Skip to content
2000
Volume 19, Issue 3
  • ISSN: 1872-2105
  • E-ISSN: 2212-4020

Abstract

Lung cancer is the second deadliest disease in the world. A major portion of deaths related to cancer are due to lung cancer in both males and females. Interestingly, unbelievable advances have occurred in recent years through the use of nanotechnology and development in both the diagnosis and treatment of lung cancer. Due to their stability, the nanotechnology-based pharmacological system gained huge attractiveness, solubility, absorption from the intestine, pharmacological effectiveness, . of various anticancer agents. However, this field needs to be utilized more to get maximum results in the treatment of lung cancer, along with wider context medicines. In the present review, authors have tried to concentrate their attention on lung cancer`s difficulties along with the current pharmacological and diagnostic situation, and current advancements in approaches based on nanotechnology for the treatment and diagnosis of lung cancer. While nanotechnology offers these promising avenues for lung cancer diagnosis and treatment, it is important to acknowledge the need for careful evaluation of safety, efficacy, and regulatory approval. With continued research and development, nanotechnology holds tremendous potential to revolutionize the management of lung cancer and improve patient outcomes. The review also highlights the involvement of endocrine systems, especially estrogen in lung cancer proliferation. Some of the recent clinical trials and patents on nanoparticle-based formulations that have applications in the treatment and diagnosis of lung cancer are also discussed.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105264531231205042817
2024-02-06
2025-07-12
Loading full text...

Full text loading...

References

  1. BaydaS. AdeelM. TuccinardiT. CordaniM. RizzolioF. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine.Molecules201925111212610.3390/molecules2501011231892180
    [Google Scholar]
  2. PurohitD. ManchandaD. MakhijaM. RathiJ. VermaR. KaushikD. PandeyP. An overview of the recent developments and patents in the field of pharmaceutical nanotechnology.Recent Pat. Nanotechnol.2021151153410.2174/187221051466620090915440932912128
    [Google Scholar]
  3. OberdörsterG. MaynardA. DonaldsonK. CastranovaV. FitzpatrickJ. AusmanK. CarterJ. KarnB. KreylingW. LaiD. OlinS. Monteiro-RiviereN. WarheitD. YangH. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy.Part. Fibre Toxicol.20052184310.1186/1743‑8977‑2‑816209704
    [Google Scholar]
  4. VarmaA. MukasyanA.S. RogachevA.S. ManukyanK.V. Solution combustion synthesis of nanoscale materials.Chem. Rev.201611623144931458610.1021/acs.chemrev.6b0027927610827
    [Google Scholar]
  5. BarhoumA. García-BetancourtM.L. JeevanandamJ. HussienE.A. MekkawyS.A. MostafaM. OmranM.M. S AbdallaM. BechelanyM. Review on natural, incidental, bioinspired, and engineered nanomaterials: History, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations.Nanomaterials202212217722510.3390/nano1202017735055196
    [Google Scholar]
  6. JeevanandamJ. BarhoumA. ChanY.S. DufresneA. DanquahM.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations.Beilstein J. Nanotechnol.201891050107410.3762/bjnano.9.9829719757
    [Google Scholar]
  7. ThiruvengadamM RajakumarG ChungIM Nanotechnology: Current uses and future applications in the food industry.3 Biotech2018817486
    [Google Scholar]
  8. SinghT. ShuklaS. KumarP. WahlaV. BajpaiV.K. RatherI.A. Application of nanotechnology in food science: Perception and overview.Front. Microbiol.20178150110.3389/fmicb.2017.0150128824605
    [Google Scholar]
  9. YuJ. ZhangM. LiuJ. ChenR. LiR. LiuQ. ZhouL. LiuP. WangJ. Heterogeneous NiSe2/Ni ultrafine nanoparticles embedded into an N, S-codoped carbon framework for pH-universal hydrogen evolution reaction.ACS Sustain. Chem. Eng.2019744119412710.1021/acssuschemeng.8b05628
    [Google Scholar]
  10. KhievD. MohamedZ.A. VichareR. PaulsonR. BhatiaS. MohapatraS. LoboG.P. ValapalaM. KerurN. PassagliaC.L. MohapatraS.S. BiswalM.R. Emerging nano-formulations and nanomedicine applications for ocular drug delivery.Nanomaterials202111117319010.3390/nano1101017333445545
    [Google Scholar]
  11. WoźniakM. PłoskaA. SiekierzyckaA. DobruckiL.W. KalinowskiL. DobruckiI.T. Molecular imaging and nanotechnology-emerging tools in diagnostics and therapy.Int. J. Mol. Sci.20222352658267110.3390/ijms2305265835269797
    [Google Scholar]
  12. PellicoJ. EllisC.M. DavisJ.J. Nanoparticle-based paramagnetic contrast agents formagnetic resonance imaging.Contrast Media Mol. Imaging2019201911310.1155/2019/184563731191182
    [Google Scholar]
  13. KimG.B. KimY.P. Analysis of protease activity using quantum dots and resonance energy transfer.Theranostics20122212713810.7150/thno.347622375154
    [Google Scholar]
  14. Geszke-MoritzM. MoritzM. Quantum dots as versatile probes in medical sciences: Synthesis, modification and properties.Mater. Sci. Eng. C20133331008102110.1016/j.msec.2013.01.00323827537
    [Google Scholar]
  15. PandeyP. PurohitD. SharmaS. LambaA.K. SainiS. MinochaN. VashistN. KaushikD. Nanocrystals: A deep insight into formulation aspects, stabilization strategies, and biomedical applications.Recent Pat. Nanotechnol.202317430732610.2174/187221051666622052312031335616680
    [Google Scholar]
  16. LovellJ.F. JinC.S. HuynhE. JinH. KimC. RubinsteinJ.L. ChanW.C.W. CaoW. WangL.V. ZhengG. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents.Nat. Mater.201110432433210.1038/nmat298621423187
    [Google Scholar]
  17. PandeyP. ChopraH. KaushikD. VermaR. PurohitD. ParasharJ. MittalV. RahmanM.H. BhatiaS. KumarP. BhattacharyaT. TagdeP. Al-HarrasiA. Multifunctional patented nanotherapeutics for cancer intervention: 2010-Onwards.Recent Patents Anticancer Drug Discov.2023181385210.2174/157489281766622032208594235319390
    [Google Scholar]
  18. SimS. WongN. Nanotechnology and its use in imaging and drug delivery (Review).Biomed. Rep.2021145425110.3892/br.2021.141833728048
    [Google Scholar]
  19. SoaresS. SousaJ. PaisA. VitorinoC. Nanomedicine: Principles, properties, and regulatory issues.Front Chem.2018636037410.3389/fchem.2018.0036030177965
    [Google Scholar]
  20. JinC. WangK. Oppong-GyebiA. HuJ. Application of nanotechnology in cancer diagnosis and therapy - A mini-review.Int. J. Med. Sci.202017182964297310.7150/ijms.4980133173417
    [Google Scholar]
  21. JabirN.R. TabrezS. AshrafG.M. ShakilS. DamanhouriG.A. KamalM.A. Nanotechnology-based approaches in anticancer research.Int. J. Nanomedicine201274391440822927757
    [Google Scholar]
  22. TenchovR. BirdR. CurtzeA.E. ZhouQ. Lipid Nanoparticles - From liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement.ACS Nano20211511169821701510.1021/acsnano.1c0499634181394
    [Google Scholar]
  23. HuQ. FangZ. GeJ. LiH. Nanotechnology for cardiovascular diseases.Innovation20223210021410.1016/j.xinn.2022.10021435243468
    [Google Scholar]
  24. RizviS.A.A. SalehA.M. Applications of nanoparticle systems in drug delivery technology.Saudi Pharm. J.2018261647010.1016/j.jsps.2017.10.01229379334
    [Google Scholar]
  25. HanJ. ZhaoD. LiD. WangX. JinZ. ZhaoK. Polymer-based nanomaterials and applications for vaccines and drugs.Polymers2018101314410.3390/polym1001003130966075
    [Google Scholar]
  26. PeirisP.M. ToyR. AbramowskiA. VicenteP. TucciS. BauerL. MayerA. TamM. DoolittleE. PanskyJ. TranE. LinD. SchiemannW.P. GhaghadaK.B. GriswoldM.A. KarathanasisE. Treatment of cancer micrometastasis using a multicomponent chain-like nanoparticle.J. Control. Release2014173515810.1016/j.jconrel.2013.10.03124188960
    [Google Scholar]
  27. NkhataS.G. AyuaE. KamauE.H. ShingiroJ.B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes.Food Sci. Nutr.2018682446245810.1002/fsn3.84630510746
    [Google Scholar]
  28. WeaverC.M. DwyerJ. FulgoniV.L.III KingJ.C. LeveilleG.A. MacDonaldR.S. OrdovasJ. SchnakenbergD. Processed foods: contributions to nutrition.Am. J. Clin. Nutr.20149961525154210.3945/ajcn.114.08928424760975
    [Google Scholar]
  29. MüllerP. SchmidM. Intelligent packaging in the food sector: A brief overview.Foods201981162710.3390/foods801001630621006
    [Google Scholar]
  30. BijiK.B. RavishankarC.N. MohanC.O. Srinivasa GopalT.K. Smart packaging systems for food applications: A review.J. Food Sci. Technol.201552106125613510.1007/s13197‑015‑1766‑726396360
    [Google Scholar]
  31. SiddiquiS. AlrummanS.A. Influence of nanoparticles on food: An analytical assessment.J. King Saud Univ. Sci.202133610153010.1016/j.jksus.2021.101530
    [Google Scholar]
  32. BumbudsanpharokeN. KoS. Nano-food packaging: An overview of market, migration research, and safety regulations.J. Food Sci.2015805R910R92310.1111/1750‑3841.1286125881665
    [Google Scholar]
  33. MahajanK.D. FanQ. DorcénaJ. RuanG. WinterJ.O. Magnetic quantum dots in biotechnology - synthesis and applications.Biotechnol. J.20138121424143410.1002/biot.20130003824105975
    [Google Scholar]
  34. XiongJ. ZhangH. QinL. ZhangS. CaoJ. JiangH. Magnetic fluorescent quantum dots nanocomposites in food contaminants analysis: Current challenges and opportunities.Int. J. Mol. Sci.2022238408810.3390/ijms2308408835456904
    [Google Scholar]
  35. PandeyP. ChellappanD.K. TambuwalaM.M. BakshiH.A. DuaK. DurejaH. Central composite designed formulation, characterization and in vitro cytotoxic effect of erlotinib loaded chitosan nanoparticulate system.Int. J. Biol. Macromol.201914159661010.1016/j.ijbiomac.2019.09.02331494160
    [Google Scholar]
  36. PandeyP. DurejaH. Introduction to cancer.Nanoparticles for the Delivery of Anticancer Agents. DurejaH. GermanyLAP LAMBERT Academic Publishing2016118
    [Google Scholar]
  37. AbuadasF.H. AlsharariA.F. AbuadasM.H. Predictors of colorectal cancer screening among average and high-risk Saudis population.J. Pers. Med.202212566267310.3390/jpm1205066235629085
    [Google Scholar]
  38. PurohitD. PandeyP. Role of erlotinib in influencing the quality of life of cancer patients: An overview.Clin. Cancer Drugs2021811910.2174/2212697X07999200820162006
    [Google Scholar]
  39. PandeyP. DuaK. DurejaH. Erlotinib loaded chitosan nanoparticles: Formulation, physicochemical characterization and cytotoxic potential.Int. J. Biol. Macromol.20191391304131610.1016/j.ijbiomac.2019.08.08431404602
    [Google Scholar]
  40. SamanH. RazaS.S. UddinS. RasulK. Inducing angiogenesis, a key step in cancer vascularization, and treatment approaches.Cancers2020125117210.3390/cancers1205117232384792
    [Google Scholar]
  41. BloomD.E. CadaretteD. Infectious disease threats in the twenty-first century: Strengthening the global response.Front. Immunol.20191054910.3389/fimmu.2019.0054930984169
    [Google Scholar]
  42. ThunM.J. DeLanceyJ.O. CenterM.M. JemalA. WardE.M. The global burden of cancer: Priorities for prevention.Carcinogenesis201031110011010.1093/carcin/bgp26319934210
    [Google Scholar]
  43. RileyW.J. Health disparities: Gaps in access, quality and affordability of medical care.Trans. Am. Clin. Climatol. Assoc.201212316717223303983
    [Google Scholar]
  44. IacobS.A. IacobD.G. JuguleteG. Improving the adherence to antiretroviral therapy, a difficult but essential task for a successful HIV treatment-clinical points of view and practical considerations.Front. Pharmacol.2017883110.3389/fphar.2017.0083129218008
    [Google Scholar]
  45. AyandipoO. WoneI. KenuE. FasehunL.K. AyandipoO. GayeF. OjoA. AyoolaY. OmogiJ. LakewD. ThiamS. Cancer ecosystem assessment in West Africa: health systems gaps to prevent and control cancers in three countries: Ghana, Nigeria and Senegal.Pan Afr. Med. J.2020359010.11604/pamj.2020.35.90.1851632636988
    [Google Scholar]
  46. TufailM. Genome editing: An essential technology for cancer treatment.Medicine in Omics2022410001510.1016/j.meomic.2022.100015
    [Google Scholar]
  47. StrattonMR CampbellPJ FutrealPA The cancer genome.Nature2009458723971924
    [Google Scholar]
  48. DasS.K. MenezesM.E. BhatiaS. WangX.Y. EmdadL. SarkarD. FisherP.B. Gene therapies for cancer: Strategies, challenges and successes.J. Cell. Physiol.2015230225927110.1002/jcp.2479125196387
    [Google Scholar]
  49. RivlinN. BroshR. OrenM. RotterV. Mutations in the p53 tumor suppressor gene: Important milestones at the various steps of tumorigenesis.Genes Cancer20112446647410.1177/194760191140888921779514
    [Google Scholar]
  50. WeiZ. LiuX. ChengC. YuW. YiP. Metabolism of amino acids in cancer.Front. Cell Dev. Biol.2021860383710.3389/fcell.2020.60383733511116
    [Google Scholar]
  51. LieuE.L. NguyenT. RhyneS. KimJ. Amino acids in cancer.Exp. Mol. Med.2020521153010.1038/s12276‑020‑0375‑331980738
    [Google Scholar]
  52. CarboneA. Cancer classification at the crossroads.Cancers202012498010.3390/cancers1204098032326638
    [Google Scholar]
  53. Dela CruzC.S. TanoueL.T. MatthayR.A. Lung cancer: Epidemiology, etiology, and prevention.Clin. Chest Med.201132460564410.1016/j.ccm.2011.09.00122054876
    [Google Scholar]
  54. Vogeltanz-HolmN. SchwartzG.G. Radon and lung cancer: What does the public really know?J. Environ. Radioact.2018192263110.1016/j.jenvrad.2018.05.01729883874
    [Google Scholar]
  55. BartaJ.A. PowellC.A. WisniveskyJ.P. Global epidemiology lung cancer.Ann. Glob. Health2019851810.5334/aogh.241930741509
    [Google Scholar]
  56. MattiuzziC. LippiG. Current cancer epidemiology.J. Epidemiol. Glob. Health20199421722210.2991/jegh.k.191008.00131854162
    [Google Scholar]
  57. de GrootP.M. WuC.C. CarterB.W. MundenR.F. The epidemiology of lung cancer.Transl. Lung Cancer Res.20187322023310.21037/tlcr.2018.05.0630050761
    [Google Scholar]
  58. NorthC.M. ChristianiD.C. Women and lung cancer: What is new?Semin. Thorac. Cardiovasc. Surg.2013252879410.1053/j.semtcvs.2013.05.00224216523
    [Google Scholar]
  59. WongM.C.S. LaoX.Q. HoK.F. GogginsW.B. TseS.L.A. Incidence and mortality of lung cancer: Global trends and association with socioeconomic status.Sci. Rep.2017711430010.1038/s41598‑017‑14513‑729085026
    [Google Scholar]
  60. LubuzoB. GinindzaT. HlongwanaK. The barriers to initiating lung cancer care in low-and middle-income countries.Pan Afr. Med. J.2020353810.11604/pamj.2020.35.38.1733332499854
    [Google Scholar]
  61. GhoseS. SardarA. ShivaS. MullanB.E. DattaS.S. Perception of tobacco use in young adults in urban India: A qualitative exploration with relevant health policy analysis.Ecancermedicalscience20191391510.3332/ecancer.2019.91531123498
    [Google Scholar]
  62. FurrukhM. Tobacco smoking and lung cancer : Perception changing facts.Sultan Qaboos Univ. Med. J.201313334535810.12816/000325523984018
    [Google Scholar]
  63. Inoue-ChoiM. LiaoL.M. Reyes-GuzmanC. HartgeP. CaporasoN. FreedmanN.D. Association of long-term, low-intensity smoking with all-cause and cause-specific mortality in the national institutes of health-AARP diet and health study.JAMA Intern. Med.20171771879510.1001/jamainternmed.2016.751127918784
    [Google Scholar]
  64. KenfieldS.A. StampferM.J. RosnerB.A. ColditzG.A. Smoking and smoking cessation in relation to mortality in women.JAMA2008299172037204710.1001/jama.299.17.203718460664
    [Google Scholar]
  65. KimC.H. LeeY.C.A. HungR.J. McNallanS.R. CoteM.L. LimW.Y. ChangS.C. KimJ.H. UgoliniD. ChenY. LiloglouT. AndrewA.S. OnegaT. DuellE.J. FieldJ.K. LazarusP. Le MarchandL. NeriM. VineisP. KiyoharaC. HongY.C. MorgensternH. MatsuoK. TajimaK. ChristianiD.C. McLaughlinJ.R. BenckoV. HolcatovaI. BoffettaP. BrennanP. FabianovaE. ForetovaL. JanoutV. LissowskaJ. MatesD. RudnaiP. Szeszenia-DabrowskaN. MukeriaA. ZaridzeD. SeowA. SchwartzA.G. YangP. ZhangZ.F. Exposure to secondhand tobacco smoke and lung cancer by histological type: A pooled analysis of the International Lung Cancer Consortium (ILCCO).Int. J. Cancer201413581918193010.1002/ijc.2883524615328
    [Google Scholar]
  66. SunR. MendezD. WarnerK.E. Use of electronic cigarettes among cannabis-naive adolescents and its association with future cannabis use.JAMA Netw. Open202257e222327710.1001/jamanetworkopen.2022.2327735867059
    [Google Scholar]
  67. NgamwongY. TangamornsuksanW. LohitnavyO. ChaiyakunaprukN. ScholfieldC.N. ReisfeldB. LohitnavyM. Additive synergism between asbestos and smoking in lung cancer risk: A systematic review and meta-analysis.PLoS One2015108e013579810.1371/journal.pone.013579826274395
    [Google Scholar]
  68. ShankarA. DubeyA. SainiD. SinghM. PrasadC.P. RoyS. BharatiS.J. RinkiM. SinghN. SethT. KhannaM. SethiN. KumarS. SirohiB. MohanA. GuleriaR. RathG.K. Environmental and occupational determinants of lung cancer.Transl. Lung Cancer Res.20198S1S31S4910.21037/tlcr.2019.03.0531211104
    [Google Scholar]
  69. JiangX.Q. MeiX.D. FengD. Air pollution and chronic airway diseases: What should people know and do?J. Thorac. Dis.201681E31E4026904251
    [Google Scholar]
  70. MuL. LiuL. NiuR. ZhaoB. ShiJ. LiY. SwansonM. ScheiderW. SuJ. ChangS.C. YuS. ZhangZ.F. Indoor air pollution and risk of lung cancer among Chinese female non-smokers.Cancer Causes Control201324343945010.1007/s10552‑012‑0130‑823314675
    [Google Scholar]
  71. SutherlandK.D. BernsA. Cell of origin of lung cancer.Mol. Oncol.20104539740310.1016/j.molonc.2010.05.00220594926
    [Google Scholar]
  72. ChenZ. FillmoreC.M. HammermanP.S. KimC.F. WongK.K. Non-small-cell lung cancers: A heterogeneous set of diseases.Nat. Rev. Cancer201414853554610.1038/nrc377525056707
    [Google Scholar]
  73. YuK.H. WangF. BerryG.J. RéC. AltmanR.B. SnyderM. KohaneI.S. Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks.J. Am. Med. Inform. Assoc.202027575776910.1093/jamia/ocz23032364237
    [Google Scholar]
  74. ChanB.A. HughesB.G. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future.Transl. Lung Cancer Res.201541365425806345
    [Google Scholar]
  75. Blandin KnightS. CrosbieP.A. BalataH. ChudziakJ. HussellT. DiveC. Progress and prospects of early detection in lung cancer.Open Biol.20177917007010.1098/rsob.17007028878044
    [Google Scholar]
  76. RazD.J. ZellJ.A. OuS.H.I. GandaraD.R. Anton-CulverH. JablonsD.M. Natural history of stage I non-small cell lung cancer: Implications for early detection.Chest2007132119319910.1378/chest.06‑309617505036
    [Google Scholar]
  77. MolinaJ.R. YangP. CassiviS.D. SchildS.E. AdjeiA.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship.Mayo Clin. Proc.200883558459410.1016/S0025‑6196(11)60735‑018452692
    [Google Scholar]
  78. AikenW.D. ChinW. Surgical access for radical retropubic prostatectomy in the phenotypically narrow and steep black male’s pelvis is exacerbated by a posterior pubic symphyseal protuberance: A case report.Int. J. Surg. Case Rep.201513889010.1016/j.ijscr.2015.06.01626162531
    [Google Scholar]
  79. MendenhallW.M. HinermanR.W. AmdurR.J. MalyapaR.S. LansfordC.D. WerningJ.W. VillaretD.B. Postoperative radiotherapy for squamous cell carcinoma of the head and neck.Clin. Med. Res.20064320020810.3121/cmr.4.3.20016988100
    [Google Scholar]
  80. Flores-BalcázarC.H. Flores-LunaL. Villarreal-GarzaC. Mota-GarcíaA. Bargalló-RochaE. Impact of delayed adjuvant radiotherapy in the survival of women with breast cancer.Cureus2018107e307110.7759/cureus.307130510860
    [Google Scholar]
  81. ZhangC. LiC. ShangX. LinJ. WangH. Surgery as a potential treatment option for patients with stage iii small-cell lung cancer: A propensity score matching analysis.Front. Oncol.20199133910.3389/fonc.2019.0133931850223
    [Google Scholar]
  82. ZhangQ. ShaoL. TianJ. LiuR. GengY. LiaoY. LuoH. GeL. FengS. WangX. YangZ. Stereotactic body radiation therapy or surgery for stage I–II non-small cell lung cancer treatment?-outcomes of a meta-analysis.Transl. Cancer Res.2019841381139410.21037/tcr.2019.07.4135116881
    [Google Scholar]
  83. BordeianuG. FilipN. CernomazA. VeliceasaB. HurjuiL.L. PinzariuA.C. PerteaM. ClimA. MarincaM.V. SerbanI.L. The usefulness of nanotechnology in improving the prognosis of lung cancer.Biomedicines202311370510.3390/biomedicines1103070536979684
    [Google Scholar]
  84. DuanY. ShenC. ZhangY. LuoY. Advanced diagnostic and therapeutic strategies in nanotechnology for lung cancer.Front. Oncol.202212103100010.3389/fonc.2022.103100036568152
    [Google Scholar]
  85. SharmaA. ShambhwaniD. PandeyS. SinghJ. LalhlenmawiaH. KumarasamyM. SinghS.K. ChellappanD.K. GuptaG. PrasherP. DuaK. KumarD. Advances in lung cancer treatment using nanomedicines.ACS Omega202381104110.1021/acsomega.2c0407836643475
    [Google Scholar]
  86. TangS. QinC. HuH. LiuT. HeY. GuoH. YanH. ZhangJ. TangS. ZhouH. Immune checkpoint inhibitors in non-small cell lung cancer: Progress, challenges, and prospects.Cells202211332010.3390/cells1103032035159131
    [Google Scholar]
  87. EzhilarasanD. LakshmiT. MallineniS.K. Nano-based targeted drug delivery for lung cancer: Therapeutic avenues and challenges.Nanomedicine202217241855186910.2217/nnm‑2021‑036435311343
    [Google Scholar]
  88. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.2010721296855
    [Google Scholar]
  89. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.2170835020204
    [Google Scholar]
  90. FerlayJ ColombetM SoerjomataramI ParkinDM PiñerosM ZnaorA BrayF Cancer statistics for the year 2020: An overview.Int J Cancer.2020
    [Google Scholar]
  91. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  92. WeberB. LukeN.D. PayetteA.M. ShaabanH. Lung Cancer Presenting as upper extremity musculoskeletal pain: A case report.Cureus2022149e2870610.7759/cureus.2870636204042
    [Google Scholar]
  93. InamuraK. Lung Cancer: Understanding its molecular pathology and the 2015 WHO classification.Front. Oncol.2017719310.3389/fonc.2017.0019328894699
    [Google Scholar]
  94. ZappaC. MousaS.A. Non-small cell lung cancer: current treatment and future advances.Transl. Lung Cancer Res.20165328830010.21037/tlcr.2016.06.0727413711
    [Google Scholar]
  95. CorbettV. ArnoldS. AnthonyL. ChauhanA. Management of large cell neuroendocrine carcinoma.Front. Oncol.20211165316210.3389/fonc.2021.65316234513663
    [Google Scholar]
  96. WuG. WangF. LiK. LiS. ZhaoC. FanC. WangJ. Significance of TP53 mutation in bladder cancer disease progression and drug selection.PeerJ20197e826110.7717/peerj.826131871844
    [Google Scholar]
  97. AlbergA.J. BrockM.V. FordJ.G. SametJ.M. SpivackS.D. Epidemiology of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines.Chest20131435 Se1Se29S
    [Google Scholar]
  98. KyrouI. TsigosC. MavrogianniC. CardonG. Van StappenV. LatommeJ. KiveläJ. WikströmK. TsochevK. NanasiA. SemanovaC. Mateo-GallegoR. Lamiquiz-MoneoI. DafoulasG. TimpelP. SchwarzP.E.H. IotovaV. TankovaT. MakrilakisK. ManiosY. Sociodemographic and lifestyle-related risk factors for identifying vulnerable groups for type 2 diabetes: A narrative review with emphasis on data from Europe.BMC Endocr. Disord.202020S113410.1186/s12902‑019‑0463‑332859203
    [Google Scholar]
  99. KhazaeiZ. GoodarziE. SohrabivafaM. NaemiH. MansoriK. Association between the incidence and mortality rates for corpus uteri cancer and human development index (HDI): A global ecological study.Obstet. Gynecol. Sci.202063214114910.5468/ogs.2020.63.2.14132206653
    [Google Scholar]
  100. BethuneG. BethuneD. RidgwayN. XuZ. Epidermal growth factor receptor (EGFR) in lung cancer: An overview and update.J. Thorac. Dis.201021485122263017
    [Google Scholar]
  101. HarrisonP.T. VyseS. HuangP.H. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer.Semin. Cancer Biol.20206116717910.1016/j.semcancer.2019.09.01531562956
    [Google Scholar]
  102. CooperW.A. LamD.C. O’TooleS.A. MinnaJ.D. Molecular biology of lung cancer.J. Thorac. Dis.20135Suppl 5S479S49024163741
    [Google Scholar]
  103. LiuT.C. JinX. WangY. WangK. Role of epidermal growth factor receptor in lung cancer and targeted therapies.Am. J. Cancer Res.20177218720228337370
    [Google Scholar]
  104. LiuS. HuC. LiM. AnJ. ZhouW. GuoJ. XiaoY. Estrogen receptor beta promotes lung cancer invasion via increasing CXCR4 expression.Cell Death Dis.20221317010.1038/s41419‑022‑04514‑435064116
    [Google Scholar]
  105. SiegfriedJ.M. Sex and gender differences in lung cancer and chronic obstructive lung disease.Endocrinology20221632bqab25410.1210/endocr/bqab25434927202
    [Google Scholar]
  106. ChenP. LiB. Ou-YangL. Role of estrogen receptors in health and disease.Front. Endocrinol.20221383900510.3389/fendo.2022.83900536060947
    [Google Scholar]
  107. TsaiL.L. ChuN.Q. BlessingW.A. MoonsamyP. ColsonY.L. Lung cancer in women.Ann. Thorac. Surg.202211451965197310.1016/j.athoracsur.2021.09.06034742731
    [Google Scholar]
  108. OrzołekI. SobierajJ. Domagała-KulawikJ. Estrogens, cancer and immunity.Cancers2022149226510.3390/cancers1409226535565393
    [Google Scholar]
  109. BaskarR. LeeK.A. YeoR. YeohK.W. Cancer and radiation therapy: current advances and future directions.Int. J. Med. Sci.20129319319910.7150/ijms.363522408567
    [Google Scholar]
  110. LackeyA. DoningtonJ. Surgical management of lung cancer.Semin. Intervent. Radiol.201330213314010.1055/s‑0033‑134295424436529
    [Google Scholar]
  111. SuhW.N. KongK.A. HanY. KimS.J. LeeS.H. RyuY.J. LeeJ.H. ShimS.S. KimY. ChangJ.H. Risk factors associated with treatment refusal in lung cancer.Thorac. Cancer20178544345010.1111/1759‑7714.1246128627788
    [Google Scholar]
  112. BaskarR. DaiJ. WenlongN. YeoR. YeohK.W. Biological response of cancer cells to radiation treatment.Front. Mol. Biosci.201412410.3389/fmolb.2014.0002425988165
    [Google Scholar]
  113. KaliberovS.A. BuchsbaumD.J. Chapter seven--Cancer treatment with gene therapy and radiation therapy.Adv. Cancer Res.201211522126310.1016/B978‑0‑12‑398342‑8.00007‑023021246
    [Google Scholar]
  114. NieS. YuW. HuX. XuH. WenR. JiaoW. TianK. Positron emission tomography/computed tomography and endobronchial ultrasound-guided transbronchial needle aspiration to evaluate the status of N2 in preoperative non-small cell lung cancer: A diagnostic test.J. Thorac. Dis.20221462122213010.21037/jtd‑22‑52135813743
    [Google Scholar]
  115. BachP.B. MirkinJ.N. OliverT.K. AzzoliC.G. BerryD.A. BrawleyO.W. ByersT. ColditzG.A. GouldM.K. JettJ.R. SabichiA.L. Smith-BindmanR. WoodD.E. QaseemA. DetterbeckF.C. Benefits and harms of CT screening for lung cancer: A systematic review.JAMA2012307222418242910.1001/jama.2012.552122610500
    [Google Scholar]
  116. HuH. ChenY. TanS. WuS. HuangY. FuS. LuoF. HeJ. The research progress of anti angiogenictherapy, immune therapy and tumor microenvironment.Front. Immunol.20221380284610.3389/fimmu.2022.80284635281003
    [Google Scholar]
  117. MithoowaniH. FebbraroM. Non-small-cell lung cancer in 2022: A review for general practitioners in oncology.Curr. Oncol.20222931828183910.3390/curroncol2903015035323350
    [Google Scholar]
  118. WuL. ZhouW.B. ZhouJ. WeiY. WangH.M. LiuX.D. ChenX.C. WangW. YeL. YaoL. ChenQ.H. TangZ.G. Circulating exosomal microRNAs as novel potential detection biomarkers in pancreatic cancer.Oncol. Lett.20202021432144010.3892/ol.2020.1169132724386
    [Google Scholar]
  119. KoguchiD. MatsumotoK. ShibaI. HaranoT. OkudaS. MoriK. HiranoS. KitajimaK. IkedaM. IwamuraM. Diagnostic potential of circulating tumor cells, urinary MicroRNA, and urinary cell-free DNA for bladder cancer: A review.Int. J. Mol. Sci.20222316914810.3390/ijms2316914836012417
    [Google Scholar]
  120. LiuJ. ZhongY. PengS. ZhouX. GanX. Efficacy and safety of PD1/PDL1 blockades versus docetaxel in patients with pretreated advanced non-small-cell lung cancer: A meta-analysis.OncoTargets Ther.2018118623863210.2147/OTT.S18141330584321
    [Google Scholar]
  121. OguriT. SasadaS. ShimadaT. IshiokaK. TakahashiS. AdachiT. NakamuraM. Homeless patients with lung cancer in metropolitan Tokyo.Intern. Med.202160203221322410.2169/internalmedicine.6833‑2033896864
    [Google Scholar]
  122. JonesG.S. BaldwinD.R. Recent advances in the management of lung cancer.Clin. Med.201818Suppl. 2s41s4610.7861/clinmedicine.18‑2‑s4129700092
    [Google Scholar]
  123. EsfahaniK. RoudaiaL. BuhlaigaN. Del RinconS.V. PapnejaN. MillerW.H.Jr A review of cancer immunotherapy: From the past, to the present, to the future.Curr. Oncol.20202712879710.3747/co.27.522332368178
    [Google Scholar]
  124. AgostinisP. BergK. CengelK.A. FosterT.H. GirottiA.W. GollnickS.O. HahnS.M. HamblinM.R. JuzenieneA. KesselD. KorbelikM. MoanJ. MrozP. NowisD. PietteJ. WilsonB.C. GolabJ. Photodynamic therapy of cancer: An update.CA Cancer J. Clin.201161425028110.3322/caac.2011421617154
    [Google Scholar]
  125. HousmanG. BylerS. HeerbothS. LapinskaK. LongacreM. SnyderN. SarkarS. Drug resistance in cancer: An overview.Cancers2014631769179210.3390/cancers603176925198391
    [Google Scholar]
  126. SenapatiS. MahantaA.K. KumarS. MaitiP. Controlled drug delivery vehicles for cancer treatment and their performance.Signal Transduct. Target. Ther.201831710.1038/s41392‑017‑0004‑329560283
    [Google Scholar]
  127. Kowalska-KrochmalB. Dudek-WicherR. The minimum inhibitory concentration of antibiotics: Methods, Interpretation, Clinical Relevance.Pathogens202110216510.3390/pathogens1002016533557078
    [Google Scholar]
  128. LiuC.X. YiX.L. FanH.R. WuW. ZhangX. XiaoX.F. HeX. Effects of drug transporters on pharmacological responses and safety.Curr. Drug Metab.201516973275210.2174/13892002160915120111262926630905
    [Google Scholar]
  129. AlqahtaniM.S. KaziM. AlsenaidyM.A. AhmadM.Z. Advances in oral drug delivery.Front. Pharmacol.20211261841110.3389/fphar.2021.61841133679401
    [Google Scholar]
  130. DinF. AmanW. UllahI. QureshiO.S. MustaphaO. ShafiqueS. ZebA. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S14631529042776
    [Google Scholar]
  131. XiaW. TaoZ. ZhuB. ZhangW. LiuC. ChenS. SongM. Targeted delivery of drugs and genes using polymer nanocarriersfor cancer therapy.Int. J. Mol. Sci.20212217911810.3390/ijms2217911834502028
    [Google Scholar]
  132. MinochaN. KumarV. Nanostructure system: Liposome – A bioactive carrier in drug delivery systems.Mater. Today Proc.20226961461910.1016/j.matpr.2022.09.494
    [Google Scholar]
  133. KumarV. MinochaN. GargV. DurejaH. Nanostructured materials used in drug delivery.Mater. Today Proc.202120269174180
    [Google Scholar]
  134. EdisZ. WangJ. WaqasM.K. IjazM. IjazM. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives.Int. J. Nanomedicine2021161313133010.2147/IJN.S28944333628022
    [Google Scholar]
  135. DoroudianM. AzhdariM.H. GoodarziN. O’SullivanD. DonnellyS.C. Smart nanotherapeutics and lung cancer.Pharmaceutics20211311197210.3390/pharmaceutics1311197234834387
    [Google Scholar]
  136. BeroisN. PittiniA. OsinagaE. Targeting tumor glycans for cancer therapy: Successes, limitations, and perspectives.Cancers202214364510.3390/cancers1403064535158915
    [Google Scholar]
  137. AiL. ChenJ. YanH. HeQ. LuoP. XuZ. YangX. Research status and outlook of PD-1/PD-L1 inhibitors for cancer therapy.Drug Des. Devel. Ther.2020143625364910.2147/DDDT.S26743332982171
    [Google Scholar]
  138. ChevallierM. BorgeaudM. AddeoA. FriedlaenderA. Oncogenic driver mutations in non-small cell lung cancer: Past, present and future.World J. Clin. Oncol.202112421723710.5306/wjco.v12.i4.21733959476
    [Google Scholar]
  139. WangL. LinY. CaiQ. LongH. ZhangY. RongT. MaG. LiangY. Detection of rearrangement of anaplastic lymphoma kinase (ALK) and mutation of epidermal growth factor receptor (EGFR) in primary pulmonary lymphoepithelioma-like carcinoma.J. Thorac. Dis.2015791556156226543602
    [Google Scholar]
  140. Santoni-RugiuE. MelchiorL.C. UrbanskaE.M. JakobsenJ.N. StrickerK. GrauslundM. SørensenJ.B. Intrinsic resistance to EGFR-tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: Differences and similarities with acquired resistance.Cancers201911792310.3390/cancers1107092331266248
    [Google Scholar]
  141. OehlK. VrugtB. OpitzI. MeerangM. Heterogeneity in malignant pleural mesothelioma.Int. J. Mol. Sci.2018196160310.3390/ijms1906160329848954
    [Google Scholar]
  142. GreavesM. MaleyC.C. Clonal evolution in cancer.Nature2012481738130631310.1038/nature1076222258609
    [Google Scholar]
  143. Global Cancer Facts & FiguresAvailable from:https://www.cancer.org/research/cancer-facts-statistics/global.html (Accessed on 20th January 2023).
  144. RathodS. PinnintiN. IrfanM. GorczynskiP. RathodP. GegaL. NaeemF. Mental health service provision in low- and middle-income countries.Health Serv. Insights201710117863291769435010.1177/117863291769435028469456
    [Google Scholar]
  145. PrabhakaranD. JeemonP. SharmaM. RothG.A. JohnsonC. HarikrishnanS. GuptaR. PandianJ.D. NaikN. RoyA. DhaliwalR.S. XavierD. KumarR.K. TandonN. MathurP. ShuklaD.K. MehrotraR. VenugopalK. KumarG.A. VargheseC.M. FurtadoM. MuraleedharanP. AbdulkaderR.S. AlamT. AnjanaR.M. AroraM. BhansaliA. BhardwajD. BhatiaE. ChakmaJ.K. ChaturvediP. DuttaE. GlennS. GuptaP.C. JohnsonS.C. KaurT. KinraS. KrishnanA. KutzM. MathurM.R. MohanV. MukhopadhyayS. NguyenM. OdellC.M. OommenA.M. PatiS. PletcherM. PrasadK. RaoP.V. ShekharC. SinhaD.N. SylajaP.N. ThakurJ.S. ThankappanK.R. ThomasN. YadgirS. YajnikC.S. ZachariahG. ZipkinB. LimS.S. NaghaviM. DandonaR. VosT. MurrayC.J.L. ReddyK.S. SwaminathanS. DandonaL. The changing patterns of cardiovascular diseases and their risk factors in the states of India: The Global Burden of Disease Study 1990–2016.Lancet Glob. Health2018612e1339e135110.1016/S2214‑109X(18)30407‑830219317
    [Google Scholar]
  146. Global Cancer Facts & Figures 4th EditionAvailable from:https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/global-cancer-facts-and-figures/global-cancer-facts-and-figures-4th-edition.pdf (Accessed on 21st January 2023).
  147. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  148. Chaitanya ThandraK. BarsoukA. SaginalaK. Sukumar AluruJ. BarsoukA. Epidemiology of lung cancer.Contemp. Oncol.2021251455210.5114/wo.2021.10382933911981
    [Google Scholar]
  149. Lung Cancer StatisticsAvailable from:https://www.lungevity.org/for-supporters-advocates/lung-cancer-awareness/lung-cancer-statistics (Accessed on 21st January 2023).
  150. MohanA. GargA. GuptaA. SahuS. ChoudhariC. VashisthaV. AnsariA. PandeyR. BhallaA. MadanK. HaddaV. IyerH. JainD. KumarR. MittalS. TiwariP. PandeyR. GuleriaR. Clinical profile of lung cancer in North India: A 10-year analysis of 1862 patients from a tertiary care center.Lung India202037319019710.4103/lungindia.lungindia_333_1932367839
    [Google Scholar]
  151. KulothunganV. SathishkumarK. LeburuS. RamamoorthyT. StephenS. BasavarajappaD. TomyN. MohanR. MenonG.R. MathurP. Burden of cancers in India - estimates of cancer crude incidence, YLLs, YLDs and DALYs for 2021 and 2025 based on National Cancer Registry Program.BMC Cancer202222152710.1186/s12885‑022‑09578‑135546232
    [Google Scholar]
  152. SinhaS. KunduC.N. Cancer and COVID-19: Why are cancer patients more susceptible to COVID-19?Med. Oncol.202138910110.1007/s12032‑021‑01553‑334302557
    [Google Scholar]
  153. PassaroA. BestvinaC. Velez VelezM. GarassinoM.C. GaronE. PetersS. Severity of COVID-19 in patients with lung cancer: Evidence and challenges.J. Immunother. Cancer202193e00226610.1136/jitc‑2020‑00226633737345
    [Google Scholar]
  154. NIH study illuminates origins of lung cancer in never smokersAvailable from:https://www.cancer.gov/news-events/press-releases/2021/lung-cancer-never-smokers (Accessed on 21st January 2023).
  155. Back Back Air pollution major cause of lung cancer in India, say health expertsAvailable from:https://www.livemint.com/news/india/air-pollution-major-cause-of-lung-cancer-in-india-say-health-experts-11669890766550.html (Accessed on 21st January 2023).
  156. EbrahimiH. AryanZ. Saeedi MoghaddamS. BisignanoC. RezaeiS. PishgarF. ForceL.M. AbolhassaniH. Abu-GharbiehE. AdvaniS.M. AhmadS. AlahdabF. AlipourV. AljunidS.M. AminiS. AncuceanuR. AndreiC.L. AndreiT. ArablooJ. Arab-ZozaniM. AsaadM. AusloosM. AwedewA.F. BaigA.A. BijaniA. BiondiA. BjørgeT. BraithwaiteD. BrauerM. BrennerH. Bustamante-TeixeiraM.T. ButtZ.A. CarrerasG. Castañeda-OrjuelaC.A. Chimed-OchirO. ChuD-T. ChungM.T. CohenA.J. ComptonK. DagnewB. DaiX. DandonaL. DandonaR. DeanF.E. Derbew MollaM. DestaA.A. DriscollT.R. FaraonE.J.A. FarisP.S. FilipI. FischerF. FuW. GallusS. GebregiorgisB.G. GhashghaeeA. GolechhaM. GonfaK.B. GoriniG. GoulartB.N.G. GuerraM.R. Hafezi-NejadN. HamidiS. HayS.I. HerteliuC. HoangC.L. HoritaN. HostiucM. HousehM. IavicoliI. IlicI.M. IlicM.D. IrvaniS.S.N. IslamiF. KamathA. KaurS. KhalilovR. KhanE.A. KocarnikJ.M. Kucuk BicerB. KumarG.A. La VecchiaC. LanQ. LandiresI. LasradoS. LauriolaP. LeongE. LiB. LimS.S. LopezA.D. MajeedA. MalekzadehR. ManafiN. MenezesR.G. MiazgowskiT. MisraS. Mohammadian-HafshejaniA. MohammedS. MokdadA.H. MolassiotisA. MonastaL. MoradzadehR. MorawskaL. Morgado-da-CostaJ. MorrisonS.D. NaimzadaM.D. NazariJ. NguyenC.T. NguyenH.L.T. NikbakhshR. Nuñez-SamudioV. OlagunjuA.T. OtstavnovN. OtstavnovS.S. P AM. PanaA. ParkE-K. PottooF.H. PourshamsA. RabieeM. RabieeN. RadfarA. RafieiA. RahmanM.A. RamP. RathiP. RawafD.L. RawafS. RezaeiN. RobertsN.L.S. RobertsT.J. RonfaniL. RoshandelG. SamyA.M. Santric-MilicevicM.M. SathianB. SchneiderI.J.C. SekerijaM. SepanlouS.G. ShaF. ShaikhM.A. SharmaR. SheikhA. SheikhbahaeiS. Siddappa MalleshappaS.K. SinghJ.A. SitasF. SpurlockE.E. SteiropoulosP. Tabarés-SeisdedosR. TadesseE.G. TakahashiK. TrainiE. TranB.X. TranK.B. TravillianR.S. VacanteM. VilleneuveP.J. ViolanteF.S. YousefiZ. YuceD. ZadnikV. ZamanianM. ZendehdelK. ZhangJ. ZhangZ-J. FarzadfarF. MurrayC.J.L. NaghaviM. Global, regional, and national burden of respiratory tract cancers and associated risk factors from 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019.Lancet Respir. Med.2021991030104910.1016/S2213‑2600(21)00164‑834411511
    [Google Scholar]
  157. Available from:https://timesofindia.indiatimes.com/city/delhi/lung-cancer-rising-among-non-smokers-in-delhi-study/articleshow/70651391.cms (Accessed on 21st January 2023).
  158. NoronhaV. PinnintiR. PatilV.M. JoshiA. PrabhashK. Lung cancer in the Indian subcontinent.South Asian J. Cancer20165309510310.4103/2278‑330X.18757127606290
    [Google Scholar]
  159. VasudevanS. KrishnaV. MehtaA. Lung cancer in non-smokers: Clinicopathological and survival differences from smokers.Cureus20221412e3241710.7759/cureus.3241736644085
    [Google Scholar]
  160. YetisginA.A. CetinelS. ZuvinM. KosarA. KutluO. Therapeutic nanoparticles and their targeted delivery applications.Molecules2020259219310.3390/molecules2509219332397080
    [Google Scholar]
  161. NakhaeiP. MargianaR. BokovD.O. AbdelbassetW.K. Jadidi KouhbananiM.A. VarmaR.S. MarofiF. JarahianM. BeheshtkhooN. Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol.Front. Bioeng. Biotechnol.2021970588610.3389/fbioe.2021.70588634568298
    [Google Scholar]
  162. ParvathaneniV. KulkarniN.S. ShuklaS.K. FarralesP.T. KundaN.K. MuthA. GuptaV. Systematic development and optimization of inhalable pirfenidone liposomes for non-small cell lung cancer treatment.Pharmaceutics202012320610.3390/pharmaceutics1203020632121070
    [Google Scholar]
  163. LiY. ZhaoX. ZuY. HanX. GeY. WangW. YuX. A novel active targeting preparation, vinorelbine tartrate (VLBT) encapsulated by folate-conjugated bovine serum albumin (BSA) Nanoparticles: preparation, characterization and in vitro release study.Materials20125112403242210.3390/ma5112403
    [Google Scholar]
  164. KarpuzM. Silindir-GunayM. OzerA.Y. OzturkS.C. YanikH. TuncelM. AydinC. EsendagliG. Diagnostic and therapeutic evaluation of folate-targeted paclitaxel and vinorelbine encapsulating theranostic liposomes for non-small cell lung cancer.Eur. J. Pharm. Sci.202115610557610.1016/j.ejps.2020.10557632987115
    [Google Scholar]
  165. JinX. YangQ. CaiN. ZhangZ. A cocktail of betulinic acid, parthenolide, honokiol and ginsenoside Rh2 in liposome systems for lung cancer treatment.Nanomedicine2020151415410.2217/nnm‑2018‑047931868113
    [Google Scholar]
  166. Mohammadi-SamaniS. GhasemiyehP. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages.Res. Pharm. Sci.201813428830310.4103/1735‑5362.23515630065762
    [Google Scholar]
  167. Scioli MontotoS. MuracaG. RuizM.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects.Front. Mol. Biosci.2020758799710.3389/fmolb.2020.58799733195435
    [Google Scholar]
  168. MinochaN. SharmaN. VermaR. KaushikD. PandeyP. Solid lipid nanoparticles: Peculiar strategy to deliver bio-proactive molecules.Recent Pat. Nanotechnol.202317322824210.2174/187221051666622031714335135301957
    [Google Scholar]
  169. GaurP.K. MishraS. BajpaiM. MishraA. Enhanced oral bioavailability of efavirenz by solid lipid nanoparticles: In vitro drug release and pharmacokinetics studies.BioMed Res. Int.201420141910.1155/2014/36340424967360
    [Google Scholar]
  170. MinochaN. SharmaN. PandeyP. SainiS. Formulation and Evaluation of solid lipid nanoparticles of Wheatgrass (Triticum Aestivum) extract.Neuroquantology202220175157
    [Google Scholar]
  171. KhorsandiL. MansouriE. RashnoM. KaramiM.A. AshtariA. Myricetin loaded solid lipid nanoparticles upregulate MLKL and RIPK3 in human lung adenocarcinoma.Int. J. Pept. Res. Ther.202026289991010.1007/s10989‑019‑09895‑3
    [Google Scholar]
  172. SunW. SandersonP.E. ZhengW. Drug combination therapy increases successful drug repositioning.Drug Discov. Today20162171189119510.1016/j.drudis.2016.05.01527240777
    [Google Scholar]
  173. ChauhanI. YasirM. VermaM. SinghA.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery.Adv. Pharm. Bull.202010215016510.34172/apb.2020.02132373485
    [Google Scholar]
  174. NguyenV.H. ThuyN.V. VanT.V. DaoA.H. LeB-J. Nanostructured lipid carriers and their potential applications forversatile drug delivery via oral administration.Open Nano20228100064
    [Google Scholar]
  175. ShahS. DhawanV. HolmR. NagarsenkerM.S. PerrieY. Liposomes: Advancements and innovation in the manufacturing process.Adv. Drug Deliv. Rev.2020154-15510212210.1016/j.addr.2020.07.00232650041
    [Google Scholar]
  176. ElmowafyM. Al-SaneaM.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies.Saudi Pharm. J.2021299999101210.1016/j.jsps.2021.07.01534588846
    [Google Scholar]
  177. VartakR. SaraswatA. YangY. ChenZ.S. PatelK. Susceptibility of lung carcinoma cells to nanostructured lipid carrier of ARV-825, a BRD4 degrading proteolysis targeting chimera.Pharm. Res.202239112745275910.1007/s11095‑022‑03184‑335146591
    [Google Scholar]
  178. CaoC. WangQ. LiuY. Lung cancer combination therapy: Doxorubicin and β-elemene co-loaded, pH-sensitive nanostructured lipid carriers.Drug Des. Devel. Ther.2019131087109810.2147/DDDT.S19800331118562
    [Google Scholar]
  179. PandeyP. DurejaH. Recent patents on polymeric nanoparticles for cancer therapy.Recent Pat. Nanotechnol.201812215516910.2174/187221051266618032712064829589551
    [Google Scholar]
  180. ChopraH VermaR KaushikS ParasharJ MadanK BanoA BhardwajR PandeyP KumariB PurohitD KumarM BhatiaS RahmanMd Cyclodextrin-based arsenal for anti-cancer treatments.Crit Rev Ther Drug Carrier Syst2023402141
    [Google Scholar]
  181. MakadiaH.K. SiegelS.J. Poly Lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers2011331377139710.3390/polym303137722577513
    [Google Scholar]
  182. Eras-MuñozE. FarréA. SánchezA. FontX. GeaT. Microbial biosurfactants: A review of recent environmental applications.Bioengineered2022135123651239110.1080/21655979.2022.207462135674010
    [Google Scholar]
  183. ZhangX. DongY. ZengX. LiangX. LiX. TaoW. ChenH. JiangY. MeiL. FengS.S. The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment.Biomaterials20143561932194310.1016/j.biomaterials.2013.10.03424315578
    [Google Scholar]
  184. KharwadeR. MoreS. WarokarA. AgrawalP. MahajanN. Starburst pamam dendrimers: Synthetic approaches, surface modifications, and biomedical applications.Arab. J. Chem.20201376009603910.1016/j.arabjc.2020.05.002
    [Google Scholar]
  185. AlmuqbilR.M. HeyderR.S. BielskiE.R. DurymanovM. ReinekeJ.J. da RochaS.R.P. Dendrimer conjugation enhances tumor penetration and efficacy of doxorubicin in extracellular matrix-expressing 3D lung cancer models.Mol. Pharm.20201751648166210.1021/acs.molpharmaceut.0c0008332227969
    [Google Scholar]
  186. JanaszewskaA. LazniewskaJ. TrzepińskiP. MarcinkowskaM. Klajnert-MaculewiczB. Cytotoxicity of dendrimers.Biomolecules20199833010.3390/biom908033031374911
    [Google Scholar]
  187. ZhuY. LiuC. PangZ. Dendrimer-based drug delivery systems for brain targeting.Biomolecules201991279010.3390/biom912079031783573
    [Google Scholar]
  188. GhezziM. PescinaS. PadulaC. SantiP. Del FaveroE. CantùL. NicoliS. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J. Control. Release202133231233610.1016/j.jconrel.2021.02.03133652113
    [Google Scholar]
  189. DetheM.R. AP. AhmedH. AgrawalM. RoyU. AlexanderA. PCL-PEG copolymer based injectable thermosensitive hydrogels.J. Control. Release202234321723610.1016/j.jconrel.2022.01.03535090961
    [Google Scholar]
  190. RizwanullahM. AhmadM.Z. GhoneimM.M. AlshehriS. ImamS.S. MdS. AlhakamyN.A. JainK. AhmadJ. Receptor-mediated targeted delivery of surface-modified nanomedicine in breast cancer: Recent update and challenges.Pharmaceutics20211312203910.3390/pharmaceutics1312203934959321
    [Google Scholar]
  191. ChaiF. SunL. HeX. LiJ. LiuY. XiongF. GeL. WebsterT.J. ZhengC. Doxorubicin-loaded poly (lactic-co-glycolic acid) nanoparticles coated with chitosan/alginate by layer by layer technology for antitumor applications.Int. J. Nanomedicine2017121791180210.2147/IJN.S13040428424550
    [Google Scholar]
  192. ZhongT. LiuX. LiH. ZhangJ. Co-delivery of sorafenib and crizotinib encapsulated with polymeric nanoparticles for the treatment of in vivo lung cancer animal model.Drug Deliv.20212812108211810.1080/10717544.2021.197912934607478
    [Google Scholar]
  193. ChenY.F. WangY.H. LeiC.S. ChangouC.A. DavisM.E. YenY. Host immune response to anti-cancer camptothecin conjugated cyclodextrin-based polymers.J. Biomed. Sci.20192618510.1186/s12929‑019‑0583‑031647037
    [Google Scholar]
  194. ElbehairiS.E.I. AlfaifiM.Y. ShatiA.A. FahmyU.A. GorainB. MdS. Encapsulation of ellagic acid in di-block copolymeric micelle for non-small cell lung cancer therapy.Sci. Adv. Mater.2021131667210.1166/sam.2021.3874
    [Google Scholar]
  195. MasiiwaW.L. GadagaL.L. Intestinal permeability of artesunate-loaded solid lipid nanoparticles using the everted gut method.J. Drug Deliv.201820181910.1155/2018/302173829854465
    [Google Scholar]
  196. PandeyP. DurejaH. Erlotinib in non-small cell lung cancer: From a thought to necessity.Clin. Cancer Drugs201952879310.2174/2212697X06666190102110412
    [Google Scholar]
  197. PandeyP. PurohitD. ChellappanD.K. GuptaG. TambuwalaM. AljabaliA.A.A. SatijaS. DurejaH. Advancement in translational respiratory research using nanotechnology.Targeting chronic inflammatory lung diseases using advanced drug delivery systems. DuaK. HansbroP.M. WadhwaR. HaghiM. PontL.G. WilliamsK.A. United KingdomElsevier202021122510.1016/B978‑0‑12‑820658‑4.00010‑8
    [Google Scholar]
  198. ChenR. ManochakianR. JamesL. AzzouqaA.G. ShiH. ZhangY. ZhaoY. ZhouK. LouY. Emerging therapeutic agents for advanced non-small cell lung cancer.J. Hematol. Oncol.20201315810.1186/s13045‑020‑00881‑732448366
    [Google Scholar]
  199. Advances in Lung Cancer ResearchAvailable from:https://www.cancer.gov/types/lung/research (Accessed on 22nd January 2023).
  200. RawalS. PatelM. Bio-nanocarriers for lung cancer management: Befriending the Barriers.Nano-Micro Lett.202113114210.1007/s40820‑021‑00630‑634138386
    [Google Scholar]
  201. AlthubitiS.A. PaulS. MohantyR. MohantyS.N. AleneziF. PolatK. Ensemble learning framework with GLCM texture extraction for early detection of lung cancer on CT images.Comput. Math. Methods Med.2022202211410.1155/2022/273396535693266
    [Google Scholar]
  202. AbboshC. FrankellA.M. HarrisonT. KisistokJ. GarnettA. JohnsonL. VeeriahS. MoreauM. CheshA. ChaunzwaT.L. WeissJ. SchroederM.R. WardS. GrigoriadisK. ShahpurwallaA. LitchfieldK. PuttickC. BiswasD. KarasakiT. BlackJ.R.M. Martínez-RuizC. BakirM.A. PichO. WatkinsT.B.K. LimE.L. HuebnerA. MooreD.A. Godin-HeymannN. L’HernaultA. ByeH. OdellA. RobertsP. GomesF. PatelA.J. ManzanoE. HileyC.T. CareyN. RileyJ. CookD.E. HodgsonD. StetsonD. BarrettJ.C. KortleverR.M. EvanG.I. HackshawA. DaberR.D. ShawJ.A. AertsH.J.W.L. LiconA. StahlJ. Jamal-HanjaniM. LesterJ.F. BajajA. NakasA. Sodha-RamdeenA. AngK. TufailM. ChowdhryM.F. ScotlandM. BoylesR. RathinamS. WilsonC. MarroneD. DullooS. FennellD.A. MatharuG. PrimroseL. BoletiE. CheyneH. KhalilM. RichardsonS. CruickshankT. PriceG. KerrK.M. BenafifS. GilbertK. NaiduB. OsmanA. LacsonC. LangmanG. ShacklefordH. DjearamanM. KadiriS. MiddletonG. LeekA. HodgkinsonJ.D. TottenN. MonteroA. SmithE. FontaineE. GranatoF. DoranH. NovasioJ. RammohanK. JosephL. BishopP. ShahR. MossS. JoshiV. CrosbieP. BrownK. CarterM. ChaturvediA. PriestL. OliveiraP. LindsayC.R. BlackhallF.H. KrebsM.G. SummersY. ClipsonA. TugwoodJ. KerrA. RothwellD.G. KilgourE. DiveC. SchwarzR.F. KaufmannT.L. WilsonG.A. RosenthalR. Van LooP. SzallasiZ. SokacM. SalgadoR. DiossyM. DemeulemeesterJ. BunkumA. StewartA. MagnessA. RowanA. KaramaniA. TonchevaA. ChainB. CampbellB.B. CastignaniC. BaileyC. WeedenC.E. LeeC. RichardC. Naceur-LombardelliC. PearceD.R. KaragianniD. LeviD. HoxhaE. Larose CadieuxE. ColliverE. NyeE. GrönroosE. Gálvez-CancinoF. AthanasopoulouF. Gimeno-ValienteF. KassiotisG. StavrouG. MastrokalosG. ZhaiH. LoweH.L. MatosI. GoldmanJ. ReadingJ.L. HerreroJ. RaneJ.K. NicodJ. LamJ.M. HartleyJ.A. PeggsK.S. EnfieldK.S.S. SelvarajuK. TholK. NgK.W. ChenK. DijkstraK. ThakkarK. EnsellL. ShahM. VasquezM. LitovchenkoM. Werner SunderlandM. HillM.S. DietzenM. LeungM. EscuderoM. AngelovaM. TanićM. SivakumarM. KanuN. ChervovaO. LucasO. Al-SawafO. PrymasP. HobsonP. PawlikP. StoneR.K. BenthamR. HyndsR.E. VendraminR. SaghafiniaS. LópezS. GambleS. UngS.K.A. QuezadaS.A. VanlooS. ZaccariaS. HesseyS. BoeingS. BeckS. BolaS.K. DennerT. MarafiotiT. MourikisT.P. SpanswickV. BarbèV. LuW-T. HillW. LiuW.K. WuY. NaitoY. RamsdenZ. VeigaC. RoyleG. Collins-FeketeC-A. FraioliF. AshfordP. ClarkT. ForsterM.D. LeeS.M. BorgE. FalzonM. Papadatos-PastosD. WilsonJ. AhmadT. ProcterA.J. AhmedA. TaylorM.N. NairA. LawrenceD. PatriniD. NavaniN. ThakrarR.M. JanesS.M. Martinoni HoogenboomE. MonkF. HoldingJ.W. ChoudharyJ. BhakhriK. ScarciM. HaywardM. PanagiotopoulosN. GormanP. KhiroyaR. StephensR.C.M. WongY.N.S. BandulaS. SharpA. SmithS. GowerN. DhandaH.K. ChanK. PilottiC. LeslieR. GrapaA. ZhangH. AbdulJabbarK. PanX. YuanY. ChuterD. MacKenzieM. CheeS. AlzetaniA. CaveJ. ScarlettL. RichardsJ. IngramP. AustinS. LimE. De SousaP. JordanS. RiceA. RaubenheimerH. BhayaniH. AmbroseL. DevarajA. ChavanH. BegumS. BuderiS.I. KaniuD. MalimaM. BoothS. NicholsonA.G. FernandesN. ShahP. ProliC. HewishM. DansonS. ShackclothM.J. RobinsonL. RussellP. BlythK.G. DickC. Le QuesneJ. KirkA. AsifM. BilanciaR. KostoulasN. ThomasM. BirkbakN.J. McGranahanN. SwantonC. Tracking early lung cancer metastatic dissemination in TRACERx using ctDNA.Nature2023616795755356210.1038/s41586‑023‑05776‑437055640
    [Google Scholar]
  203. ChoueiryF. ZhuJ. Secondary electrospray ionization-high resolution mass spectrometry (SESI-HRMS) fingerprinting enabled treatment monitoring of pulmonary carcinoma cells in real time.Anal. Chim. Acta2022118933923010.1016/j.aca.2021.33923034815037
    [Google Scholar]
  204. LiT. ShiW. YaoJ. HuJ. SunQ. MengJ. WanJ. SongH. WangH. Combinatorial nanococktails via self-assembling lipid prodrugs for synergistically overcoming drug resistance and effective cancer therapy.Biomater. Res.2022261310.1186/s40824‑022‑00249‑735101154
    [Google Scholar]
  205. Targeted Therapy to Treat CancerAvailable from:https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies (Accessed on 22ndJanuary 2023). 2023
  206. Download Section as PDF Treatment Choices for Non-Small Cell Lung Cancer, by Stage2023Available from:https://www.cancer.org/cancer/lung-cancer/treating-non-small-cell/by-stage.html (Accessed on 22ndJanuary 2023).
  207. Radiation Therapy for Non-Small Cell Lung Cancer2023Available from:https://www.cancer.org/cancer/lung-cancer/treating-non-small-cell/radiation-therapy.html (Accessed on 22ndJanuary 2023).
  208. LeeS.H. Chemotherapy for lung cancer in the era of personalized medicine.Tuberc. Respir. Dis.201982317918910.4046/trd.2018.006830841023
    [Google Scholar]
  209. WilkesG.M. Targeted therapy: Attacking cancer with molecular and immunological targeted agents.Asia Pac. J. Oncol. Nurs.20185213715510.4103/apjon.apjon_79_1729607374
    [Google Scholar]
  210. WaldmanA.D. FritzJ.M. LenardoM.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice.Nat. Rev. Immunol.2020201165166810.1038/s41577‑020‑0306‑532433532
    [Google Scholar]
  211. RajabiM. MousaS. The role of angiogenesis in cancer treatment.Biomedicines2017543410.3390/biomedicines502003428635679
    [Google Scholar]
  212. LiuY. ChengW. XinH. LiuR. WangQ. CaiW. PengX. YangF. XinH. Nanoparticles advanced from preclinical studies to clinical trials for lung cancer therapy.Cancer Nanotechnol.20231412810.1186/s12645‑023‑00174‑x37009262
    [Google Scholar]
  213. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  214. DoroudianM. ZanganehS. AbbasgholinejadE. DonnellyS.C. Nanomedicine in lung cancer immunotherapy.Front. Bioeng. Biotechnol.202311114465310.3389/fbioe.2023.114465337008041
    [Google Scholar]
  215. GirigoswamiA. GirigoswamiK. Potential Applications of nanoparticles in improving the outcome of lung cancer treatment.Genes2023147137010.3390/genes1407137037510275
    [Google Scholar]
  216. SunX. ZhaoP. LinJ. ChenK. ShenJ. Recent advances in access to overcome cancer drug resistance by nanocarrier drug delivery system.Cancer Drug Resist.20236239041510.20517/cdr.2023.1637457134
    [Google Scholar]
  217. KoutuV. GuptaM. DasS. RawatD.K. KharadeV. PasrichaR.K. Nanotechnology in lung cancer therapeutics: A narrative review.Cureus2023151e3424510.7759/cureus.3424536855484
    [Google Scholar]
  218. Non-Small Cell Lung Cancer Treatment (PDQ®)–Health Professional VersionAvailable from:https://www.cancer.gov/types/lung/hp/non-small-cell-lung-treatment-pdq (Accessed on 5th October 2023).
  219. RodríguezF. CaruanaP. De la FuenteN. EspañolP. GámezM. BalartJ. LlurbaE. RoviraR. RuizR. Martín-LorenteC. CorcheroJ.L. CéspedesM.V. Nano-based approved pharmaceuticals for cancer treatment: Present and future challenges.Biomolecules202212678410.3390/biom1206078435740909
    [Google Scholar]
  220. ChopraH. MohantaY.K. RautaP.R. AhmedR. MahantaS. MishraP.K. PandaP. RabaanA.A. AlshehriA.A. OthmanB. AlshahraniM.A. AlqahtaniA.S. AL BashaB.A. DhamaK. An insight into advances in developing nanotechnology based therapeutics, drug delivery, diagnostics and vaccines: Multidimensional applications in tuberculosis disease management.Pharmaceuticals202316458110.3390/ph1604058137111338
    [Google Scholar]
  221. WilcoxSK DeborahA JanjicN GoldL Riel-MehanM JarvisT Lung cancer biomarkers and uses thereof.U.S. Patent 11221340B22022
  222. JermyBR RavinayagamV BaykalA Method for treating cancer with a nanoformulation.U.S. Patent 20220072034A12022
  223. MahrA WeinschenkT SchoorO FritscheJ SinghH WagnerC LeiboldJ SongC Peptides and combination of peptides for use in immunotherapy against lung cancer, including NSCLC and other cancers.U.S. Patent 11324812B22022
  224. GomisR PlanetE Method for the diagnosis, prognosis and treatment of lung cancer metastasis.U.S. Patent 11352673B22022
  225. RahejaR JackmanRM KahanaJS Nanoparticle compositions.U.S. Patent 11306399B22022
  226. WongK-K JohnsonBE JannePA HongbinJ BardeesyN SharplessNE CastrillonDH Methods of diagnosing and prognosing lung cancer.U.S. Patent 11009508B22021
  227. JermyBR RavinayagamV Nanosilica carrier with spions and a curcuminoid.U.S. Patent 20210322580A12021
  228. PerezM ChungL ZhangY BlackKL Targeted nanoparticles for diagnosing, detecting and treating cancer.U.S. Patent 20210113715A12021
  229. BirseC RubenS LewisM MesriM Lung cancer markers and uses thereof.U.S. Patent 11105806B22021
    [Google Scholar]
  230. FritscheJ SinghH SongC WalterS WeinschenkT Novel immunotherapy against several tumors, such as lung cancer, including NSCLC.A.U. Patent 2020220043B22021
  231. ZhangHG Methods for treatment of cancer and enhancement of nanoparticle accumulation in tissues.U.S. Patent 20210030829A12021
  232. ScottC LongleyD HumphreysL McdaidW Polymeric nanoparticles for enhanced cancer treatment.W.O. Patent 2021130377A12021
  233. MarkoviSN NevalaWK Methods of using albumin-antibody nanoparticle complex compositions for treating cancer.U.S. Patent 10596112B22020
  234. HarrisonRG ViraniNA Gold nanoparticle-ligand conjugates and methods of use.W.O. Patent 2020041267A22020
  235. HayesDN PerouCM BernardP Molecular diagnosis and typing of lung cancer variants.U.S. Patent 10196687B22019
  236. XuS HegeKM TranTM Methods for treating non-small cell lung cancer using tor kinase inhibitor combination therapy.E.P. Patent 2817029B12019
  237. DuanW TranP. Extracellular vesicle-based drug-delivery.W.O. Patent 2019213706A12019
  238. Study of Irinotecan Liposome Injection as Second-line Regimen in Patients With Small Cell Lung Cancer (SCLC)NCT047278532021
  239. Study of Irinotecan Liposome Injection (ONIVYDE®) in Patients With Small Cell Lung Cancer (RESILIENT)NCT030888132023
  240. Irinotecan Hydrochloride Liposome Injection (LY01610) For Small Cell Lung CancerNCT043819102023
  241. Paclitaxel Liposome for Squamous Non-Small-cell Lung Cancer Study(LIPUSU) (LIPUSU)NCT029962142020
  242. Pegylated Liposomal Doxorubicin and Carboplatin as First Line Treatment for Patients With Advanced Non-small Cell Lung CancerNCT010513622010
  243. Nimotuzumab in Combination With Paclitaxel Liposome and Carboplatin (TP Regimen) for the Advanced NSCLC Patients (NSCLC)NCT013930802016
  244. Topotecan Liposomes Injection for Small Cell Lung Cancer (SCLC), Ovarian Cancer and Other Advanced Solid TumorsNCT007659732020
  245. Efficacy and Safety Study of OSI-211 (Liposomal Lurtotecan) to Treat Recurrent Small Cell Lung CancerNCT000467872011
  246. Liposomal Lurtotecan Plus Cisplatin in Treating Patients With Advanced or Metastatic Solid TumorsNCT000060362020
  247. TUSC2-nanoparticles and Erlotinib in Stage IV Lung CancerNCT014553892022
  248. Study of Liposomal Annamycin for the Treatment of Subjects With Soft-Tissue Sarcomas (STS) With Pulmonary MetastasesNCT048872982023
  249. LiJ. ZhuL. KwokH.F. Nanotechnology-based approaches overcome lung cancer drug resistance through diagnosis and treatment.Drug Resist. Updat.20236610090410.1016/j.drup.2022.10090436462375
    [Google Scholar]
  250. CaiH. WangY. QinD. CuiY. ZhangH. Advanced surgical technologies for lung cancer treatment: Current status and perspectives.Eng. Regenerat.202341556710.1016/j.engreg.2022.12.001
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105264531231205042817
Loading
/content/journals/nanotec/10.2174/0118722105264531231205042817
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): clinical trials; diagnosis; estrogen; lung cancer; nanoformulations; Nanotechnology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test