos. Environ. 2004 38 26 4347 4355 10.1016/j.atmosenv.2004.04.016
    [Google Scholar]
  38. McConnachie L.A. Kinman L.M. Koehn J. Kraft J.C. Lane S. Lee W. Collier A.C. Ho R.J.Y. Long-Acting Profile of 4 Drugs in 1 Anti-HIV Nanosuspension in Nonhuman Primates for 5 Weeks After a Single Subcutaneous Injection. J. Pharm. Sci. 2018 107 7 1787 1790 10.1016/j.xphs.2018.03.005 29548975
    [Google Scholar]
  39. Agarwal V. Bajpai M. Investigation of formulation and process parameters for the production of esomeprazole nanosuspension by anti-solvent precipitation ultrasonication technique. Curr. Nanosci. 2013 9 6 773 779 10.2174/15734137113099990079
    [Google Scholar]
  40. Hanafy A. Spahnlangguth H. Vergnault G. Grenier P. Tubicgrozdanis M. Lenhardt T. Langguth P. Pharmacokinetic evaluation of oral fenofibrate nanosuspensions and SLN in comparison to conventional suspensions of micronized drug. Adv. Drug Deliv. Rev. 2007 59 6 419 426 10.1016/j.addr.2007.04.005 17566595
    [Google Scholar]
  41. Allen T.M. Cheng W.W.K. Hare J.I. Laginha K.M. Pharmacokinetics and pharmacodynamics of lipidic nano-particles in cancer. Anticancer. Agents Med. Chem. 2006 6 6 513 523 10.2174/187152006778699121 17100556
    [Google Scholar]
  42. Etheridge M.L. Campbell S.A. Erdman A.G. Haynes C.L. Wolf S.M. McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 2013 9 1 1 14 10.1016/j.nano.2012.05.013 22684017
    [Google Scholar]
  43. Nie S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond.) 2010 5 4 523 528 10.2217/nnm.10.23 20528447
    [Google Scholar]
  44. de Jong W.H. Borm P.J.A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 2008 3 2 133 149 10.2147/IJN.S596 18686775
    [Google Scholar]
  45. D’Souza S. Faraj J.A. Dorati R. DeLuca P.P. A short term quality control tool for biodegradable microspheres. AAPS PharmSciTech 2014 15 3 530 541 10.1208/s12249‑013‑0052‑0 24519488
    [Google Scholar]
  46. Buch P. Holm P. Thomassen J.Q. Scherer D. Branscheid R. Kolb U. Langguth P. IVIVC for fenofibrate immediate release tablets using solubility and permeability as in vitro predictors for pharmacokinetics. J. Pharm. Sci. 2010 99 10 4427 4436 10.1002/jps.22148 20737642
    [Google Scholar]
  47. D’Souza S. Faraj J.A. Giovagnoli S. DeLuca P.P. IVIVC from long acting olanzapine microspheres. Int. J. Biomater. 2014 2014 1 11 10.1155/2014/407065 24578707
    [Google Scholar]
  48. Amann L.C. Gandal M.J. Lin R. Liang Y. Siegel S.J. In vitro-in vivo correlations of scalable PLGA-risperidone implants for the treatment of schizophrenia. Pharm. Res. 2010 27 8 1730 1737 10.1007/s11095‑010‑0152‑4 20422263
    [Google Scholar]
  49. Maghsoudi A. Shojaosadati S.A. Vasheghani Farahani E. 5-Fluorouracil-loaded BSA nanoparticles: formulation optimization and in vitro release study. AAPS PharmSciTech 2008 9 4 1092 1096 10.1208/s12249‑008‑9146‑5 18850275
    [Google Scholar]
  50. Bhardwaj U. Burgess D.J. A novel USP apparatus 4 based release testing method for dispersed systems. Int. J. Pharm. 2010 388 1-2 287 294 10.1016/j.ijpharm.2010.01.009 20083176
    [Google Scholar]
  51. Mora L. Chumbimuni-Torres K.Y. Clawson C. Hernandez L. Zhang L. Wang J. Real-time electrochemical monitoring of drug release from therapeutic nanoparticles. J. Control. Release 2009 140 1 69 73 10.1016/j.jconrel.2009.08.002 19679152
    [Google Scholar]
  52. Michalowski C.B. Guterres S.S. Dalla Costa T. Microdialysis for evaluating the entrapment and release of a lipophilic drug from nanoparticles. J. Pharm. Biomed. Anal. 2004 35 5 1093 1100 10.1016/j.jpba.2004.04.002 15336356
    [Google Scholar]
  53. Kumar R. Nagarwal R.C. Dhanawat M. Pandit J.K. In-vitro and in-vivo study of indomethacin loaded gelatin nanoparticles. J. Biomed. Nanotechnol. 2011 7 3 325 333 10.1166/jbn.2011.1290 21830472
    [Google Scholar]
  54. Agarwal V. Rathore D.S. Bajpai M. Investigation of effect of non-ionic stabilizers on the physical stability of drug nanosuspension prepared by bottom up approach. Int. J. Pharm. Sci. Drug Res. 2016 8 4 189 198 10.25004/IJPSDR.2016.080401
    [Google Scholar]
  55. Otte A. Soh B.K. Park K. The impact of post-processing temperature on plga microparticle properties. Pharm. Res. 2023 40 11 2677 2685 10.1007/s11095‑023‑03568‑z 37589826
    [Google Scholar]
  56. Cao X. Deng W.W. Fu M. Wang L. Tong S.S. Wei Y.W. Xu Y. Su W.Y. Xu X.M. Yu J.N. In vitro release and in vitro-in vivo correlation for silybin meglumine incorporated into hollow-type mesoporous silica nanoparticles. Int. J. Nanomedicine 2012 7 753 762 22393284
    [Google Scholar]
  57. Li W. Yang Y. Tian Y. Xu X. Chen Y. Mu L. Zhang Y. Fang L. Preparation and in vitro/in vivo evaluation of revaprazan hydrochloride nanosuspension. Int. J. Pharm. 2011 408 1-2 157 162 10.1016/j.ijpharm.2011.01.059 21295124
    [Google Scholar]
  58. Bommagani M. Bhowmick S.B. Kane P. Dubey V. Method of preparing the nanoparticulate topical composition. W.O. Patent 2016135753Al 2016
  59. Mao S. Guan J. Nanosuspension formulation. W.O. Patent 2016081593Al 2016
  60. Inghelbrecht S.K.K. Beirowski J.A. Gieseler H. Freeze dried drug nanosuspension. U.S. Patent 20160317534A1 2016
  61. Gerusz V. Mouze C. Van F. Ameye D. Novel drug formulation. U.S. Patent 20160206577A1 2016
  62. Kablitz C. New treatment of fish with a nanosuspension of lufenuron or hexaflumuron. U.S. Patent 20150238446A1 2015
  63. Xu S. Nanosuspension of tobramycin and dexamethasone and preparation method thereof. C.N. Patent 105708844 2016
  64. Shuyuan S. Method of preparation of nanocrystals of simvastatin. C.N. Patent 105315249 2016
  65. Zhang L. Method of developing celecoxib nanosuspension capsule. C.N. Patent 105534947 2016
  66. Zhang J. Lurasidone and its preparation method thereof. C.N. Patent 104814926 2015
  67. Chen M.J. Nanosuspension of poor water soluble drug via microfludization process. U.S. Patent 9023886B2 2015
  68. Agarwal V. Kaushik N. Goel S. Development of surface modified and aqueous re-dispersible nanocrystal using pluronic f-68 and suitable cryoprotectant for accelerating the dissolution rate of cilnidipine. Nanosci. Nanotechnol. Asia 2023 13 5 e220623218147 10.2174/2210681213666230622100611
    [Google Scholar]
  69. Mazumder R. Paul S.D. Formulation and evaluation of atenolol nanocrystals using 3(2) full factorial design. Nanosci. Nanotechnol. Asia 2020 10 3 306 315 10.2174/2210681209666190220120053
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105317594241025052905
Loading
/content/journals/nanotec/10.2174/0118722105317594241025052905
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test