Skip to content
2000
image of From Solid to Fluid: Novel Approaches in Neuromorphic Engineering

Abstract

Neuromorphic engineering is rapidly developing as an approach to mimicking processes in brains using artificial memristors, devices that change conductivity in response to the electrical field (resistive switching effect). Memristor-based neuromorphic systems can overcome the existing problems of slow and energy-inefficient computing that conventional processors face. In the Introduction, the basic principles of memristor operation and its applications are given. The history of switching in sandwich structures and granular metals is reviewed in the Historical Overview. Particular attention is paid to the fundamental articles from the pre-memristor era (the 1960s-70s), which demonstrated the first evidence of resistive switching and predicted the filamentary mechanism of switching. Multi-dimensionality in neuromorphic systems: Despite the powerful computational abilities of traditional memristor arrays, they cannot repeat many organizational characteristics of biological neural networks, ., their multi-dimensionality. This part reviews the unconventional nanowire- and nanoparticle-based neuromorphic systems that demonstrate incredible potential for use in reservoir computing due to the unique spiking change in conductance similar to firing in neurons. Liquid-based neuromorphic devices: The transition of neuromorphic systems from solid to liquid state broadens the possibilities for mimicking biological processes. In this section, ionic current memristors are reviewed and, the working principles of which bring us closer to the mechanisms of information transmittance in real synapses. Nanofluids: A novel direction in neuromorphic engineering linked to the application of nanofluids for the formation of reconfigurable nanoparticle networks with memristive properties is given in this section. The Conclusion t summarizes the bullet points of the Review and provides an outlook on the future of liquid-state neuromorphic systems.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105305259240919074119
2024-10-18
2024-11-26
Loading full text...

Full text loading...

References

  1. Zidan M.A. Strachan J.P. Lu W.D. The future of electronics based on memristive systems. Nat. Electron. 2018 1 1 22 29 10.1038/s41928‑017‑0006‑8
    [Google Scholar]
  2. Energy Consumption of ICT. 2022 Available from: https://post.parliament.uk/type/postnote/page/4/
  3. Watson A. Why can’t a computer be more like a brain? Science 1997 277 5334 1934 6 10.1126/science.277.5334.1934
    [Google Scholar]
  4. Chua L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 1971 18 5 507 519 10.1109/TCT.1971.1083337
    [Google Scholar]
  5. Waser R. Aono M. Nanoionics-based resistive switching memories. Nat. Mater. 2007 6 11 833 840 10.1038/nmat2023 17972938
    [Google Scholar]
  6. Sawa A. Resistive switching in transition metal oxides. Mater. Today 2008 11 6 28 36 10.1016/S1369‑7021(08)70119‑6
    [Google Scholar]
  7. Chua L. Resistance switching memories are memristors. Appl. Phys., A Mater. Sci. Process. 2011 102 4 765 783 10.1007/s00339‑011‑6264‑9
    [Google Scholar]
  8. Edwards A.H. Barnaby H.J. Campbell K.A. Kozicki M.N. Liu W. Marinella M.J. Reconfigurable memristive device technologies. Proc. IEEE 2015 103 7 1004 1033 10.1109/JPROC.2015.2441752
    [Google Scholar]
  9. Kim K.H. Gaba S. Wheeler D. Cruz-Albrecht J.M. Hussain T. Srinivasa N. Lu W. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 2012 12 1 389 395 10.1021/nl203687n 22141918
    [Google Scholar]
  10. Li H. Wang S. Zhang X. Wang W. Yang R. Sun Z. Feng W. Lin P. Wang Z. Sun L. Yao Y. Memristive crossbar arrays for storage and computing applications. Adv. Intell. Syst. 2021 3 9 2100017 10.1002/aisy.202100017
    [Google Scholar]
  11. Wang T.Y. Meng J.L. Chen L. Zhu H. Sun Q.Q. Ding S.J. Bao W-Z. Zhang D.W. Flexible 3D memristor array for binary storage and multi‐states neuromorphic computing applications. InfoMat 2021 3 2 212 221 10.1002/inf2.12158
    [Google Scholar]
  12. Graves C.E. Li C. Sheng X. Miller D. Ignowski J. Kiyama L. Strachan J.P. In‐memory computing with memristor content addressable memories for pattern matching. Adv. Mater. 2020 32 37 2003437 10.1002/adma.202003437 32761709
    [Google Scholar]
  13. Mehonic A. Sebastian A. Rajendran B. Simeone O. Vasilaki E. Kenyon A.J. Memristors—from in‐memory computing, deep learning acceleration, and spiking neural networks to the future of neuromorphic and bio‐inspired computing. Adv. Intell. Syst. 2020 2 11 2000085 10.1002/aisy.202000085
    [Google Scholar]
  14. Tanaka G. Nakane R. Simulation platform for pattern recognition based on reservoir computing with memristor networks. Sci. Rep. 2022 12 1 9868 10.1038/s41598‑022‑13687‑z 35701445
    [Google Scholar]
  15. Ye F. Kiani F. Huang Y. Xia Q. Diffusive memristors with uniform and tunable relaxation time for spike generation in event‐based pattern recognition. Adv. Mater. 2023 35 37 2204778 10.1002/adma.202204778 36036786
    [Google Scholar]
  16. Cohen R.W. Abeles B. Superconductivity in granular aluminum films. Phys. Rev. 1968 168 2 444 450 10.1103/PhysRev.168.444
    [Google Scholar]
  17. Feinstein L.G. Huttemann R.D. Annealing and phase stability of tantalum films sputtered in Ar-O2. Thin Solid Films 1974 20 1 103 114 10.1016/0040‑6090(74)90038‑8
    [Google Scholar]
  18. Perkins J.G. Conduction properties and microstructure of Metal/SiO cermet thin films produced by recoil atom implantation. J. Non-Cryst. Solids 1972 7 4 349 364 10.1016/0022‑3093(72)90270‑0
    [Google Scholar]
  19. Abeles B. Sheng P. Coutts M.D. Arie Y. Structural and electrical properties of granular metal films. Adv. Phys. 1975 24 3 407 461 10.1080/00018737500101431
    [Google Scholar]
  20. Neugebauer C.A. Webb M.B. Electrical conduction mechanism in ultrathin, evaporated metal films. J. Appl. Phys. 1962 33 1 74 82 10.1063/1.1728531
    [Google Scholar]
  21. Dittmer G. Electrical conduction and electron emission of discontinuous thin films. Thin Solid Films 1972 9 3 317 328 10.1016/0040‑6090(72)90122‑8
    [Google Scholar]
  22. Morris J.E. Melio A. Adkins C.J. Electrical conduction in granular metal films. J. Phys. C Solid State Physics 1990 20 2 235 10.1557/PROC‑195‑181
    [Google Scholar]
  23. Morris J.E. Coutts T.J. Electrical conduction in discontinuous metal films: A discussion. Thin Solid Films 1977 47 1 3 65 10.1016/0040‑6090(77)90334‑0
    [Google Scholar]
  24. Morris J.E. Electron transport in discontinuous metal thin films. Nano Express 2022 3 1 014002 10.1088/2632‑959X/ac550c
    [Google Scholar]
  25. Hickmott T.W. Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 1962 33 9 2669 2682 10.1063/1.1702530
    [Google Scholar]
  26. Simmons J.G. Verderber R.R. New conduction and reversible memory phenomena in thin insulating films. Proc. R. Soc. Lond. A Math. Phys. Sci. 1967 301 1464 77 102 10.1098/rspa.1967.0191
    [Google Scholar]
  27. Hickmott T.W. Energetic electronic processes and negative resistance in amorphous Ta Ta2O5 Au and Al Al2O3Au diodes. Thin Solid Films 1972 9 3 431 446 10.1016/0040‑6090(72)90131‑9
    [Google Scholar]
  28. Barriac C. Pinard P. Davoine F. Étude des propriétés électriques des structures Al Al 2 O 3 –metal. Phys. Status Solidi, B Basic Res. 1969 34 2 621 633 10.1002/pssb.19690340224
    [Google Scholar]
  29. Dearnaley G. Stoneham A.M. Morgan D.V. Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 1970 33 3 1129 1191 10.1088/0034‑4885/33/3/306
    [Google Scholar]
  30. Biederman H. Electron emission into vacuum of Al LiF Au structures. Thin Solid Films 1973 18 1 39 43 10.1016/0040‑6090(73)90218‑6
    [Google Scholar]
  31. Biederman H. Metal-insulator-metal sandwich structures with anomalous properties. Vacuum 1976 26 12 513 523 10.1016/S0042‑207X(76)81130‑X
    [Google Scholar]
  32. Bischoff M. Pagnia H. Electroluminescence spectra from gold island structure thin films. Thin Solid Films 1975 29 2 303 312 10.1016/0040‑6090(75)90199‑6
    [Google Scholar]
  33. Borzjak P.G. Sarbej O.G. Fedorowitsch R.D. Neue Erscheinungen in sehr dünnen Metallschichten. Phys. Status Solidi, B Basic Res. 1965 8 1 55 58 10.1002/pssb.19650080105
    [Google Scholar]
  34. Borziak P.G. Kulyupin Y.A. Investigations of discontinuous metal films in the U.S.S.R. Thin Solid Films 1977 44 1 1 19 10.1016/0040‑6090(77)90023‑2
    [Google Scholar]
  35. Chapman R. Bistable electrical-switching behaviour in glasses and other media. Electron. Lett. 1969 5 11 246 247 10.1049/el:19690189
    [Google Scholar]
  36. Pagnia H. Sotnik N. Bistable switching in electroformed metal–insulator–metal devices. Phys. Status Solidi, A Appl. Res. 1988 108 1 11 65 10.1002/pssa.2211080102
    [Google Scholar]
  37. Pagnia H. Memory states in electroformed MIM diodes. Int. J. Electron. 1994 76 5 695 705 10.1080/00207219408925965
    [Google Scholar]
  38. Henisch H.K. Switching in amorphous alloys. Thin Solid Films 1981 83 2 217 222 10.1016/0040‑6090(81)90670‑2
    [Google Scholar]
  39. Lee J.S. Lee S. Noh T.W. Resistive switching phenomena: A review of statistical physics approaches. Appl. Phys. Rev. 2015 2 3 31303 10.1063/1.4929512
    [Google Scholar]
  40. Cao Z. Sun B. Zhou G. Mao S. Zhu S. Zhang J. Ke C. Zhao Y. Shao J. Memristor-based neural networks: A bridge from device to artificial intelligence. Nanoscale Horiz. 2023 8 6 716 745 10.1039/D2NH00536K 36946082
    [Google Scholar]
  41. Mikolajick T. Park M.H. Begon-Lours L. Slesazeck S. From ferroelectric material optimization to neuromorphic devices. Adv. Mater. 2023 35 37 2206042 10.1002/adma.202206042 36017895
    [Google Scholar]
  42. Rehman M.M. Rehman H.M.M.U. Gul J.Z. Kim W.Y. Karimov K.S. Ahmed N. Decade of 2D-materials-based RRAM devices: A review. Sci. Technol. Adv. Mater. 2020 21 1 147 186 10.1080/14686996.2020.1730236 32284767
    [Google Scholar]
  43. Jo S.H. Chang T. Ebong I. Bhadviya B.B. Mazumder P. Lu W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010 10 4 1297 1301 10.1021/nl904092h 20192230
    [Google Scholar]
  44. Wang Z. Joshi S. Savel’ev S.E. Jiang H. Midya R. Lin P. Hu M. Ge N. Strachan J.P. Li Z. Wu Q. Barnell M. Li G.L. Xin H.L. Williams R.S. Xia Q. Yang J.J. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017 16 1 101 108 10.1038/nmat4756 27669052
    [Google Scholar]
  45. Yan X. Zhao J. Liu S. Zhou Z. Liu Q. Chen J. Liu X.Y. Memristor with ag‐cluster‐doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Funct. Mater. 2018 28 1 1705320 10.1002/adfm.201705320
    [Google Scholar]
  46. Vahl A. Carstens N. Strunskus T. Faupel F. Hassanien A. Diffusive memristive switching on the nanoscale, from individual nanoparticles towards scalable nanocomposite devices. Sci. Rep. 2019 9 1 17367 10.1038/s41598‑019‑53720‑2 31758021
    [Google Scholar]
  47. Liu R. Kim J.G. Dhakal P. Li W. Ma J. Hou A. Merkel C. Qiu J. Zoran M. Wang S. Neuromorphic properties of flexible carbon nanotube/polydimethylsiloxane nanocomposites. Adv. Compos. Hybrid Mater. 2023 6 1 14 10.1007/s42114‑022‑00599‑9
    [Google Scholar]
  48. Rehman M.M. ur Rehman H.M.M. Kim W.Y. Sherazi S.S.H. Rao M.W. Khan M. Muhammad Z. Biomaterial-based nonvolatile resistive memory devices toward ecofriendliness and biocompatibility. ACS Appl. Electron. Mater. 2021 3 7 2832 2861 10.1021/acsaelm.1c00078
    [Google Scholar]
  49. Schmelzer J. Jr Brown S.A. Wurl A. Hyslop M. Blaikie R.J. Finite-size effects in the conductivity of cluster assembled nanostructures. Phys. Rev. Lett. 2002 88 22 226802 10.1103/PhysRevLett.88.226802 12059442
    [Google Scholar]
  50. Sattar A. Fostner S. Brown S.A. Quantized conductance and switching in percolating nanoparticle films. Phys. Rev. Lett. 2013 111 13 136808 10.1103/PhysRevLett.111.136808 24116807
    [Google Scholar]
  51. Minnai C. Bellacicca A. Brown S.A. Milani P. Facile fabrication of complex networks of memristive devices. Sci. Rep. 2017 7 1 7955 10.1038/s41598‑017‑08244‑y 28801572
    [Google Scholar]
  52. Wu W. Verkhovtsev A.V. Pavloudis T. Solov’yov A.V. Palmer R.E. Neuromorphic nanocluster networks: Critical role of the substrate in nano-link formation. Nano Res. 2023 16 7 10500 10506 10.1007/s12274‑023‑5744‑5
    [Google Scholar]
  53. Xia Q. Yang J.J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019 18 4 309 323 10.1038/s41563‑019‑0291‑x 30894760
    [Google Scholar]
  54. Ambrogio S. Narayanan P. Okazaki A. Fasoli A. Mackin C. Hosokawa K. Nomura A. Yasuda T. Chen A. Friz A. Ishii M. Luquin J. Kohda Y. Saulnier N. Brew K. Choi S. Ok I. Philip T. Chan V. Silvestre C. Ahsan I. Narayanan V. Tsai H. Burr G.W. An analog-AI chip for energy-efficient speech recognition and transcription. Nature 2023 620 7975 768 775 10.1038/s41586‑023‑06337‑5 37612392
    [Google Scholar]
  55. Wu C. Kim T.W. Choi H.Y. Strukov D.B. Yang J.J. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability. Nat. Commun. 2017 8 1 752 10.1038/s41467‑017‑00803‑1 28963546
    [Google Scholar]
  56. Shi L. Zheng G. Tian B. Dkhil B. Duan C. Research progress on solutions to the sneak path issue in memristor crossbar arrays. Nanoscale Adv. 2020 2 5 1811 1827 10.1039/D0NA00100G 36132530
    [Google Scholar]
  57. Manning H.G. Niosi F. da Rocha C.G. Bellew A.T. O’Callaghan C. Biswas S. Flowers P.F. Wiley B.J. Holmes J.D. Ferreira M.S. Boland J.J. Emergence of winner-takes-all connectivity paths in random nanowire networks. Nat. Commun. 2018 9 1 3219 10.1038/s41467‑018‑05517‑6 30104665
    [Google Scholar]
  58. Diaz-Alvarez A. Higuchi R. Sanz-Leon P. Marcus I. Shingaya Y. Stieg A.Z. Gimzewski J.K. Kuncic Z. Nakayama T. Emergent dynamics of neuromorphic nanowire networks. Sci. Rep. 2019 9 1 14920 10.1038/s41598‑019‑51330‑6 31624325
    [Google Scholar]
  59. Milano G. Pedretti G. Fretto M. Boarino L. Benfenati F. Ielmini D. Brain‐inspired structural plasticity through reweighting and rewiring in multi‐terminal self‐organizing memristive nanowire networks. Adv. Intell. Syst. 2020 2 8 2
    [Google Scholar]
  60. Li Q. Diaz-Alvarez A. Tang D. Higuchi R. Shingaya Y. Nakayama T. Sleep-dependent memory consolidation in a neuromorphic nanowire network. ACS Appl. Mater. Interfaces 2020 12 45 50573 50580 10.1021/acsami.0c11157 33135880
    [Google Scholar]
  61. Hochstetter J. Zhu R. Loeffler A. Diaz-Alvarez A. Nakayama T. Kuncic Z. Avalanches and edge-of-chaos learning in neuromorphic nanowire networks. Nat. Commun. 2021 12 1 4008 10.1038/s41467‑021‑24260‑z 34188085
    [Google Scholar]
  62. Daniels R.K. Mallinson J.B. Heywood Z.E. Bones P.J. Arnold M.D. Brown S.A. Reservoir computing with 3D nanowire networks. Neural Netw. 2022 154 122 130 10.1016/j.neunet.2022.07.001 35882080
    [Google Scholar]
  63. Bose S.K. Mallinson J.B. Gazoni R.M. Brown S.A. Stable self-assembled atomic-switch networks for neuromorphic applications. IEEE Trans. Electron Dev. 2017 64 12 5194 5201 10.1109/TED.2017.2766063
    [Google Scholar]
  64. Mallinson J.B. Shirai S. Acharya S.K. Bose S.K. Galli E. Brown S.A. Avalanches and criticality in self-organized nanoscale networks. Sci. Adv. 2019 5 11 8438 10.1126/sciadv.aaw8438 31700999
    [Google Scholar]
  65. Pike M.D. Bose S.K. Mallinson J.B. Acharya S.K. Shirai S. Galli E. Weddell S.J. Bones P.J. Arnold M.D. Brown S.A. Atomic scale dynamics drive brain-like avalanches in percolating nanostructured networks. Nano Lett. 2020 20 5 3935 3942 10.1021/acs.nanolett.0c01096 32347733
    [Google Scholar]
  66. Shirai S. Acharya S.K. Bose S.K. Mallinson J.B. Galli E. Pike M.D. Arnold M.D. Brown S.A. Long-range temporal correlations in scale-free neuromorphic networks. Netw. Neurosci. 2020 4 2 432 447 10.1162/netn_a_00128 32537535
    [Google Scholar]
  67. Carstens N. Adejube B. Strunskus T. Faupel F. Brown S. Vahl A. Brain-like critical dynamics and long-range temporal correlations in percolating networks of silver nanoparticles and functionality preservation after integration of insulating matrix. Nanoscale Adv. 2022 4 15 3149 3160 10.1039/D2NA00121G 36132822
    [Google Scholar]
  68. Terasa M.I. Birkoben T. Noll M. Adejube B. Madurawala R. Carstens N. Strunskus T. Kaps S. Faupel F. Vahl A. Kohlstedt H. Adelung R. Pathways towards truly brain-like computing primitives. Mater. Today 2023 69 41 53 10.1016/j.mattod.2023.07.019
    [Google Scholar]
  69. Wu W. Pavloudis T. Verkhovtsev A.V. Solov’yov A.V. Palmer R.E. Molecular dynamics simulation of nanofilament breakage in neuromorphic nanoparticle networks. Nanotechnology 2022 33 27 275602 10.1088/1361‑6528/ac5e6d 35412471
    [Google Scholar]
  70. Mirigliano M. Borghi F. Podestà A. Antidormi A. Colombo L. Milani P. Non-ohmic behavior and resistive switching of Au cluster-assembled films beyond the percolation threshold. Nanoscale Adv. 2019 1 8 3119 3130 10.1039/C9NA00256A 36133584
    [Google Scholar]
  71. Mirigliano M. Decastri D. Pullia A. Dellasega D. Casu A. Falqui A. Milani P. Complex electrical spiking activity in resistive switching nanostructured Au two-terminal devices. Nanotechnology 2020 31 23 234001 10.1088/1361‑6528/ab76ec 32202254
    [Google Scholar]
  72. Nadalini G. Borghi F. Košutová T. Falqui A. Ludwig N. Milani P. Engineering the structural and electrical interplay of nanostructured Au resistive switching networks by controlling the forming process. Sci. Rep. 2023 13 1 19713 10.1038/s41598‑023‑46990‑4 37953278
    [Google Scholar]
  73. Minnai C. Mirigliano M. Brown S.A. Milani P. The nanocoherer: An electrically and mechanically resettable resistive switching device based on gold clusters assembled on paper. Nano Futur 2018 2 1
    [Google Scholar]
  74. Mirigliano M. Paroli B. Martini G. Fedrizzi M. Falqui A. Casu A. A binary classifier based on a reconfigurable dense network of metallic nanojunctions. Neuromorphic. Comput. Eng. 2021 1 2 1
    [Google Scholar]
  75. Martini G. Mirigliano M. Paroli B. Milani P. The Receptron: A device for the implementation of information processing systems based on complex nanostructured systems. Jpn. J. Appl. Phys. 2022 61 1 10.35848/1347‑4065/ac665c
    [Google Scholar]
  76. Paroli B. Martini G. Potenza M.A.C. Siano M. Mirigliano M. Milani P. Solving classification tasks by a receptron based on nonlinear optical speckle fields. Neural. Netw. 2023 166 634 644 10.1016/j.neunet.2023.08.001 37604074
    [Google Scholar]
  77. Acharya S.K. Galli E. Mallinson J.B. Bose S.K. Wagner F. Heywood Z.E. Bones P.J. Arnold M.D. Brown S.A. Stochastic spiking behavior in neuromorphic networks enables true random number generation. ACS Appl. Mater. Interfaces 2021 13 44 52861 52870 10.1021/acsami.1c13668 34719914
    [Google Scholar]
  78. Mallinson J.B. Heywood Z.E. Daniels R.K. Arnold M.D. Bones P.J. Brown S.A. Reservoir computing using networks of memristors: effects of topology and heterogeneity. Nanoscale 2023 15 22 9663 9674 10.1039/D2NR07275K 37211815
    [Google Scholar]
  79. Chiolerio A. Quadrelli M.B. Smart fluid systems: the advent of autonomous liquid robotics. Adv. Sci. (Weinh.) 2017 4 7 1700036 10.1002/advs.201700036 28725530
    [Google Scholar]
  80. Koo H.J. So J.H. Dickey M.D. Velev O.D. Towards all-soft matter circuits: Prototypes of quasi-liquid devices with memristor characteristics. Adv. Mater. 2011 23 31 3559 3564 10.1002/adma.201101257 21726000
    [Google Scholar]
  81. Sun G. Slouka Z. Chang H.C. Fluidic-based ion memristors and ionic latches. Small 2015 11 39 5206 5213 10.1002/smll.201501229 26248477
    [Google Scholar]
  82. Koo H.J. Velev O.D. Ionic current devices—Recent progress in the merging of electronic, microfluidic, and biomimetic structures. Biomicrofluidics 2013 7 3 31501 10.1063/1.4804249 24404020
    [Google Scholar]
  83. Zaheer M. Cai Y. Waqas A.B. Abbasi S.F. Zhu G. Cong C. Qiu Z-J. Liu R. Qin Y. Zheng L. Hu L. Liquid‐metal‐induced memristor behavior in polymer insulators. Phys. Status Solidi Rapid Res. Lett. 2020 14 5 2070023 10.1002/pssr.202070023
    [Google Scholar]
  84. Shi J. Ha S.D. Zhou Y. Schoofs F. Ramanathan S. A correlated nickelate synaptic transistor. Nat. Commun. 2013 4 1 2676 10.1038/ncomms3676 24177330
    [Google Scholar]
  85. Gkoupidenis P. Schaefer N. Strakosas X. Fairfield J.A. Malliaras G.G. Synaptic plasticity functions in an organic electrochemical transistor. Appl. Phys. Lett. 2015 107 26 263302 10.1063/1.4938553
    [Google Scholar]
  86. Gkoupidenis P. Schaefer N. Garlan B. Malliaras G.G. Neuromorphic functions in PEDOT:PSS organic electrochemical transistors. Adv. Mater. 2015 27 44 7176 7180 10.1002/adma.201503674 26456708
    [Google Scholar]
  87. Qian C. Sun J. Kong L. Gou G. Yang J. He J. Gao Y. Wan Q. Artificial synapses based on in-plane gate organic electrochemical transistors. ACS Appl. Mater. Interfaces 2016 8 39 26169 26175 10.1021/acsami.6b08866 27608136
    [Google Scholar]
  88. Gkoupidenis P. Koutsouras D.A. Lonjaret T. Fairfield J.A. Malliaras G.G. Orientation selectivity in a multi-gated organic electrochemical transistor. Sci. Rep. 2016 6 1 27007 10.1038/srep27007 27245574
    [Google Scholar]
  89. Gkoupidenis P. Koutsouras D.A. Malliaras G.G. Neuromorphic device architectures with global connectivity through electrolyte gating. Nat. Commun. 2017 8 1 15448 10.1038/ncomms15448 28513627
    [Google Scholar]
  90. Gale E. Adamatzky A. de Lacy Costello B. Slime Mould Memristors. Bionanoscience 2015 5 1 1 8 10.1007/s12668‑014‑0156‑3
    [Google Scholar]
  91. Romeo A. Dimonte A. Tarabella G. D’Angelo P. Erokhin V. Iannotta S. A bio-inspired memory device based on interfacing Physarum polycephalum with an organic semiconductor. APL Mater. 2015 3 1 14909 10.1063/1.4902817
    [Google Scholar]
  92. Tarabella G. D’Angelo P. Cifarelli A. Dimonte A. Romeo A. Berzina T. Erokhin V. Iannotta S. A hybrid living/organic electrochemical transistor based on the Physarum polycephalum cell endowed with both sensing and memristive properties. Chem. Sci. 2015 6 5 2859 2868 10.1039/C4SC03425B 28706673
    [Google Scholar]
  93. Sheng Q. Xie Y. Li J. Wang X. Xue J. Transporting an ionic-liquid/water mixture in a conical nanochannel: A nanofluidic memristor. Chem. Commun. 2017 53 45 6125 6127 10.1039/C7CC01047H 28530274
    [Google Scholar]
  94. Bu Y. Ahmed Z. Yobas L. A nanofluidic memristor based on ion concentration polarization. Analyst 2019 144 24 7168 7172 10.1039/C9AN01561B 31724657
    [Google Scholar]
  95. Zhang P. Xia M. Zhuge F. Zhou Y. Wang Z. Dong B. Fu Y. Yang K. Li Y. He Y. Scheicher R.H. Miao X.S. Nanochannel-based transport in an interfacial memristor can emulate the analog weight modulation of synapses. Nano Lett. 2019 19 7 4279 4286 10.1021/acs.nanolett.9b00525 31150262
    [Google Scholar]
  96. Chen K. Tsutsui M. Zhuge F. Zhou Y. Fu Y. He Y. Miao X. Nanochannel‐based interfacial memristor: Electrokinetic analysis of the frequency characteristics. Adv. Electron. Mater. 2021 7 4 2000848 10.1002/aelm.202000848
    [Google Scholar]
  97. Dou G. Liu J. Guo W. Liu L. Zhang D. Guo M. A liquid electrolyte-based memristor with application in associate learning. Appl. Phys. Lett. 2023 123 12 124102 10.1063/5.0157543
    [Google Scholar]
  98. Chen J.B. Guo T.T. Yang C.Y. Xu J.W. Gao L.Y. Jia S.J. Zhang P. Chen J-T. Zhao Y. Wang J. Zhang X-Q. Li Y. Synaptic plasticity of a microfluidic memristor with a temporary memory function based on an ionic liquid in a capillary tube. J. Phys. Chem. C 2023 127 6 3307 3315 10.1021/acs.jpcc.2c08328
    [Google Scholar]
  99. Chougale M.Y. Patil S.R. Shinde S.P. Khot S.S. Patil A.A. Khot A.C. Chougule S.S. Volos C.K. Kim S. Dongale T.D. Memristive switching in ionic liquid–based two-terminal discrete devices. Ionics 2019 25 11 5575 5583 10.1007/s11581‑019‑03082‑6
    [Google Scholar]
  100. Xie B. Xiong T. Li W. Gao T. Zong J. Liu Y. Yu P. Perspective on nanofluidic memristors: From mechanism to application. Chem. Asian J. 2022 17 21 202200682 10.1002/asia.202200682 35994236
    [Google Scholar]
  101. Kheirabadi N.R. Chiolerio A. Szaciłowski K. Adamatzky A. Neuromorphic liquids, colloids, and gels: A review. Chem Phys Chem 2023 24 1 202200390 10.1002/cphc.202200390 36002385
    [Google Scholar]
  102. Kim D. Lee J.S. Liquid-based memory devices for next-generation computing. ACS Appl. Electron. Mater. 2023 5 2 664 673 10.1021/acsaelm.2c01636
    [Google Scholar]
  103. Noy A. Li Z. Darling S.B. Fluid learning: Mimicking brain computing with neuromorphic nanofluidic devices. Nano Today 2023 53 102043 10.1016/j.nantod.2023.102043
    [Google Scholar]
  104. Xiong T Li C He X Xie B Zong J Jiang Y Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. science 2023 379 156 61 10.1126/science.adc9150
    [Google Scholar]
  105. Velev O.D. Kaler E.W. In situ assembly of colloidal particles into miniaturized biosensors. Langmuir 1999 15 11 3693 3698 10.1021/la981729c
    [Google Scholar]
  106. Hermanson KD Lumsdon SO Williams JP Kaler EW Velev OD Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 2001 294 5544 1082 1086 10.1126/science.1063821
    [Google Scholar]
  107. Bhatt K.H. Velev O.D. Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires. Langmuir 2004 20 2 467 476 10.1021/la0349976 15743092
    [Google Scholar]
  108. Chiolerio A. Roppolo I. Bejtka K. Asvarov A. Pirri C.F. Resistive hysteresis in flexible nanocomposites and colloidal suspensions: interfacial coupling mechanism unveiled. RSC Advances 2016 6 61 56661 56667 10.1039/C6RA10503C
    [Google Scholar]
  109. Nikitin D. Biliak K. Pleskunov P. Ali-Ogly S. Červenková V. Carstens N. Resistive switching effect in ag-poly(ethylene glycol) nanofluids: Novel avenue toward neuromorphic materials. Adv. Funct. Mater. 2023 34 12 2310473
    [Google Scholar]
  110. Biliak K. Nikitin D. Ali-Ogly S. Protsak M. Pleskunov P. Tosca M. Sergievskaya A. Cornil D. Cornil J. Konstantinidis S. Košutová T. Černochová Z. Štěpánek P. Hanuš J. Kousal J. Hanyková L. Krakovský I. Choukourov A. Plasmonic Ag/Cu/PEG nanofluids prepared when solids meet liquids in the gas phase. Nanoscale Adv. 2023 5 3 955 969 10.1039/D2NA00785A 36756512
    [Google Scholar]
  111. Biliak K. Protsak M. Pleskunov P. Nikitin D. Hanuš J. Ali-Ogly S. Šomvársky J. Tosca M. Cieslar M. Košutová T. Dopita M. Lopes Ferreira F. Choukourov A. Plasmonic TiN, ZrN, and HfN Nanofluids for Solar-to-Heat Conversion. ACS Appl. Nano Mater. 2023 6 23 21642 21651 10.1021/acsanm.3c03662
    [Google Scholar]
  112. Košutová T Nikitin D Pleskunov P Tafiichuk R Choukourov A Dopita M. Time evolution of Au and Ag nanofluids prepared by direct deposition of gas aggregated nanoparticles into the liquid polymer. Acta Crystallogr Sect A Found Adv 2021 77 2 487
    [Google Scholar]
  113. Choukourov A. Nikitin D. Pleskunov P. Tafiichuk R. Biliak K. Protsak M. Kishenina K. Hanuš J. Dopita M. Cieslar M. Popelář T. Ondič L. Varga M. Residual and linker-free metal/polymer nanofluids prepared by direct deposition of magnetron-sputtered Cu nanoparticles into liquid PEG. J. Mol. Liq. 2021 336 116319 10.1016/j.molliq.2021.116319
    [Google Scholar]
  114. Protsak M. Biliak K. Nikitin D. Pleskunov P. Tosca M. Ali-Ogly S. Hanuš J. Hanyková L. Červenková V. Sergievskaya A. Konstantinidis S. Cornil D. Cornil J. Cieslar M. Košutová T. Popelář T. Ondič L. Choukourov A. One-step synthesis of photoluminescent nanofluids by direct loading of reactively sputtered cubic ZrN nanoparticles into organic liquids. Nanoscale 2024 16 5 2452 2465 10.1039/D3NR03999D 38224337
    [Google Scholar]
  115. Ricciardi C Montano K Milano G Ielmini D Pedretti G In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat Mater 2022 21 2 195 202
    [Google Scholar]
  116. Brown SA Fostner S Bose SK Neuromorphic network. Nano Research 2023 16 10500
    [Google Scholar]
  117. Milani P Mirigliano M Paroli B Electronic computing device for generating boolean functions and conductive module thereof. U.S. Patent 0327672 2023
  118. Shield J Ahmadi Z. Core/shell nanoparticle-based devices for sensors and neuromorphic computing. W.O. Patent 2022/040193 2022
  119. Interface type memristor based on nanofluid and preparation and application thereof. C.N. Patent 111106239A 2019
  120. Complementary structure synaptic device based on nanofluid interface type memristor and preparation thereof. C.N. Patent 111106239A 2020
  121. Gate-controlled interface type nanofluid memristor and preparation method thereof. C.N. Patent 113948636A 2022
/content/journals/nanotec/10.2174/0118722105305259240919074119
Loading
/content/journals/nanotec/10.2174/0118722105305259240919074119
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test