Skip to content
2000
Volume 19, Issue 2
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Sodium-ion battery is a promising alternative to lithium-ion battery because of its abundant raw material resources, low price, and high specific capacity. Amorphous carbon materials (hard carbon) have micropores and impurities, facilitating the intercalation of sodium ions to form “quasi-metallic sodium,” resulting in a high sodium storage capacity and a low sodium storage potential. Consequently, hard carbon is one of the most widely studied negative electrode materials. It can be prepared from biomass by thermochemical conversion and has the advantages of large specific capacity, low cost, good cycling stability, and renewability. This review focuses on Patents and thesis research in the hard carbon materials based on biomass. Firstly, the preparation methods of hard carbon, including precursor selection, pretreatment, drying methods, and carbonization processes, are summarized. Secondly, the effects of precursor composition and heteroatom doping structure and properties of hard carbon are examined, and the changes in carbon material pores during the activation process, as well as the selection of optimal drying method, pyrolysis temperature, carbonization temperature, activator dosage, and additive, are discussed. Thirdly, the impact of preparation methods on hard carbon's cost, efficiency, and stability is briefly summarized, and the relevant improvement measures and prospects are proposed. Finally, some insights are provided into preparing high-performance biomass-based anode materials for sodium-ion batteries.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105287471240221094548
2024-03-06
2025-07-08
Loading full text...

Full text loading...

References

  1. ArmaroliN. BalzaniV. The future of energy supply: Challenges and opportunities.Angew. Chem. Int. Ed.2007461-2526610.1002/anie.20060237317103469
    [Google Scholar]
  2. SarmaD.D. ShuklaA.K. Building better batteries: A travel back in time.ACS Energy Lett.20183112841284510.1021/acsenergylett.8b01966
    [Google Scholar]
  3. ArmandM. TarasconJ.M. Building better batteries.Nature2008451717965265710.1038/451652a18256660
    [Google Scholar]
  4. TurcheniukK. BondarevD. SinghalV. YushinG. Ten years left to redesign lithium-ion batteries.Nature2018559771546747010.1038/d41586‑018‑05752‑330046087
    [Google Scholar]
  5. JinC. NaiJ. ShengO. YuanH. ZhangW. TaoX. LouX.W.D. Biomass-based materials for green lithium secondary batteries.Energy Environ. Sci.20211431326137910.1039/D0EE02848G
    [Google Scholar]
  6. YabuuchiN. KubotaK. DahbiM. KomabaS. Research development on sodium-ion batteries.Chem. Rev.201411423116361168210.1021/cr500192f25390643
    [Google Scholar]
  7. HouH. QiuX. WeiW. ZhangY. JiX. Carbon anode materials for advanced sodium‐ion batteries.Adv. Energy Mater.2017724160289810.1002/aenm.201602898
    [Google Scholar]
  8. LijingX. ChengT. ZhihongB. Hard carbon anodes for next‐generation li‐ion batteries: Review and perspective.Adv. Energy Mater.20211138210165010.1002/aenm.202101650
    [Google Scholar]
  9. YuanH. LiuT. LiuY. NaiJ. WangY. ZhangW. TaoX. A review of biomass materials for advanced lithium–sulfur batteries.Chem. Sci.201910327484749510.1039/C9SC02743B31768234
    [Google Scholar]
  10. WeiN. LingyingS. Review Article: Layer-structured carbonaceous materials for advanced Li-ion and Na-ion batteries: Beyond graphene.J. Vac. Sci. Technol. A201937040803 10.1116/1.5095413
    [Google Scholar]
  11. JieZ.H.A.N.G. RongshuaiD.U.A.N. ZijiangL.I. HuiW.A.N.G. NingZ.H.A.N.G. ShuyaZ.H.A.N.G. ChuanlingS.I. Research advances on biomass derived carbon aerogel.Biomass Chem. Eng.202155191100
    [Google Scholar]
  12. ChenD. CenK. ZhuangX. GanZ. ZhouJ. ZhangY. ZhangH. Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio‐oil.Combust. Flame202224211214210.1016/j.combustflame.2022.112142
    [Google Scholar]
  13. DouX. HasaI. HekmatfarM. DiemantT. BehmR.J. BuchholzD. PasseriniS. Pectin, hemicellulose, or lignin? impact of the biowaste source on the performance of hard carbons for sodium‐ion batteries.ChemSusChem201710122668267610.1002/cssc.20170062828425668
    [Google Scholar]
  14. FengY. TaoL. HeY. JinQ. KuaiC. ZhengY. LiM. HouQ. ZhengZ. LinF. HuangH. Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries.J. Mater. Chem. A Mater. Energy Sustain.2019747269542696510.1039/C9TA09124F
    [Google Scholar]
  15. AdrianB. Impact of biomass inorganic impurities on hard carbon properties and performance in Na-ion batteries.Sustainable Mater. Technol.202026e0022710.1016/j.susmat.2020.e00227
    [Google Scholar]
  16. LuB. LinC. XiongH. ZhangC. FangL. SunJ. HuZ. WuY. FanX. LiG. FuJ. DengD. WuQ. Hard-carbon negative electrodes from biomasses for sodium-ion batteries.Molecules20232810402710.3390/molecules2810402737241775
    [Google Scholar]
  17. ChuY. ZhangJ. ZhangY. LiQ. JiaY. DongX. XiaoJ. TaoY. YangQ.H. Reconfiguring hard carbons with emerging sodium‐ion batteries: A perspective.Adv. Mater.20233531221218610.1002/adma.20221218636806260
    [Google Scholar]
  18. YangH. YanR. ChenH. LeeD.H. ZhengC. Characteristics of hemicellulose, cellulose and lignin pyrolysis.Fuel20078612-131781178810.1016/j.fuel.2006.12.013
    [Google Scholar]
  19. BommierC. JiX. Recent development on anodes for na‐ion batteries.Isr. J. Chem.201555548650710.1002/ijch.201400118
    [Google Scholar]
  20. DichaoW.U. ChaoC.H.E.N. XinglongH.O.U. KangS.U.N. Effect of pyrolysis temperature on structures of chars forming from cellulose and lignin.Biomass Chem. Eng.202155319
    [Google Scholar]
  21. WuX.S. DongX.L. WangB.Y. XiaJ.L. LiW.C. Revealing the sodium storage behavior of biomass-derived hard carbon by using pure lignin and cellulose as model precursors.Renew. Energy202218963063810.1016/j.renene.2022.03.023
    [Google Scholar]
  22. RiosC. SimoninL. GhimbeuC.M. VaulotC. da Silva PerezD. DupontC. Impact of the biomass precursor composition in the hard carbon properties and performance for application in a Na-ion battery.Fuel Process. Technol.202223110722310.1016/j.fuproc.2022.107223
    [Google Scholar]
  23. GouW. KongX. WangY. AiY. LiangS. PanA. CaoG. Yolk-shell structured V2O3 microspheres wrapped in N, S co-doped carbon as pea-pod nanofibers for high-capacity lithium ion batteries.Chem. Eng. J.201937454555310.1016/j.cej.2019.05.144
    [Google Scholar]
  24. ZhuZ. LiangF. ZhouZ. ZengX. WangD. DongP. ZhaoJ. SunS. ZhangY. LiX. Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries.J. Mater. Chem. A Mater. Energy Sustain.2018641513152210.1039/C7TA07951F
    [Google Scholar]
  25. XueX. WengY. JiangZ. YangS. WuY. MengS. ZhangC. SunQ. ZhangY. Naturally nitrogen-doped porous carbon derived from waste crab shell as anode material for high performance sodium-ion battery.J. Anal. Appl. Pyrolysis202115710521510.1016/j.jaap.2021.105215
    [Google Scholar]
  26. LiY. WangZ. LiL. PengS. ZhangL. SrinivasanM. RamakrishnaS. Preparation of nitrogen- and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries.Carbon20169955656310.1016/j.carbon.2015.12.066
    [Google Scholar]
  27. LiZ. BommierC. ChongZ.S. JianZ. SurtaT.W. WangX. XingZ. NeuefeindJ.C. StickleW.F. DolgosM. GreaneyP.A. JiX. Mechanism of na‐ion storage in hard carbon anodes revealed by heteroatom doping.Adv. Energy Mater.2017718160289410.1002/aenm.201602894
    [Google Scholar]
  28. JiW. HuL. HuX. DingY. WenZ. Nitrogen-doped carbon coating mesoporous ZnS nanospheres as high-performance anode material of sodium-ion batteries.Mater. Today Commun.20191939640110.1016/j.mtcomm.2019.03.008
    [Google Scholar]
  29. AristoteN.T. Sulfur-doping biomass based hard carbon as high performance anode material for sodium-ion batteries.J. Electroanal. Chem. 2022923116769
    [Google Scholar]
  30. AgrawalA. JanakiramanS. BiswasK. VenimadhavA. SrivastavaS.K. GhoshS. Understanding the improved electrochemical performance of nitrogen-doped hard carbons as an anode for sodium ion battery.Electrochim. Acta201931716417210.1016/j.electacta.2019.05.158
    [Google Scholar]
  31. HouH. ShaoL. ZhangY. ZouG. ChenJ. JiX. Large‐area carbon nanosheets doped with phosphorus: A high‐performance anode material for sodium‐ion batteries.Adv. Sci.201741160024310.1002/advs.20160024328105399
    [Google Scholar]
  32. JinQ. LiW. WangK. FengP. LiH. GuT. ZhouM. WangW. ChengS. JiangK. Experimental design and theoretical calculation for sulfur-doped carbon nanofibers as a high performance sodium-ion battery anode.J. Mater. Chem. A Mater. Energy Sustain.2019717102391024510.1039/C9TA02107H
    [Google Scholar]
  33. ZhaoG. YuD. ZhangH. SunF. LiJ. ZhuL. SunL. YuM. BesenbacherF. SunY. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries.Nano Energy20206710421910.1016/j.nanoen.2019.104219
    [Google Scholar]
  34. WanH. ShenX. JiangH. ZhangC. JiangK. ChenT. ShiL. DongL. HeC. XuY. LiJ. ChenY. Biomass-derived N/S dual-doped porous hard-carbon as high-capacity anodes for lithium/sodium ions batteries.Energy202123112110210.1016/j.energy.2021.121102
    [Google Scholar]
  35. YenduriB.R SaisrinuY SoumenK KamalaB.K. PatroLN. Nitrogen doped soap-nut seeds derived hard carbon as an efficient anode material for na-ion batteries.J. Alloys Compd.202396817191710.1016/j.jallcom.2023.171917
    [Google Scholar]
  36. ZhaoYanhong HuZhuang FanChangling GaoPeng ZhangRuisheng LiuZhixiao LiuJinshui LiuJilei Novel structural design and adsorption/insertion coordinating quasi-metallic na storage mechanism toward high-performance hard carbon anode derived from carboxymethyl cellulose.Small 202319e230329610.1002/smll.202303296
    [Google Scholar]
  37. YanM. QinY. WangL. SongM. HanD. JinQ. ZhaoS. ZhaoM. LiZ. WangX. MengL. WangX. Recent advances in biomass-derived carbon materials for sodium-ion energy storage devices.Nanomaterials202212693010.3390/nano1206093035335746
    [Google Scholar]
  38. JeonJ.W. ZhangL. LutkenhausJ.L. LaskarD.D. LemmonJ.P. ChoiD. NandasiriM.I. HashmiA. XuJ. MotkuriR.K. FernandezC.A. LiuJ. TuckerM.P. McGrailP.B. YangB. NuneS.K. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications.ChemSusChem20158342843210.1002/cssc.20140262125339600
    [Google Scholar]
  39. PallarésJ. González-CencerradoA. ArauzoI. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steamBiomass and Bioenergy 20181156473
    [Google Scholar]
  40. GongY. LiD. LuoC. FuQ. PanC. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors.Green Chem.201719174132414010.1039/C7GC01681F
    [Google Scholar]
  41. WangJ. LiQ. LiuY. Fast and highly efficient removal of lignin from amorphous cornstalks via sulfuric acid-catalyzed hydrolysis for the production of fermentable sugars.Bioresour. Technol.2019272551558
    [Google Scholar]
  42. ChengX.R. WangJ.Y. LiuY.P. High-yield and high-quality activated carbons from para-xylene manufacturing residues by H2SO4 activation.Fuel Process. Technol.201412416
    [Google Scholar]
  43. ChenC. WeiT. LiB. Activated carbons with high adsorption performance from phosphoric acid activation of biomass wastes.ACS Sustain. Chem.& Eng.201971093719381
    [Google Scholar]
  44. NurdiawatiA. HamdanS. ArifinM.K.B. H3PO4 activation of biochar from Elais Guineensis shell: Characterization and adsorption abilities.Adv. Nat. Appl. Sci.201377599605
    [Google Scholar]
  45. GarcìaA.C. GarcìaA.C. VicenteF.M. Obtaining activated carbons from agricultural byproducts by KOH activation.J. Anal. Appl. Pyrolysis200881195101
    [Google Scholar]
  46. LengL. YuanZ. LiX. NaOH activation of swine-manure-derived biochar for phosphate removal.Sci. Total Environ.2019695133667
    [Google Scholar]
  47. AslamU. AslamZ. AshrafM. KamalM.S. Influence of pretreatments on the fuel properties and pyrolytic kinetics of biomass.Biomass Convers. Biorefin.20231318169551696810.1007/s13399‑021‑02235‑w
    [Google Scholar]
  48. DouX. HasaI. SaurelD. JaureguiM. BuchholzD. RojoT. PasseriniS. Impact of the acid treatment on lignocellulosic biomass hard carbon for sodium‐ion battery anodes.ChemSusChem201811183276328510.1002/cssc.20180114829961979
    [Google Scholar]
  49. BensoudaH. HakimC. AziamH. BacaouiA. SaadouneI. Effect of NaOH impregnation on the electrochemical performances of hard carbon derived from olive seeds biomass for sodium ion batteries.Mater. Today Proc.2022512066207010.1016/j.matpr.2022.01.337
    [Google Scholar]
  50. YuanM. QueH. YangX. LiM. Nitrogen and oxygen co-doped glucose-based carbon materials with enhanced electrochemical performances as supercapacitors.Ionics20192594305431410.1007/s11581‑019‑02964‑z
    [Google Scholar]
  51. LüF. LuX. LiS. ZhangH. ShaoL. HeP. Dozens-fold improvement of biochar redox properties by KOH activation.Chem. Eng. J.202242913220310.1016/j.cej.2021.132203
    [Google Scholar]
  52. Anu KumarA. RapoportA. KunzeG. KumarS. SinghD. SinghB. Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review.Renew. Energy20201601228125210.1016/j.renene.2020.07.031
    [Google Scholar]
  53. BorgheiS.A. ZareM.H. AhmadiM. SadeghiM.H. MarjaniA. ShirazianS. GhadiriM. Synthesis of multi-application activated carbon from oak seeds by KOH activation for methylene blue adsorption and electrochemical supercapacitor electrode.Arab. J. Chem.202114210295810.1016/j.arabjc.2020.102958
    [Google Scholar]
  54. YuliusmanY. NasruddinN. AfdholM.K. HarisF. AmilianaR.A. HanafiA. RamadhanI.T. Production of activated carbon from coffee grounds using chemical and physical activation method.Adv. Sci. Lett.20172365751575510.1166/asl.2017.8822
    [Google Scholar]
  55. KhanA. SenthilR.A. PanJ. OsmanS. SunY. ShuX. A new biomass derived rod-like porous carbon from tea-waste as inexpensive and sustainable energy material for advanced supercapacitor application.Electrochim. Acta202033513558810.1016/j.electacta.2019.135588
    [Google Scholar]
  56. JawadA.H. Saud AbdulhameedA. WilsonL.D. Syed-HassanS.S.A. ALOthmanZ.A. Rizwan KhanM. High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study.Chin. J. Chem. Eng.20213228129010.1016/j.cjche.2020.09.070
    [Google Scholar]
  57. XieL. TangC. SongM. GuoX. LiX. LiJ. YanC. KongQ. SunG. ZhangQ. SuF. ChenC. Molecular-scale controllable conversion of biopolymers into hard carbons towards lithium and sodium ion batteries: A review.J. Energy Chem.20227255456910.1016/j.jechem.2022.05.006
    [Google Scholar]
  58. LiuD. ZhangG. GuiK. WangM. ZhuM. BaoY. Effects of drying process on the microstructure and properties of biomass-derived porous carbon material.Ceram. Int.20224814210432104710.1016/j.ceramint.2022.04.123
    [Google Scholar]
  59. MengF. WangD. Effects of vacuum freeze drying pretreatment on biomass and biochar properties.Renew. Energy20201551910.1016/j.renene.2020.03.113
    [Google Scholar]
  60. BaldinelliA. DouX. BuchholzD. MarinaroM. PasseriniS. BarelliL. Addressing the energy sustainability of biowaste-derived hard carbon materials for battery electrodes.Green Chem.20182071527153710.1039/C8GC00085A
    [Google Scholar]
  61. CaballeroJ.A. ConesaJ.A. FontR. MarcillaA. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions.J Anal Appl Pyrol.202142215917510.1016/S0165‑2370(97)00015‑6
    [Google Scholar]
  62. WhiteJ.E. CatalloW.J. LegendreB.L. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies.J Anal Appl Pyrolysis201191113310.1016/j.jaap.2011.01.004
    [Google Scholar]
  63. YaashikaaP.R. KumarP.S. VarjaniS. SaravananA. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy.Biotechnol. Rep.202028e0057010.1016/j.btre.2020.e0057033304842
    [Google Scholar]
  64. LiL. RowbothamJ. S. Christopher GreenwellH. DyerP. W. New and future developments in catalysis.Elsevier2013173208
    [Google Scholar]
  65. DemirbaşA. Biomass resource facilities and biomass conversion processing for fuels and chemicals.Energy Convers. Manage.200142111357137810.1016/S0196‑8904(00)00137‑0
    [Google Scholar]
  66. ChenY. ZhangX. ChenW. YangH. ChenH. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance.Bioresour. Technol.201724610110910.1016/j.biortech.2017.08.13828893501
    [Google Scholar]
  67. KanT. StrezovV. EvansT.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters.Renew. Sustain. Energy Rev.2016571126114010.1016/j.rser.2015.12.185
    [Google Scholar]
  68. MuzykaR. MisztalE. HrabakJ. BanksS.W. SajdakM. Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar.Energy202326312612810.1016/j.energy.2022.126128
    [Google Scholar]
  69. KhanT.A. SaudA.S. JamariS.S. RahimM.H.A. ParkJ-W. KimH-J. Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: A review.Biomass Bioenergy201913010538410.1016/j.biombioe.2019.105384
    [Google Scholar]
  70. IurchenkovaA. KobetsA. AhaliabadehZ. KosirJ. LaaksoE. VirtanenT. SiipolaV. LahtinenJ. KallioT. The effect of the pyrolysis temperature and biomass type on the biocarbons characteristics.ChemSusChem2024178e20230100510.1002/cssc.20230100538126627
    [Google Scholar]
  71. JungD. ZimmermannM. KruseA. Hydrothermal carbonization of fructose: Growth mechanism and kinetic model.ACS Sustain. Chem.& Eng.2018611138771388710.1021/acssuschemeng.8b02118
    [Google Scholar]
  72. CorreaC. HehrT. Voglhuber-SlavinskyA. RauscherY. KruseA. Pyrolysis vs. hydrothermal carbonization: Understanding the effect of biomass structural components and inorganic compounds on the char properties.J. Anal. Appl. Pyrolysis201914013714710.1016/j.jaap.2019.03.007
    [Google Scholar]
  73. Kun-leiH. LongD.G. HanC.W. Biomass-derived hard carbon is used as a high-performance anode material for sodium-ion batteries. J. Mater. Chem. A. 20142127331273810.1039/C4TA02068E
    [Google Scholar]
  74. KimK. LimD.G. HanC.W. OsswaldS. OrtalanV. YoungbloodJ.P. PolV.G. Tailored carbon anodes derived from biomass for sodium-ion storage.ACS Sustain. Chem. Eng.20175108720872810.1021/acssuschemeng.7b01497
    [Google Scholar]
  75. ChenC. HuangY. MengZ. ZhangJ. LuM. LiuP. LiT. Insight into the rapid sodium storage mechanism of the fiber-like oxygen-doped hierarchical porous biomass derived hard carbon.J. Colloid Interface Sci.202158865766910.1016/j.jcis.2020.11.05833261818
    [Google Scholar]
  76. ZhangY. LiX. DongP. WuG. XiaoJ. ZengX. ZhangY. SunX. Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion batteries.ACS Appl. Mater. Interfaces20181049427964280310.1021/acsami.8b1316030461257
    [Google Scholar]
  77. WangY. FengZ. ZhuW. GariépyV. GagnonC. ProvencherM. LaulD. VeilletteR. TrudeauM. GuerfiA. ZaghibK. High capacity and high efficiency maple tree-biomass-derived hard carbon as an anode material for sodium-ion batteries.Materials2018118129410.3390/ma1108129430050008
    [Google Scholar]
  78. OuJ. YangL. ZhangZ. Chrysanthemum derived hierarchically porous nitrogen-doped carbon as high performance anode material for Lithium/Sodium ion batteries.Powder Technol.2019344899510.1016/j.powtec.2018.11.100
    [Google Scholar]
  79. WangJing Facile hydrothermal treatment route of reed straw-derived hard carbon for high-performance sodium-ion battery.Electrochim. Acta201829118819610.1016/j.electacta.2018.08.136
    [Google Scholar]
  80. ZhengP. LiuT. GuoS. Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries.Sci. Rep.2016613562010.1038/srep3562027752146
    [Google Scholar]
  81. WeiH. ChengH. YaoN. LiG. DuZ. LuoR. ZhengZ. Invasive alien plant biomass-derived hard carbon anode for sodium-ion batteries.Chemosphere202334314022010.1016/j.chemosphere.2023.14022037739130
    [Google Scholar]
  82. LiuF. ZhaoP. ZhaoJ. Research progress of hard carbon anode materials for sodium-ion batteries.Energy Storage Science and Technology202211113497
    [Google Scholar]
  83. DouX. HasaI. SaurelD. VaalmaC. WuL. BuchholzD. BresserD. KomabaS. PasseriniS. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry.Mater. Today2019238710410.1016/j.mattod.2018.12.040
    [Google Scholar]
  84. MarshH. CrawfordD. Structure in graphitizable carbon from coal-tar pitch HTT 750–1148 K. Studied using high resolution electron microscopy.In: Carbon1984224-5413422
    [Google Scholar]
  85. FranklinR.E. Crystallite growth in graphitizing and non-graphitizing carbons.Proc. R. Soc. Lond. A Math. Phys. Sci.1951209109719621810.1098/rspa.1951.0197
    [Google Scholar]
  86. ChengF. BayatH. JenaU. BrewerC.E. Impact of feedstock composition on pyrolysis of low-cost, protein- and lignin-rich biomass: A review.J. Anal. Appl. Pyrolysis202014710478010.1016/j.jaap.2020.104780
    [Google Scholar]
  87. WangJun Controllable synthesis of bifunctional porous carbon for efficient gas-mixture separation and high-performance supercapacitor.J. Chem. Eng.2018348576610.1016/j.cej.2018.04.188
    [Google Scholar]
  88. HanY. GholizadehM. TranC-C. KaliaguineS. LiC-Z. OlarteM. Garcia-PerezM. Hydrotreatment of pyrolysis bio-oil: A review.Fuel Process. Technol.201919510614010.1016/j.fuproc.2019.106140
    [Google Scholar]
  89. YangQ. WangX. LuoW. SunJ. XuQ. ChenF. ZhaoJ. WangS. YaoF. WangD. LiX. ZengG. Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge.Bioresour. Technol.201824753754410.1016/j.biortech.2017.09.13628972907
    [Google Scholar]
  90. TitiriciM.M. ThomasA. YuS-H. MüllerJ-O. AntoniettiM. A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization.Chem. Mater.200719174205421210.1021/cm0707408
    [Google Scholar]
  91. BarkerJ MeysamiSS MazzaliF RennieA. Process for preparing and use of hard-carbon containing materials.U.S. Patent US20220190338A1,2022
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105287471240221094548
Loading
/content/journals/nanotec/10.2174/0118722105287471240221094548
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test