Skip to content
2000
image of Formulation Optimization and Evaluation of Patented Solid Lipid Nanoparticles of Ambrisentan for Pulmonary Arterial Hypertension

Abstract

Background

Ambrisentan is a new endothelin receptor antagonist extensively used to manage pulmonary or pulmonary arterial hypertension.

Objective

The therapeutic efficacy of Ambrisentan is limited due to its reduced solubility, higher log P (3.4), and thus less bioavailability. The recent investigation was concentrated on the improvement of solubility, and bioavailability of Ambrisentan for the therapy of hypertension solid lipid nanoparticles (SLN) administered orally.

Methods

XRD evaluated the compatibility of Ambrisentan with lipids with FTIR, DSC, and crystalline nature. The SLN was developed by High-pressure homogenization method. The Glyceryl monostearate and Tween 80 indicated the highest solubility, hence selected. The optimization was performed with Box-Behnken Design considering the concentration of GMS (X1), Tween 80 (X2), stirring speed (X3) as independent factors and particle size (Y1), entrapment efficiency (Y2) as dependent factors. The Patents on the SLN are Indian 202321053691, U.S. Patent, 10,973,798B2, U.S. Patent 10,251,960B2, U.S. Patent 2021/0069121A1 and U.S. Patent 2022/0151945A1.

Results

The optimized batch F1 showed particle size (130 nm), ZP (-18.9 mV), and entrapment efficiency (85.73%). The dual release pattern (prompt and sustained) was achieved with the SLN-loaded Ambrisentan for about 24 hours. The lyophilized sample was subjected to SEM, which also revealed a spherical shape of a colloidal dispersion with a particle size of 126 nm. Hence, the F1 batch is highly recommended for solid oral delivery and also for the pilot-plant scale-up.

Conclusion

A marked improvement in the solubility and dissolution of Ambrisentan was attained with the SLN. Moreover, the sustained delivery the oral route enabled the patient's comfort, compliance, and therapeutic efficacy.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105302631240816115638
2024-10-01
2025-01-19
Loading full text...

Full text loading...

References

  1. Akanda M. Mithu M.D.S.H. Douroumis D. Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment. J. Drug Deliv. Sci. Technol. 2023 86 104709 10.1016/j.jddst.2023.104709
    [Google Scholar]
  2. Kanugo A. Misra A. New and novel approaches for enhancing the oral absorption and bioavailability of protein and peptides therapeutics. Ther Deliv. 2020 11 11 713 732
    [Google Scholar]
  3. Khan K.U. Minhas M.U. Badshah S.F. Suhail M. Ahmad A. Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci. 2022 291 120301 10.1016/j.lfs.2022.120301 34999114
    [Google Scholar]
  4. Kanugo A. Gautam R.K. Kamal M.A. Recent advances of nanotechnology in the diagnosis and therapy of triple-negative breast cancer (TNBC). Curr. Pharm. Biotechnol. 2022 23 13 1581 1595 10.2174/1389201023666211230113658 34967294
    [Google Scholar]
  5. Ambrisentan. Available from: https://go.drugbank.com/drugs/DB06403(accessed on 12-7-2024)
  6. Suthar C. Kanugo A. Liquisolid Compact Technique for the Enhancement of Solubility and Dissolution Rate of Ambrisentan: Quality by Design Approach. Indian J. Pharm. Sci. 2022 84 6 1417 1428
    [Google Scholar]
  7. Culley M.K. Chan S.Y. Endothelial Senescence: A New Age in Pulmonary Hypertension. Circ. Res. 2022 130 6 928 941 10.1161/CIRCRESAHA.121.319815 35298304
    [Google Scholar]
  8. Mathai S.C. Pulmonary Hypertension Associated with Connective Tissue Disease. Cardiol. Clin. 2022 40 1 29 43 10.1016/j.ccl.2021.08.003 34809915
    [Google Scholar]
  9. Ruopp N.F. Cockrill B.A. Diagnosis and Treatment of Pulmonary Arterial Hypertension. JAMA 2022 327 14 1379 1391 10.1001/jama.2022.4402 35412560
    [Google Scholar]
  10. Hansmann G. Pulmonary Hypertension in Infants, Children, and Young Adults. J. Am. Coll. Cardiol. 2017 69 20 2551 2569 10.1016/j.jacc.2017.03.575 28521893
    [Google Scholar]
  11. Farmakis I.T. Giannakoulas G. Management of COVID-19 in patients with pulmonary arterial hypertension. Heart Fail. Clin. 2022 36435565
    [Google Scholar]
  12. Cui L. Yuan T. Zeng Z. Liu D. Liu C. Guo J. Chen Y. Mechanistic and therapeutic perspectives of baicalin and baicalein on pulmonary hypertension: A comprehensive review. Biomed. Pharmacother. 2022 151 113191 10.1016/j.biopha.2022.113191
    [Google Scholar]
  13. Atapour-Mashhad H. Nejabat M. Hadizadeh F. Hoseinsalari A. Golmohammadzadeh S. Preparation, Characterization, and Molecular Dynamic Simulation of Novel Coenzyme Q10 Loaded Nanostructured Lipid Carriers. Curr. Pharm. Des. 2023 29 27 2177 2190 10.2174/1381612829666230911105913 37694784
    [Google Scholar]
  14. Wadetwar RN. Agrawal AR. Kanojiya PS. In situ gel containing Bimatoprost solid lipid nanoparticles for ocular delivery: In-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol 2020 56 101575 10.1016/j.jddst.2020.101575
    [Google Scholar]
  15. Abo-zalam H.B. El-Denshary E.S. Abdelsalam R.M. Khalil I.A. Khattab M.M. Hamzawy M.A. Therapeutic advancement of simvastatin-loaded solid lipid nanoparticles (SV-SLNs) in treatment of hyperlipidemia and attenuating hepatotoxicity, myopathy and apoptosis: Comprehensive study. Biomed. Pharmacother. 2021 139 March 111494 10.1016/j.biopha.2021.111494 34243595
    [Google Scholar]
  16. Kanugo A. Dhage R. pH-dependent pulsatile delivery of Ambrisentan for the treatment of hypertension. J Res Pharm. 2023 27 2 848 859
    [Google Scholar]
  17. Sharma S. Kanugo A. Gaikwad J. Design and development of solid lipid nanoparticles of tazarotene for the treatment of psoriasis and acne: a quality by design approach. Mater. Technol. 2022 37 8 735 744 [Internet] 10.1080/10667857.2021.1873637
    [Google Scholar]
  18. Routray S.B. Patra C.N. Raju R. Panigrahi K.C. Jena G.K. Lyophilized SLN of Cinnacalcet HCl: BBD enabled optimization, characterization and pharmacokinetic study. Drug Dev. Ind. Pharm. 2020 46 7 1080 1091 10.1080/03639045.2020.1775632 32486863
    [Google Scholar]
  19. Nasirizadeh S. Malaekeh-Nikouei B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J Drug Deliv Sci Technol 2020 55 101458 10.1016/j.jddst.2019.101458
    [Google Scholar]
  20. Pandey S. Shaikh F. Gupta A. Tripathi P. Yadav J.S. A Recent Update: Solid Lipid Nanoparticles for Effective Drug Delivery. Adv. Pharm. Bull. 2021 12 1 17 33 10.34172/apb.2022.007 35517874
    [Google Scholar]
  21. Le-Vinh B. Steinbring C. Wibel R. Friedl J.D. Bernkop-Schnürch A. Size shifting of solid lipid nanoparticle system triggered by alkaline phosphatase for site specific mucosal drug delivery. Eur. J. Pharm. Biopharm. 2021 163 March 109 119 10.1016/j.ejpb.2021.03.012 33775852
    [Google Scholar]
  22. Bhattacharya S. Parihar V.K. Singh N. Hatware K. Page A. Sharma M. Targeted delivery of panitumumab-scaffold bosutinib-encapsulated polycaprolactone nanoparticles for EGFR-overexpressed colorectal cancer. Nanomedicine 2023 18 9 713 741 10.2217/nnm‑2022‑0240
    [Google Scholar]
  23. Nguyen V.H. Manh Le K.N. Nguyen M.C.N. Spray-dried Solid Lipid Nanoparticles for Enhancing Berberine Bioavailability via Oral Administration. Curr. Pharm. Des. 2023 29 38 3050 3059 10.2174/0113816128263982231102062745 37961862
    [Google Scholar]
  24. Andrade L.N. Marques C. Barbosa T. Santos R. Chaud M.V. da Silva C.F. Corrêa C.B. Amaral R.G. de Souza Nunes R. Gonsalves J.K.M.C. Allegretti S. Souto E.B. Severino P. Praziquantel-loaded solid lipid nanoparticles: Production, physicochemical characterization, release profile, cytotoxicity and in vitro activity against Schistosoma mansoni. J. Drug Deliv. Sci. Technol. 2020 58 March 101784 [Internet] 10.1016/j.jddst.2020.101784
    [Google Scholar]
  25. Dugad T. Kanugo A. Design Optimization and Evaluation of Solid Lipid Nanoparticles of Azelnidipine for the Treatment of Hypertension. Recent Pat. Nanotechnol. 2024 18 1 22 32 10.2174/1872210517666221019102543
    [Google Scholar]
  26. Prajapati JB. Patel GC. Nose to brain delivery of Rotigotine loaded solid lipid nanoparticles: Quality by design based optimization and characterization. J Drug Deliv Sci Technol 2021 63 102377 10.1016/j.jddst.2021.102377
    [Google Scholar]
  27. Kraisit P. Hirun N. Mahadlek J. Limmatvapirat S. Fluconazole-loaded solid lipid nanoparticles (SLNs) as a potential carrier for buccal drug delivery of oral candidiasis treatment using the Box-Behnken design. J Drug Deliv Sci Technol 2021 63 102437 10.1016/j.jddst.2021.102437
    [Google Scholar]
  28. Kanugo A. Deshpande A. Sharma R. Formulation Optimization and Evaluation of Nanocochleate Gel of Famciclovir for the Treatment of Herpes Zoster. Recent Pat. Nanotechnol. 2023 17 3 259 269 10.2174/1872210516666220622115553 35733311
    [Google Scholar]
  29. Salah E. Abouelfetouh M.M. Pan Y. Chen D. Xie S. Solid lipid nanoparticles for enhanced oral absorption: A review. Colloids Surf. B Biointerfaces 2020 196 July 111305 10.1016/j.colsurfb.2020.111305 32795844
    [Google Scholar]
  30. Mohammadi F. Giti R. Meibodi MN. Ranjbar AM. Bazooband AR. Ramezani V. Preparation and evaluation of kojic acid dipalmitate solid lipid nanoparticles. J Drug Deliv Sci Technol 2021 61 102183 10.1016/j.jddst.2020.102183
    [Google Scholar]
  31. Dolatabadi S. Karimi M. Nasirizadeh S. Hatamipour M. Golmohammadzadeh S. Jaafari M.R. Preparation, characterization and in vivo pharmacokinetic evaluation of curcuminoids-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). J. Drug Deliv. Sci. Technol. 2020 2021 62
    [Google Scholar]
  32. Uppuluri C.T. Ravi P.R. Dalvi A.V. Design, optimization and pharmacokinetic evaluation of Piribedil loaded solid lipid nanoparticles dispersed in nasal in situ gelling system for effective management of Parkinson’s disease. Int. J. Pharm. 2021 606 July 120881 10.1016/j.ijpharm.2021.120881 34273426
    [Google Scholar]
  33. Gordillo-Galeano A. Mora-Huertas C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm. 2018 133 October 285 308 10.1016/j.ejpb.2018.10.017 30463794
    [Google Scholar]
  34. Haneef J. Markad D. Chadha R. Interaction Map Driven Cocrystallization of Ambrisentan: Structural and Biopharmaceutical Evaluation. Cryst. Growth Des. 2020 20 7 4612 4620 [Internet] 10.1021/acs.cgd.0c00427
    [Google Scholar]
  35. Elbrink K. Van Hees S. Chamanza R. Roelant D. Loomans T. Holm R. Kiekens F. Application of solid lipid nanoparticles as a long-term drug delivery platform for intramuscular and subcutaneous administration: In vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 2021 163 March 158 170 10.1016/j.ejpb.2021.04.004 33848628
    [Google Scholar]
  36. Farsani P.A. Mahjub R. Mohammadi M. Oliaei S.S. Mahboobian M.M. Development of perphenazine-loaded solid lipid nanoparticles: statistical optimization and cytotoxicity studies. BioMed Res. Int. 2021 2021 14
    [Google Scholar]
  37. Kashikar R. Kotha A.K. Shrestha R. Channappanavar R. Chougule M.B. Design of experiments using box behnken design in the development, characterization, mathematical modeling, and evaluation of lung targeted nebulized antiviral camostat mesylate loaded pegylated nanosuspension product. J. Drug Deliv. Sci. Technol. 2024 98 105810 [Internet] 10.1016/j.jddst.2024.105810
    [Google Scholar]
  38. Shrivastava S. Kaur C.D. Development of andrographolide-loaded solid lipid nanoparticles for lymphatic targeting: Formulation, optimization, characterization, in vitro,and in vivo evaluation. Drug Deliv. Transl. Res. 2023 13 2 658 674 10.1007/s13346‑022‑01230‑6 35978260
    [Google Scholar]
  39. Beg S. Malik A.K. Ansari M.J. Malik A.A. Ali A.M.A. Theyab A. Algahtani M. Almalki W.H. Alharbi K.S. Alenezi S.K. Barkat M.A. Rahman M. Choudhry H. Systematic Development of Solid Lipid Nanoparticles of Abiraterone Acetate with Improved Oral Bioavailability and Anticancer Activity for Prostate Carcinoma Treatment. ACS Omega 2022 7 20 16968 16979 10.1021/acsomega.1c07254 35647451
    [Google Scholar]
  40. Fincheira P. Espinoza J. Levío-Raimán M. Vera J. Tortella G. Brito A.M.M. Seabra A.B. Diez M.C. Quiroz A. Rubilar O. Formulation of essential oils-loaded solid lipid nanoparticles-based chitosan/PVA hydrogels to control the growth of Botrytis cinerea and Penicillium expansum. Int. J. Biol. Macromol. 2024 270 Pt 1 132218 10.1016/j.ijbiomac.2024.132218 38750844
    [Google Scholar]
  41. Unnisa A. Chettupalli AK. Hagbani T. Al Khalid M. Jandrajupalli SB. Chandolu S. Development of dapagliflozin solid lipid nanoparticles as a novel carrier for oral delivery: statistical design, optimization, in-vitro and in-vivo characterization, and evaluation. Pharmaceuticals 2022 15 5
    [Google Scholar]
  42. Kumar N. Goindi S. Development and Optimization of Itraconazole-Loaded Solid Lipid Nanoparticles for Topical Administration Using High Shear Homogenization Process by Design of Experiments: In vitro, Ex Vivo and In vivo Evaluation. AAPS PharmSciTech 2021 22 7 248 10.1208/s12249‑021‑02118‑3 34647162
    [Google Scholar]
  43. Yadav R.K. Shah K. Dewangan H.K. Intranasal drug delivery of sumatriptan succinate-loaded polymeric solid lipid nanoparticles for brain targeting. Drug Dev. Ind. Pharm. 2022 48 1 21 28 10.1080/03639045.2022.2090575 35703403
    [Google Scholar]
  44. Bayat P. Pakravan P. Salouti M. Dolatabadi JEN. Lysine decorated solid lipid nanoparticles of epirubicin for cancer targeting and therapy. Adv Pharm Bull 2021 11 1 6
    [Google Scholar]
  45. Shah P. Chavda K. Vyas B. Patel S. Formulation development of linagliptin solid lipid nanoparticles for oral bioavailability enhancement: role of P-gp inhibition. Drug Deliv. Transl. Res. 2021 11 3 1166 1185 10.1007/s13346‑020‑00839‑9 32804301
    [Google Scholar]
  46. Ali H.S.M. Namazi N. Elbadawy H.M. El-Sayed A.A.A. Ahmed S.A. Bafail R. Almikhlafi M.A. Alahmadi Y.M. Repaglinide–Solid Lipid Nanoparticles in Chitosan Patches for Transdermal Application: Box–Behnken Design, Characterization, and In vivo Evaluation. Int. J. Nanomedicine 2024 19 209 230 10.2147/IJN.S438564 38223883
    [Google Scholar]
  47. Creteanu A Lisa G Vasile C Popescu MC Spac AF Tantaru G Development of solid lipid nanoparticles for controlled amiodarone delivery. Methods Protoc 2023 6 5 6050097 10.3390/mps6050097
    [Google Scholar]
  48. Yasir M. Chauhan I. Zafar A. Verma M. Noorulla KM. Tura AJ. Buspirone loaded solid lipid nanoparticles for amplification of nose to brain efficacy: Formulation development, optimization by Box-Behnken design, in-vitro characterization and in-vivo biological evaluation. J Drug Deliv Sci Technol 2021 61 102164 10.1016/j.jddst.2020.102164
    [Google Scholar]
  49. El-Telbany D.F.A. El-Telbany R.F.A. Zakaria S. Ahmed K.A. El-Feky Y.A. Formulation and assessment of hydroxyzine HCL solid lipid nanoparticles by dual emulsification technique for transdermal delivery. Biomed. Pharmacother. 2021 143 May 112130 10.1016/j.biopha.2021.112130 34560549
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105302631240816115638
Loading
/content/journals/nanotec/10.2174/0118722105302631240816115638
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Solid lipid nanoparticles ; Box-Behnken design ; Pulmonary hypertension ; Ambrisentan
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test