Skip to content
2000
Volume 19, Issue 2
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Background

Cardiovascular diseases, including hypertension, are the prominent source of death globally. High blood pressure is responsible for heart failure and also damages the vital organs of the body, which also creates mortality. The activation of the sympathetic nervous system in the primary sunrise period is a highly critical condition, and several persons have lost their tissue due to the unavailability of medicine at this time.

Objective

The present research deals with the progress of fast-dissolving oral thin film (OTF) of Ambrisentan for the prevention and cure of hypertension.

Methods

The OTF was established using the solvent casting method. The compatibility of Ambrisentan with film former HPMC E15 was checked with FTIR and DSC. The optimization was assessed using the design of the experiment using 32 Box-Behnken designs. The independent parameters were filmed former (X1: HPMC E15), plasticizer (X2: PEG 400), and super disintegrant (X3: cross povidone) and dependable parameters were disintegration time (Y1) and dissolution release (Y2).

Results

The optimized batch F7 showed the least disintegration time (9 sec), folding endurance of (99), content uniformity (98.57%), pH (6.4), and dissolved within 5 min. The scanning electron microscopy confirmed the evenness and smoothness of the film with a particle size of 10 µm. Patent related with OTF (Indian- 202321050359), US (11701339).

Conclusion

The investigation indicated that fast dissolving oral thin film of Ambrisentan improves the solubility and therapeutic efficacy in the prevention and treatment of cardiovascular complications. The prompt release of Ambrisentan minimizes the mortality associated with heart attack and hypertension.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105298163240823100003
2024-11-19
2025-07-11
Loading full text...

Full text loading...

References

  1. BassiJ. CookM. Development of buccal film formulations and their mucoadhesive performance in biomimetic models.Int. J. Pharm.202161012123310.1016/j.ijpharm.2021.121233
    [Google Scholar]
  2. Ruchika KhanN. DograS.S. SanejaA. The dawning era of oral thin films for nutraceutical delivery: From laboratory to clinic.Biotechnol. Adv.20247310836210.1016/j.biotechadv.2024.108362 38615985
    [Google Scholar]
  3. YuanC. ShaH. CuiB. Orally disintegrating film: A new approach to nutritional supplementation.Food Bioprocess Technol.202215122629264510.1007/s11947‑022‑02835‑y
    [Google Scholar]
  4. KanugoA. MisraA. New and novel approaches for enhancing the oral absorption and bioavailability of protein and peptides therapeutics.Therapeutic Delivery.Future Medicine Ltd.202071373210.4155/tde‑2020‑0068
    [Google Scholar]
  5. Products – AavishkarAvailable from: http://aavishkar.com/products/ accessed 2022-06-14.
  6. MacielV.B.V. RemedioL.N. YoshidaC.M.P. CarvalhoR.A. Carboxymethyl cellulose-based orally disintegrating films enriched with natural plant extract for oral iron delivery.J. Drug Deliv. Sci. Technol.2021666610285210.1016/j.jddst.2021.102852
    [Google Scholar]
  7. GuptaS. KumarT.P. GowdaD.V. Patent perspective on orodispersible films.Recent Pat. Drug Deliv. Formul.2020142889710.2174/22124039MTA5aNjcxy 32885766
    [Google Scholar]
  8. AnjiReddyK. A new mode of thinfilm and nanofiber for burst release of the drug for alzheimer disease; a complete scenario from dispersible polymer to formulation methodology.Mini Rev. Med. Chem.202122694996610.2174/1389557521666211008152446
    [Google Scholar]
  9. ShahiwalaA. Studies in solid solution formation between acetaminophen and povidone and mouth-dissolving strip formulation.Curr. Pharm. Des.202430151200120810.2174/0113816128297499240321034304 38551045
    [Google Scholar]
  10. GuptaM.S. KumarT.P. GowdaD.V. RosenholmJ.M. Orodispersible films: Conception to quality by design.Adv. Drug Deliv. Rev.202117811398310.1016/j.addr.2021.113983 34547323
    [Google Scholar]
  11. ZhangW. XiaoC. XiaoY. An overview of in vitro dissolution testing for film dosage forms.J. Drug Deliv. Sci. Technol.20227110329710.1016/j.jddst.2022.103297
    [Google Scholar]
  12. Sevi̇nç ÖzakarR. ÖzakarE. Current overview of oral thin films.Turk. J. Pharm. Sci.202118111112110.4274/tjps.galenos.2020.76390 33634686
    [Google Scholar]
  13. BodiniR.B. GuimarãesJ.G.L. Monaco-LourençoC.A. Aparecida de CarvalhoR. Effect of starch and hydroxypropyl methylcellulose polymers on the properties of orally disintegrating films.J. Drug Deliv. Sci. Technol.20195140341010.1016/j.jddst.2019.03.028
    [Google Scholar]
  14. IrfanM. RabelS. BukhtarQ. QadirM.I. JabeenF. KhanA. Orally disintegrating films: A modern expansion in drug delivery system.Saudi Pharm. J.201624553754610.1016/j.jsps.2015.02.024 27752225
    [Google Scholar]
  15. Hypertension.Available from: https://www.who.int/news-room/fact-sheets/detail/hypertension accessed 2022-05-23.
  16. SogunuruG.P. KarioK. ShinJ. Morning surge in blood pressure and blood pressure variability in Asia: Evidence and statement from the HOPE Asia Network.J. Clin. Hypertens.201921232433410.1111/jch.13451 30525279
    [Google Scholar]
  17. JaiswalS. KanugoA. Design and development of fast-dissolving tablets of apixaban using single coprocessed excipient.IJPSN20241727217722610.37285/ijpsn.2024.17.2.2
    [Google Scholar]
  18. KwonA. IhmS.H. ParkC.S. Morning blood pressure surge in the early stage of hypertensive patients impacts three-dimensional left ventricular speckle tracking echocardiography.Clin. Hypertens.20212711610.1186/s40885‑021‑00173‑3 34391469
    [Google Scholar]
  19. YildizA. SagS. GulC.B. Morning blood pressure surge in early autosomal dominant polycystic kidney disease and its relation with left ventricular hypertrophy.Ren. Fail.202143122323010.1080/0886022X.2020.1864403 33478355
    [Google Scholar]
  20. SwamyS. KochC.A. Hannah-ShmouniF. SchiffrinE.L. Klubo-GwiezdzinskaJ. GubbiS. Hypertension and COVID-19: Updates from the era of vaccines and variants.J. Clin. Transl. Endocrinol.20222710028510.1016/j.jcte.2021.100285 34900602
    [Google Scholar]
  21. EjazH. AlsrhaniA. ZafarA. COVID-19 and comorbidities: Deleterious impact on infected patients.J. Infect. Public Health202013121833183910.1016/j.jiph.2020.07.014 32788073
    [Google Scholar]
  22. WójcikM. Kozioł-KozakowskaA. Obesity, sodium homeostasis, and arterial hypertension in children and adolescents.Nutrients20211311403210.3390/nu13114032 34836287
    [Google Scholar]
  23. ThenappanT. OrmistonM.L. RyanJ.J. ArcherS.L. Pulmonary arterial hypertension: Pathogenesis and clinical management.BMJ2018360j549210.1136/bmj.j5492 29540357
    [Google Scholar]
  24. KanugoA. DhageR. PH-dependent pulsatile delivery of ambrisentan for the treatment of hypertension.J Res Pharm202327284885910.29228/jrp.365
    [Google Scholar]
  25. Ambrisentan: Uses, interactions, mechanism of action.Available from: https://go.drugbank.com/drugs/DB06403 accessed 2021-09-19.
  26. SutharC. KanugoA. Liquisolid compact technique for the enhancement of solubility and dissolution rate of ambrisentan: Quality by design approach.Indian J. Pharm. Sci.20228461417142810.36468/pharmaceutical‑sciences.1040
    [Google Scholar]
  27. SudheerP. ShresthaS. NarayanaK.A. Amorphous solid dispersion based oral disintegrating film of ezetimibe: Development and evaluation.Drug Metab. Lett.2021141667910.2174/1872312814666200901182517 32875994
    [Google Scholar]
  28. KanugoA. Liquisolid-pellets technique: A recent technique for enhancing solubility and bioavailability of drugs.Int J Appl Pharm2020126344010.22159/ijap.2020v12i6.39510
    [Google Scholar]
  29. BasuB. MankadA. DuttaA. Methylphenidate fast dissolving films: Development, optimization using simplex centroid design and in vitro characterization.Turk. J. Pharm. Sci.202219325126610.4274/tjps.galenos.2021.99223 35775238
    [Google Scholar]
  30. SharmaS. KanugoA. KaurT. ChaudharyD. Formulation and characterization of self-microemulsifying drug delivery system (SMEDDS) of sertraline hydrochloride.Recent Pat. Nanotechnol.202418131610.2174/1872210516666220623152440 35747954
    [Google Scholar]
  31. AnjiReddyK. KarpagamS. Hyperbranched cellulose polyester of oral thin film and nanofiber for rapid release of donepezil; Preparation and in vivo evaluation.Int. J. Biol. Macromol.201912487188710.1016/j.ijbiomac.2018.11.224 30496855
    [Google Scholar]
  32. DugadT. KanugoA. Design optimization and evaluation of solid lipid nanoparticles of azelnidipine for the treatment of hypertension.Recent Pat. Nanotechnol.2024181223210.2174/1872210517666221019102543
    [Google Scholar]
  33. YardyA. EntzK. BennettD. MacphailB. AdronovA. Incorporation of loratadine-cyclodextrin complexes in oral thin films for rapid drug delivery.J. Pharm. Sci.202411351220122710.1016/j.xphs.2023.11.011 37984698
    [Google Scholar]
  34. DahmashE.Z. IyireA. AlyamiH.S. Development of orally dissolving films for pediatric-centric administration of anti-epileptic drug topiramate – A design of experiments (DoE) study.Saudi Pharm. J.202129763564710.1016/j.jsps.2021.04.025 34400857
    [Google Scholar]
  35. BayraktarO. KöseM.D. UngunN. Eggshell membrane based turmeric extract loaded orally disintegrating films.Curr. Drug Deliv.202219554755910.2174/1567201818666210708123449 34238186
    [Google Scholar]
  36. KanugoA. GandhiY. Formulation optimization and evaluation of oral thin film of bilastine for the treatment of allergic conditions.J Res Pharm20222651214122910.29228/jrp.214
    [Google Scholar]
  37. HanX. YanJ. RenL. Preparation and evaluation of orally disintegrating film containing donepezil for Alzheimer disease.J. Drug Deliv. Sci. Technol.20195410132110.1016/j.jddst.2019.101321
    [Google Scholar]
  38. SowjanyaJ.N. RaoP.R. Development, optimization, and invitro evaluation of novel fast dissolving oral films (FDOF’s) of Uncaria tomentosa extract to treat osteoarthritis.Heliyon202393e1429210.1016/j.heliyon.2023.e14292 36925552
    [Google Scholar]
  39. SuryawanshiD. WavhuleP. ShindeU. KambleM. AminP. Development, optimization and in-vivo evaluation of cyanocobalamin loaded orodispersible films using hot-melt extrusion technology: A quality by design (QbD) approach.J. Drug Deliv. Sci. Technol.20216310255910.1016/j.jddst.2021.102559
    [Google Scholar]
  40. HusainM. AgnihotriV.V. GoyalS.N. AgrawalY.O. Development, optimization and characterization of hydrocolloid based mouth dissolving film of Telmisartan for the treatment of hypertension.Food Hydrocolloids for Health2022210006410.1016/j.fhfh.2022.100064
    [Google Scholar]
  41. SelvarajS. ShankaranD.R. Fabrication and characterization of oral dissolving films for tuberculosis drug delivery.Nanosci. Nanotechnol. Asia20188219920710.2174/221068120701170419144443
    [Google Scholar]
  42. YinH. JinW. WangJ. Oral fast dissolving films for co-administration of breviscapine and matrine: Formulation optimization and in vitro characterization.J. Drug Deliv. Sci. Technol.20249510554810.1016/j.jddst.2024.105548
    [Google Scholar]
  43. PrajapatiVD. ChaudhariAM. GandhiAK. MaheriyaP. Pullulan based oral thin film formulation of zolmitriptan: Development and optimization using factorial design.Int J Biol Macromol2018107Pt B207585
    [Google Scholar]
  44. SajayanK. ChandranS.C. Sreedharan NairR. KappallyS. JosephJ. Development and evaluation of fast dissolving oral films of mefenamic acid for the management of fever.Ind J Pharm Edu Res2023571ss41s5110.5530/ijper.57.1s.6
    [Google Scholar]
  45. AlaeiS. OmidiY. OmidianH. In vitro evaluation of adhesion and mechanical properties of oral thin films.Eur. J. Pharm. Sci.202116610596510.1016/j.ejps.2021.105965 34375679
    [Google Scholar]
  46. Al-OranA.Y.F. YenilmezE. Hydroxypropyl methylcellulose orodispersible film containing desloratadine for geriatric use: Formulation and evaluation.Antiinflamm. Antiallergy Agents Med. Chem.2023222799110.2174/1871523022666230816090942 37904551
    [Google Scholar]
  47. NairA.B. ShahJ. JacobS. Development of mucoadhesive buccal film for rizatriptan: In vitro and in vivo evaluation.Pharmaceutics202113572810.3390/pharmaceutics13050728 34063402
    [Google Scholar]
  48. SamalH.B. PatraC.N. BoyeenaL. SreenivasS.A. DasI.J. Design, characterization and clinical evaluation of curcumin dental film for the treatment of periodontitis.Drug Deliv. Lett.2021111819510.2174/2210303110999201123203946
    [Google Scholar]
  49. KhadraI. ObeidM.A. DunnC. Characterisation and optimisation of diclofenac sodium orodispersible thin film formulation.Int. J. Pharm.2019561434610.1016/j.ijpharm.2019.01.064 30772459
    [Google Scholar]
  50. LondheV. UmalkarK. Formulation development and evaluation of fast dissolving film of telmisartan.Indian J. Pharm. Sci.201274212212610.4103/0250‑474X.103842 23325992
    [Google Scholar]
  51. PathanL.S. ModiC.D. GohelM.C. UdhwaniN.H. ThakkarV.T. RanaH.B. Introducing novel hybridization technique for solubility enhancement of bosentan formulation.Food Hydrocolloids for Health2022210005510.1016/j.fhfh.2022.100055
    [Google Scholar]
  52. ZhangJ. LuA. ThakkarR. ZhangY. ManiruzzamanM. Development and evaluation of amorphous oral thin films using solvent-free processes: Comparison between 3D printing and hot-melt extrusion technologies.Pharm20211310161310.3390/pharmaceutics13101613
    [Google Scholar]
  53. RaniK.C. ParfatiN. AryaniN.L.D. Development, evaluation, and molecular docking of oral dissolving film of atenolol.Pharmaceutics20211310172710.3390/pharmaceutics13101727 34684021
    [Google Scholar]
  54. KieferO. BreitkreutzJ. Comparative investigations on key factors and print head designs for pharmaceutical inkjet printing.Int. J. Pharm.202058611956110.1016/j.ijpharm.2020.119561 32585176
    [Google Scholar]
  55. TeixeiraF. SilvaA.M. MacedoC. Design of advanced buccal films with kiwiberry extract to prevent oral mucositis: From in vitro buccal models to ex vivo studies.J. Drug Deliv. Sci. Technol.20249610572510.1016/j.jddst.2024.105725
    [Google Scholar]
  56. ComogluT. InalO. YaacoubH.B. Formulation and in vitro evaluation of ketoprofen fast-dissolving tablets.Pharm. Dev. Technol.201621890190810.3109/10837450.2015.1022792 25798913
    [Google Scholar]
  57. BaranauskaiteJ. OckunM.A. UnerB. Development and In vitro characterization of pullulan fast dissolving films loaded with Panax ginseng extract, antioxidant properties and cytotoxic efficiency on lung and breast cancer cell lines.J. Drug Deliv. Sci. Technol.20227610370110.1016/j.jddst.2022.103701
    [Google Scholar]
  58. Abou-TalebH.A. MustafaW.W. MakramT.S. AbdelatyL.N. SalemH. AbdelkaderH. Vardenafil oral dispersible films (ODFs) with advanced dissolution, palatability, and bioavailability.Pharmaceutics202214351710.3390/pharmaceutics14030517 35335893
    [Google Scholar]
  59. AbdelhameedA.H. AbdelhafezW.A. SalehI. HamadA.A. MohamedM.S. Formulation and optimization of oral fast dissolving films loaded with nanosuspension to enhance the oral bioavailability of Fexofenadine HCL.J. Drug Deliv. Sci. Technol.20238510457810.1016/j.jddst.2023.104578
    [Google Scholar]
  60. AllenE. DavidsonR. LarosaT. ReidD. Oral dissolvable film that includes plant extract.US11266625B22022
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105298163240823100003
Loading
/content/journals/nanotec/10.2174/0118722105298163240823100003
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): ambrisentan; box-behnken design; heart attack; HPMC E15; hypertension; Oral thin film
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test