Skip to content
2000
image of Selenium Nanoparticles: Cut-edge Therapeutic Entity

Abstract

Selenium is a significant trace microelement responsible for detoxification and supporting the health of human beings. Selenium is consumed as a part of dietary supplements where in it has a very narrow margin for its physiological role and the toxic effects produced. Selenium nanoparticles (SeNP) have proven significant as a chemoprotective agent in treatment of the neurodegenerative conditions, diabetes, and antimicrobial, and antioxidant activity. The present review briefs the requirement of selenium and its various methods of preparation. Further emphasizing on the application of SeNP for the treatment of various disease conditions. A literature search on Science Direct, Pubmed, and Google Scholar, was done and the recent articles regarding the preparation of Selenium NP by chemical and biological techniques including microbial conversions and using plant extracts along with physical conversions were studied. Further diversified applications were looked for where SeNP can exhibit antioxidant properties as Se is an innate member of the antioxidant system. Summarizing the review on SeNP has been more exciting as Se as an element is known as trace element but phytofabricated and biogenic preparations of SeNP having low toxicity with synergistic effects. Toxicity studies indicate the safety of SeNP as compared to selenium oxide and itsinorganic salts, however in-depth study and species-to-species variation must be understoodto formulate the SeNP in the appropriate dosage form. Various techniques have been studied for the preparation of SeleniumNanoparticles and havethe potential for application in the treatment of various life-threateningdiseases and metabolic disorders, infectious conditions. The synergistic effect of Se and the plants or microorganisms known for their medicinal application reduces the toxicity of the selenium nanoparticles when compared within organic salts. Further extensive studies on the epidemiology regarding the variation in serum level of Se and its administration as a supplement or therapeutic purpose can be a cut-edge treatment for life-threatening conditions.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812220085241024041311
2024-10-29
2024-11-26
Loading full text...

Full text loading...

References

  1. Bisht N. Phalswal P. Khanna P.K. Selenium nanoparticles: A review on synthesis and biomedical applications. Mater. Adv. 2022 3 3 1415 1431 10.1039/D1MA00639H
    [Google Scholar]
  2. Mehdi Y. Hornick J.L. Istasse L. Dufrasne I. Selenium in the environment, metabolism and involvement in body functions. Molecules 2013 18 3 3292 3311 10.3390/molecules18033292 23486107
    [Google Scholar]
  3. Selenium 2024 Available from: https://ods.od.nih.gov/factsheets/Selenium-HealthProfessional
  4. S K. Iyer S. Sinkar P. Sengupta C. Selenium levels in whole blood - the borderline low analysis. Clin. Chim. Acta 2018 487 309 310 10.1016/j.cca.2018.10.023 30326216
    [Google Scholar]
  5. Kiełczykowska M. Kocot J. Paździor M.A.R.E.K. Musik I. Selenium – a fascinating antioxidant of protective properties. Adv. Clin. Exp. Med. 2018 27 2 245 255 10.17219/acem/67222 29521069
    [Google Scholar]
  6. Eroglu C. Unal D. Cetin A. Orhan O. Sivgin S. Oztürk A. Effect of serum selenium levels on radiotherapy-related toxicity in patients undergoing radiotherapy for head and neck cancer. Anticancer Res. 2012 32 8 3587 3590 22843950
    [Google Scholar]
  7. Alves M.R.A. Starling A.L.P. Kanufre V.C. Soares R.D.L. Norton R.C. Aguiar M.J.B. Januario J.N. Selenium intake and nutritional status of children with phenylketonuria in Minas Gerais, Brazil. J. Pediatr. (Rio J.) 2012 88 5 396 400 10.2223/JPED.2217 23092958
    [Google Scholar]
  8. Finley J.W. Selenium accumulation in plant foods. Nutr. Rev. 2005 63 6 196 202 10.1111/j.1753‑4887.2005.tb00137.x 16028563
    [Google Scholar]
  9. Kieliszek M. Selenium–fascinating microelement, properties, and sources in food. Molecules 2019 24 7 1298 10.3390/molecules24071298 30987088
    [Google Scholar]
  10. Aronow L. Kerdel-Vegas F. Seleno-cystathionine, a pharmacologically active factor in the seeds of Lecythisollaria: Cytotoxic and depilatory effects of extracts of Lecythisollaria. Nature 1965 205 4977 1185 1186 10.1038/2051185a0
    [Google Scholar]
  11. Maseko T. Callahan D.L. Dunshea F.R. Doronila A. Kolev S.D. Ng K. Chemical characterisation and speciation of organic selenium in cultivated selenium-enriched Agaricus bisporus. Food Chem. 2013 141 4 3681 3687 10.1016/j.foodchem.2013.06.027 23993536
    [Google Scholar]
  12. Arnault I. Auger J. Seleno-compounds in garlic and onion. J. Chromatogr. A 2006 1112 1-2 23 30 10.1016/j.chroma.2006.01.036 16480995
    [Google Scholar]
  13. Roman M. Jitaru P. Barbante C. Selenium biochemistry and its role for human health. Metallomics 2014 6 1 25 54 10.1039/C3MT00185G 24185753
    [Google Scholar]
  14. Schallreuter K.U. Wood J.M. Thioredoxin reductase — its role in epidermal redox status. J. Photochem. Photobiol. B 2001 64 2-3 179 184 10.1016/S1011‑1344(01)00235‑4 11744405
    [Google Scholar]
  15. Shini S. Sultan A. Bryden W. Selenium biochemistry and bioavailability: Implications for animal agriculture. Agriculture 2015 5 4 1277 1288 10.3390/agriculture5041277
    [Google Scholar]
  16. Mostert V. Selenoprotein P: Properties, functions, and regulation. Arch. Biochem. Biophys. 2000 376 2 433 438 10.1006/abbi.2000.1735 10775431
    [Google Scholar]
  17. Yao H.D. Wu Q. Zhang Z.W. Li S. Wang X.L. Lei X.G. Xu S.W. Selenoprotein W serves as an antioxidant in chicken myoblasts. Biochim. Biophys. Acta, Gen. Subj. 2013 1830 4 3112 3120 10.1016/j.bbagen.2013.01.007 23333634
    [Google Scholar]
  18. Labunskyy V.M. Hatfield D.L. Gladyshev V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 2014 94 3 739 777 10.1152/physrev.00039.2013 24987004
    [Google Scholar]
  19. Nie X. Yang X. He J. Liu P. Shi H. Wang T. Zhang D. Bioconversion of inorganic selenium to less toxic selenium forms by microbes: A review. Front. Bioeng. Biotechnol. 2023 11 1167123 10.3389/fbioe.2023.1167123 36994362
    [Google Scholar]
  20. Rosen B.P. Liu Z. Transport pathways for arsenic and selenium: A minireview. Environ. Int. 2009 35 3 512 515 10.1016/j.envint.2008.07.023 18789529
    [Google Scholar]
  21. Finley J.W. Bioavailability of selenium from foods. Nutr. Rev. 2006 64 3 146 151 10.1111/j.1753‑4887.2006.tb00198.x 16572602
    [Google Scholar]
  22. Hosnedlova B. Kepinska M. Skalickova S. Fernandez C. Ruttkay-Nedecky B. Peng Q. Baron M. Melcova M. Opatrilova R. Zidkova J. Bjørklund G. Sochor J. Kizek R. Nano-selenium and its nanomedicine applications: A critical review. Int. J. Nanomedicine 2018 13 2107 2128 10.2147/IJN.S157541 29692609
    [Google Scholar]
  23. Drake E.N. Cancer chemoprevention: Selenium as a prooxidant, not an antioxidant. Med. Hypotheses 2006 67 2 318 322 10.1016/j.mehy.2006.01.058 16574336
    [Google Scholar]
  24. Chandrakala V. Aruna V. Angajala G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Mater. 2022 5 6 1593 1615 10.1007/s42247‑021‑00335‑x 35005431
    [Google Scholar]
  25. Aboyewa J.A. Sibuyi N.R.S. Meyer M. Oguntibeju O.O. Green synthesis of metallic nanoparticles using some selected medicinal plants from southern africa and their biological applications. Plants 2021 10 9 1929 10.3390/plants10091929 34579460
    [Google Scholar]
  26. Antunes Filho S. dos Santos M.S. dos Santos O.A.L. Backx B.P. Soran M.L. Opriş O. Lung I. Stegarescu A. Bououdina M. Biosynthesis of nanoparticles using plant extracts and essential oils. Molecules 2023 28 7 3060 10.3390/molecules28073060 37049821
    [Google Scholar]
  27. Alsaiari N.S. Alzahrani F.M. Amari A. Osman H. Harharah H.N. Elboughdiri N. Tahoon M.A. Plant and microbial approaches as green methods for the synthesis of nanomaterials: Synthesis, applications, and future perspectives. Molecules 2023 28 1 463 10.3390/molecules28010463 36615655
    [Google Scholar]
  28. Sentkowska A. Pyrzyńska K. The influence of synthesis conditions on the antioxidant activity of selenium nanoparticles. Molecules 2022 27 8 2486 10.3390/molecules27082486 35458683
    [Google Scholar]
  29. Panahi-Kalamuei M. Mousavi-Kamazani M. Salavati-Niasari M. Hosseinpour-Mashkani S.M. A simple sonochemical approach for synthesis of selenium nanostructures and investigation of its light harvesting application. Ultrason. Sonochem. 2015 23 246 256 10.1016/j.ultsonch.2014.09.006 25248917
    [Google Scholar]
  30. Shar A.H. Lakhan M.N. Wang J. Ahmed M. Alali K.T. Ahmed R. Ali I. Dayo A.Q. Facile synthesis and characterization of selenium nanoparticles by the hydrothermal approach. Dig. J. Nanomater. Biostruct. 2019 14 867 872
    [Google Scholar]
  31. Singh S.C. Mishra S.K. Srivastava R.K. Gopal R. Optical properties of selenium quantum dots produced with laser irradiation of water suspended se nanoparticles. J. Phys. Chem. C 2010 114 41 17374 17384 10.1021/jp105037w
    [Google Scholar]
  32. Thakkar K.N. Mhatre S.S. Parikh R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine 2010 6 2 257 262 10.1016/j.nano.2009.07.002 19616126
    [Google Scholar]
  33. Shi X.D. Tian Y.Q. Wu J.L. Wang S.Y. Synthesis, characterization, and biological activity of selenium nanoparticles conjugated with polysaccharides. Crit. Rev. Food Sci. Nutr. 2021 61 13 2225 2236 10.1080/10408398.2020.1774497 32567982
    [Google Scholar]
  34. Langi B. Shah C. Singh K. Chaskar A. Kumar M. Bajaj P.N. Ionic liquid-induced synthesis of selenium nanoparticles. Mater. Res. Bull. 2010 45 6 668 671 10.1016/j.materresbull.2010.03.005
    [Google Scholar]
  35. Guleria A. Neogy S. Raorane B.S. Adhikari S. Room temperature ionic liquid assisted rapid synthesis of amorphous Se nanoparticles: Their prolonged stabilization and antioxidant studies. Mater Chem Phys 2020 253 123369 10.1016/j.matchemphys.2020.123369
    [Google Scholar]
  36. Mehta S.K. Chaudhary S. Kumar S. Bhasin K.K. Torigoe K. Sakai H. Abe M. Surfactant assisted synthesis and spectroscopic characterization of selenium nanoparticles in ambient conditions. Nanotechnology 2008 19 29 295601 10.1088/0957‑4484/19/29/295601 21730604
    [Google Scholar]
  37. Shah C.P. Kumar M. Pushpa K.K. Bajaj P.N. Acrylonitrile-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles. Cryst Growth Des 2008 8 11 4159 4164 10.1021/cg800669d
    [Google Scholar]
  38. Dwivedi C. Shah C.P. Singh K. Kumar M. Bajaj P.N. An organic acid-induced synthesis and characterization of selenium nanoparticles. J. Nanotechnol. 2011 2011 1 6 10.1155/2011/651971
    [Google Scholar]
  39. Shah C.P. Singh K.K. Kumar M. Bajaj P.N. Vinyl monomers-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles. Mater Res Bull 2010 45 1 56 62 10.1016/j.materresbull.2009.09.001
    [Google Scholar]
  40. Yu B. You P. Song M. Zhou Y. Yu F. Zheng W. A facile and fast synthetic approach to create selenium nanoparticles with diverse shapes and their antioxidation ability. New J Chem 2016 40 2 1118 1123 10.1039/C5NJ02519B
    [Google Scholar]
  41. Van Overschelde O. Guisbiers G. Snyders R. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water. Appl Materials 2013 1 4 1 6 10.1063/1.4824148
    [Google Scholar]
  42. Quintana M. Haro-Poniatowski E. Morales J. Batina N. Synthesis of selenium nanoparticles by pulsed laser ablation. Appl. Surf. Sci. 2002 195 1-4 175 186 10.1016/S0169‑4332(02)00549‑4
    [Google Scholar]
  43. Tzeng W.Y. Tseng Y.H. Yeh T.T. Tu C.M. Sankar R. Chen Y.H. Huang B.H. Chou F.C. Luo C.W. Selenium nanoparticle prepared by femtosecond laser-induced plasma shock wave. Opt. Express 2020 28 1 685 694 10.1364/OE.381898 32118991
    [Google Scholar]
  44. Ionin A. Ivanova A. Khmel’nitskii R. Klevkov Y. Kudryashov S. Mel’nik N. Nastulyavichus A. Rudenko A. Saraeva I. Smirnov N. Zayarny D. Baranov A. Kirilenko D. Brunkov P. Shakhmin A. Milligram-per-second femtosecond laser production of Se nanoparticle inks and ink-jet printing of nanophotonic 2D-patterns. Appl. Surf. Sci. 2018 436 662 669 10.1016/j.apsusc.2017.12.057
    [Google Scholar]
  45. Karthik K.K. Cheriyan B.V. Rajeshkumar S. Gopalakrishnan M. A review on selenium nanoparticles and their biomedical applications. Biomed Technol 2024 6 61 74 10.1016/j.bmt.2023.12.001
    [Google Scholar]
  46. El-Batal A.I. Mosallam F.M. Ghorab M.M. Hanora A. Gobara M. Baraka A. Elsayed M.A. Pal K. Fathy R.M. Abd Elkodous M. El-Sayyad G.S. Factorial design-optimized and gamma irradiation-assisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells. Int. J. Biol. Macromol. 2020 156 1584 1599 10.1016/j.ijbiomac.2019.11.210 31790741
    [Google Scholar]
  47. Alagesan V. Venugopal S. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. Bionanoscience 2019 9 1 105 116 10.1007/s12668‑018‑0566‑8
    [Google Scholar]
  48. Al-Qaraleh S.Y. Al-Zereini W.A. Oran S.A. Phyto-decoration of selenium nanoparticles using Moringa peregrina (forssk.) Fiori aqueous extract: Chemical characterization and bioactivity evaluation. Biointerface Res. Appl. Chem. 2022 13 2 112 10.33263/BRIAC132.112
    [Google Scholar]
  49. Fritea L. Laslo V. Cavalu S. Costea T. Vicas S.I. Green biosynthesis of selenium nanoparticles using parsley (Petroselinum crispum) leaves extract. Stud. Univ. Vasile Goldiş” Arad. Lif. Sci. Seri. 2017 27 3 203 208
    [Google Scholar]
  50. Mirza K. Naaz F. Ahmad T. Manzoor N. Sardar M. Development of cost-effective, ecofriendly selenium nanoparticle-functionalized cotton fabric for antimicrobial and antibiofilm activity. Fermentation 2022 9 1 18 10.3390/fermentation9010018
    [Google Scholar]
  51. Santanu S. Sowmiya R. Balakrishnaraja R. Biosynthesis of selenium nanoparticles using citrus reticulata peel extract. World J. Pharm. Res. 2015 4 1 1322 1330
    [Google Scholar]
  52. Mohammed Ali I.A. AL-Ahmed H.I. Ben Ahmed A. AL-Ahmed HI, Ben Ahmed A. Evaluation of green synthesis (Withania somnifera) of selenium nanoparticles to reduce sperm DNA fragmentation diabetic mice induced with streptozotocin. Appl. Sci. 2023 13 2 728 10.3390/app13020728
    [Google Scholar]
  53. Kokila K. Elavarasan N. Sujatha V. Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications. New J. Chem. 2017 41 15 7481 7490 10.1039/C7NJ01124E
    [Google Scholar]
  54. Puri A. Patil S. Biogenic synthesis of selenium nanoparticles using Diospyros montana bark extract: Characterization, antioxidant, antibacterial, and antiproliferative activity. Biosci. Biotechnol. Res. Asia 2022 19 2 423 441 10.13005/bbra/2997
    [Google Scholar]
  55. Ramamurthy C. Sampath K.S. Arunkumar P. Kumar M.S. Sujatha V. Premkumar K. Thirunavukkarasu C. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst. Eng. 2013 36 8 1131 1139 10.1007/s00449‑012‑0867‑1 23446776
    [Google Scholar]
  56. Fardsadegh B. Jafarizadeh-Malmiri H. Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their In vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Process Synth 2019 8 1 399 407 10.1515/gps‑2019‑0007
    [Google Scholar]
  57. Kapur M. Soni K. Kohli K. Green synthesis of selenium nanoparticles from broccoli, characterization, application and toxicity. Advanced Techniques in Biology & Medicine 2017 5 1 2379 1764 10.4172/2379‑1764.1000198
    [Google Scholar]
  58. Dhanraj G. Rajeshkumar S. Anticariogenic effect of selenium nanoparticles synthesized using Brassica oleracea. J. Nanomater. 2021 2021 1 9 10.1155/2021/8115585
    [Google Scholar]
  59. Sribenjarat P. Jirakanjanakit N. Jirasripongpun K. Selenium nanoparticles biosynthesized by garlic extract as antimicrobial agent. Sci Enginee Heal Stud 2020 30 22 31 10.14456/sehs.2020.3
    [Google Scholar]
  60. Ezhuthupurakkal P.B. Polaki L.R. Suyavaran A. Subastri A. Sujatha V. Thirunavukkarasu C. Selenium nanoparticles synthesized in aqueous extract of Allium sativum perturbs the structural integrity of Calf thymus DNA through intercalation and groove binding. Mater. Sci. Eng. C 2017 74 597 608 10.1016/j.msec.2017.02.003 28254334
    [Google Scholar]
  61. Alizadeh S.R. Seyedabadi M. Montazeri M. Khan B.A. Ebrahimzadeh M.A. Allium paradoxum extract mediated green synthesis of SeNPs: Assessment of their anticancer, antioxidant, iron chelating activities, and antimicrobial activities against fungi, ATCC bacterial strains, Leishmania parasite, and catalytic reduction of methylene blue. Mater. Chem. Phys. 2023 296 127240 10.1016/j.matchemphys.2022.127240
    [Google Scholar]
  62. Sharma G. Sharma A. Bhavesh R. Park J. Ganbold B. Nam J.S. Lee S.S. Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules 2014 19 3 2761 2770 10.3390/molecules19032761 24583881
    [Google Scholar]
  63. Kirupagaran R Saritha A Bhuvaneswari S Green synthesis of selenium nanoparticles from leaf and stem extract of Leucas lavandulifolia Sm. and their application. J. Nanosci. Tech. 2016 31 224 226
    [Google Scholar]
  64. Hashem A.H. Selim T.A. Alruhaili M.H. Selim S. Alkhalifah D.H.M. Al Jaouni S.K. Salem S.S. Unveiling antimicrobial and insecticidal activities of biosynthesized selenium nanoparticles using prickly pear peel waste. J. Funct. Biomater. 2022 13 3 112 10.3390/jfb13030112 35997450
    [Google Scholar]
  65. Salem S.S. Badawy M.S.E.M. Al-Askar A.A. Arishi A.A. Elkady F.M. Hashem A.H. Green biosynthesis of selenium nanoparticles using orange peel waste: Characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life 2022 12 6 893 10.3390/life12060893 35743924
    [Google Scholar]
  66. Pearce C.I. Pattrick R.A.D. Law N. Charnock J.M. Coker V.S. Fellowes J.W. Oremland R.S. Lloyd J.R. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica. Environ. Technol. 2009 30 12 1313 1326 10.1080/09593330902984751 19950474
    [Google Scholar]
  67. Eswayah A.S. Smith T.J. Gardiner P.H.E. Microbial transformations of selenium species of relevance to bioremediation. Appl. Environ. Microbiol. 2016 82 16 4848 4859 10.1128/AEM.00877‑16 27260359
    [Google Scholar]
  68. Wells M. McGarry J. Gaye M.M. Basu P. Oremland R.S. Stolz J.F. Respiratory selenite reductase from Bacillus selenitireducens strain MLS10. J. Bacteriol. 2019 201 7 10 128 10.1128/JB.00614‑18 30642986
    [Google Scholar]
  69. Switzer Blum J. Stolz J.F. Oren A. Oremland R.S. Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from Dead Sea sediments that respires selenate. Arch. Microbiol. 2001 175 3 208 219 10.1007/s002030100257 11357513
    [Google Scholar]
  70. Staicu L.C. Barton L.L. Bacterial Metabolism of Selenium—For Survival or Profit. Bioremediation of Selenium Contaminated Wastewater. van Hullebusch E. Cham Springer 2017 10.1007/978‑3‑319‑57831‑6_1
    [Google Scholar]
  71. Fesharaki P.J. Nazari P. Shakibaie M. Rezaie S. Banoee M. Abdollahi M. Shahverdi A.R. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz. J. Microbiol. 2010 41 2 461 466 10.1590/S1517‑83822010000200028 24031517
    [Google Scholar]
  72. Presentato A. Piacenza E. Anikovskiy M. Cappelletti M. Zannoni D. Turner R.J. Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. N. Biotechnol. 2018 41 1 8 10.1016/j.nbt.2017.11.002 29174512
    [Google Scholar]
  73. Alam H. Khatoon N. Khan M.A. Husain S.A. Saravanan M. Sardar M. Synthesis of selenium nanoparticles using probiotic bacteria Lactobacillus acidophilus and their enhanced antimicrobial activity against resistant bacteria. J. Cluster Sci. 2020 31 5 1003 1011 10.1007/s10876‑019‑01705‑6
    [Google Scholar]
  74. Shoeibi S. Mashreghi M. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. J. Trace Elem. Med. Biol. 2017 39 135 139 10.1016/j.jtemb.2016.09.003 27908405
    [Google Scholar]
  75. Kumar A. Bera S. Singh M. Mondal D. Agrobacterium-assisted selenium nanoparticles: Molecular aspect of antifungal activity. Adv. Nat. Sci: Nanosci. Nanotechnol. 2017 9 1 015004 10.1088/2043‑6254/aa9f4a
    [Google Scholar]
  76. Martínez F.G. Moreno-Martin G. Pescuma M. Madrid-Albarrán Y. Mozzi F. Biotransformation of selenium by lactic acid bacteria: Formation of seleno-nanoparticles and seleno-amino acids. Front. Bioeng. Biotechnol. 2020 8 506 10.3389/fbioe.2020.00506 32596220
    [Google Scholar]
  77. Wang Z. Li Y. Hui Z. Liu J. Guo X. Chen Z. Yu Z. Zhao A. Wang S. Cai Y. He N. Xu J. Zhuang W. Ying H. Biologically active selenium nanoparticles composited with Bacillus licheniformis extracellular polymeric substances fermented from cane molasses. Lebensm. Wiss. Technol. 2023 187 115255 10.1016/j.lwt.2023.115255
    [Google Scholar]
  78. Zare B. Babaie S. Setayesh N. Shahverdi A.R. Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomed. J. 2013 1 1 13 19 10.7508/nmj.2013.01.002
    [Google Scholar]
  79. Wang Y. Shu X. Zhou Q. Fan T. Wang T. Chen X. Li M. Ma Y. Ni J. Hou J. Zhao W. Li R. Huang S. Wu L. Selenite reduction and the biogenesis of selenium nanoparticles by Alcaligenes faecalis Se03 isolated from the gut of Monochamusalternatus (Coleoptera: Cerambycidae). Int. J. Mol. Sci. 2018 19 9 2799 10.3390/ijms19092799 30227664
    [Google Scholar]
  80. Wang Y. Shu X. Hou J. Lu W. Zhao W. Huang S. Wu L. Selenium nanoparticle synthesized by Proteus mirabilis YC801: An efficacious pathway for selenite biotransformation and detoxification. Int. J. Mol. Sci. 2018 19 12 3809 10.3390/ijms19123809 30501097
    [Google Scholar]
  81. Hassan M.G. Hawwa M.T. Baraka D.M. El-Shora H.M. Hamed A.A. Biogenic selenium nanoparticles and selenium/chitosan-Nanoconjugate biosynthesized by Streptomyces parvulus MAR4 with antimicrobial and anticancer potential. BMC Microbiol. 2024 24 1 21 10.1186/s12866‑023‑03171‑7 38216871
    [Google Scholar]
  82. Wadhwani S. Gorain M. Banerjee P. Shedbalkar U. Singh R. Kundu G. Chopade B.A. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: Optimization, characterization and its anticancer activity in breast cancer cells. Int. J. Nanomedicine 2017 12 6841 6855 10.2147/IJN.S139212 28979122
    [Google Scholar]
  83. Ashengroph M. Tozandehjani S. Optimized resting cell method for green synthesis of selenium nanoparticles from a new Rhodotorula mucilaginosa strain. Process Biochem. 2022 116 197 205 10.1016/j.procbio.2022.03.014
    [Google Scholar]
  84. Ullah A. Yin X. Wang F. Xu B. Mirani Z.A. Xu B. Chan M.W.H. Ali A. Usman M. Ali N. Naveed M. Biosynthesis of selenium nanoparticles (via Bacillus subtilis BSN313), and their isolation, characterization, and bioactivities. Molecules 2021 26 18 5559 10.3390/molecules26185559 34577029
    [Google Scholar]
  85. Blinov A.V. Nagdalian A.A. Siddiqui S.A. Maglakelidze D.G. Gvozdenko A.A. Blinova A.A. Yasnaya M.A. Golik A.B. Rebezov M.B. Jafari S.M. Shah M.A. Synthesis and characterization of selenium nanoparticles stabilized with cocamidopropyl betaine. Sci. Rep. 2022 12 1 21975 10.1038/s41598‑022‑25884‑x 36539549
    [Google Scholar]
  86. Patra A.R. Hajra S. Baral R. Bhattacharya S. Use of selenium as micronutrients and for future anticancer drug: A review. Nucleus 2020 63 2 107 118 10.1007/s13237‑019‑00306‑y
    [Google Scholar]
  87. Radomska D. Czarnomysy R. Radomski D. Bielawska A. Bielawski K. Selenium as a bioactive micronutrient in the human diet and its cancer chemopreventive activity. Nutrients 2021 13 5 1649 10.3390/nu13051649 34068374
    [Google Scholar]
  88. Zeng H. Selenium as an essential micronutrient: Roles in cell cycle and apoptosis. Molecules 2009 14 3 1263 1278 10.3390/molecules14031263 19325522
    [Google Scholar]
  89. Kuršvietienė L. Mongirdienė A. Bernatonienė J. Šulinskienė J. Stanevičienė I. Selenium anticancer properties and impact on cellular redox status. Antioxidants 2020 9 1 80 10.3390/antiox9010080 31963404
    [Google Scholar]
  90. Zou J. Su S. Chen Z. Liang F. Zeng Y. Cen W. Zhang X. Xia Y. Huang D. Hyaluronic acid-modified selenium nanoparticles for enhancing the therapeutic efficacy of paclitaxel in lung cancer therapy. Artif. Cells Nanomed. Biotechnol. 2019 47 1 3456 3464 10.1080/21691401.2019.1626863 31469318
    [Google Scholar]
  91. Maiyo F. Singh M. Polymerized selenium nanoparticles for folate-receptor-targeted delivery of anti-luc-siRNA: Potential for gene silencing. Biomedicines 2020 8 4 76 10.3390/biomedicines8040076 32260507
    [Google Scholar]
  92. Othman M.S. Obeidat S.T. Al-Bagawi A.H. Fareid M.A. Fehaid A. Abdel Moneim A.E. Green-synthetized selenium nanoparticles using berberine as a promising anticancer agent. J. Integr. Med. 2022 20 1 65 72 10.1016/j.joim.2021.11.002 34802980
    [Google Scholar]
  93. Singh D. Singh M. Hepatocellular-targeted mRNA delivery using functionalized selenium nanoparticles in vitro. Pharmaceutics 2021 13 3 298 10.3390/pharmaceutics13030298 33668320
    [Google Scholar]
  94. Fu Y. Ji C. Ma Z. Xu D. Hu H. Targeted delivery of doxorubicin to hepatoma cells by lactobionic acid-decorated dual redox-responsive polyethylene glycol-doxorubicin nanoparticles. Int. J. Nanosci. 2023 22 3 2350019 10.1142/S0219581X23500199
    [Google Scholar]
  95. Rajeshkumar S. Ganesh L. Santhoshkumar J. Selenium nanoparticles as therapeutic agents in neurodegenerative diseases. In Book: Nanobiotechnology in neurodegenerative diseases. 2019 209 224 10.1007/978‑3‑030‑30930‑5_8
    [Google Scholar]
  96. Cong W. Bai R. Li Y.F. Wang L. Chen C. Selenium nanoparticles as an efficient nanomedicine for the therapy of Huntington’s disease. ACS Appl. Mater. Interfaces 2019 11 38 34725 34735 10.1021/acsami.9b12319 31479233
    [Google Scholar]
  97. Nazıroğlu M. Muhamad S. Pecze L. Nanoparticles as potential clinical therapeutic agents in Alzheimer’s disease: Focus on selenium nanoparticles. Expert Rev. Clin. Pharmacol. 2017 10 7 773 782 10.1080/17512433.2017.1324781 28463572
    [Google Scholar]
  98. Abozaid O.A.R. Sallam M.W. El-Sonbaty S. Aziza S. Emad B. Ahmed E.S.A. Resveratrol-selenium nanoparticles alleviate neuroinflammation and neurotoxicity in a rat model of Alzheimer’s disease by regulating sirt1/miRNA-134/gsk3β expression. Biol. Trace Elem. Res. 2022 200 12 5104 5114 10.1007/s12011‑021‑03073‑7 35059981
    [Google Scholar]
  99. Li C. Wang N. Zheng G. Yang L. Oral administration of resveratrol-selenium-peptide nanocomposites alleviates Alzheimer’s disease-like pathogenesis by inhibiting Aβ aggregation and regulating gut microbiota. ACS Appl. Mater. Interfaces 2021 13 39 46406 46420 10.1021/acsami.1c14818 34569225
    [Google Scholar]
  100. Yin T. Yang L. Liu Y. Zhou X. Sun J. Liu J. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. Acta Biomater. 2015 25 172 183 10.1016/j.actbio.2015.06.035 26143603
    [Google Scholar]
  101. Yang L Wang Y Resveratrol-loaded selenium/chitosan nano-flowers alleviate glucolipid metabolism disorder-associated cognitive impairment in Alzheimer's disease. Int. J. Biol. Macromol 2023 239 124316 10.1016/j.ijbiomac.2023.124316
    [Google Scholar]
  102. Xu K. Huang P. Wu Y. Liu T. Shao N. Zhao L. Hu X. Chang J. Peng Y. Qu S. Engineered selenium/human serum albumin nanoparticles for efficient targeted treatment of parkinson’s disease via oral gavage. ACS Nano 2023 17 20 19961 19980 10.1021/acsnano.3c05011 37807265
    [Google Scholar]
  103. Salaramoli S. Joshaghani H.R. Hosseini M. Hashemy S.I. Therapeutic effects of selenium on alpha-synuclein accumulation in substantia nigra pars compacta in a rat model of parkinson’s disease: Behavioral and biochemical outcomes. Biol. Trace Elem. Res. 2024 202 3 1115 1125 10.1007/s12011‑023‑03748‑3 37386228
    [Google Scholar]
  104. Yue D. Zeng C. Okyere S.K. Chen Z. Hu Y. Glycine nano-selenium prevents brain oxidative stress and neurobehavioral abnormalities caused by MPTP in rats. J. Trace Elem. Med. Biol. 2021 64 126680 10.1016/j.jtemb.2020.126680 33242795
    [Google Scholar]
  105. Altuhafi A. Altun M. Hadwan M.H. The correlation between selenium-dependent glutathione peroxidase activity and oxidant/antioxidant balance in sera of diabetic patients with nephropathy. Rep. Biochem. Mol. Biol. 2021 10 2 164 172 10.52547/rbmb.10.2.164 34604406
    [Google Scholar]
  106. Ge Y.M. Xue Y. Zhao X.F. Liu J.Z. Xing W.C. Hu S.W. Gao H.M. Antibacterial and antioxidant activities of a novel biosynthesized selenium nanoparticles using Rosa roxburghii extract and chitosan: Preparation, characterization, properties, and mechanisms. Int. J. Biol. Macromol. 2024 254 Pt 3 127971 10.1016/j.ijbiomac.2023.127971 37944720
    [Google Scholar]
  107. Kora A.J. Tree gum stabilised selenium nanoparticles: Characterisation and antioxidant activity. IET Nanobiotechnol. 2018 12 5 658 662 10.1049/iet‑nbt.2017.0310 30095429
    [Google Scholar]
  108. Liu Y. Huang W. Han W. Li C. Zhang Z. Hu B. Chen S. Cui P. Luo S. Tang Z. Wu W. Luo Q. Structure characterization of Oudemansiella radicata polysaccharide and preparation of selenium nanoparticles to enhance the antioxidant activities. Lebensm. Wiss. Technol. 2021 146 111469 10.1016/j.lwt.2021.111469
    [Google Scholar]
  109. Yao M. Deng Y. Zhao Z. Yang D. Wan G. Xu X. Selenium Nanoparticles Based on Morinda officinalis Polysaccharides: Characterization, Anti-Cancer Activities, and Immune-Enhancing Activities Evaluation In Vitro. Molecules 2023 28 6 2426 10.3390/molecules28062426 36985397
    [Google Scholar]
  110. Qiu W.Y. Wang Y.Y. Wang M. Yan J.K. Construction, stability, and enhanced antioxidant activity of pectin-decorated selenium nanoparticles. Colloids Surf. B Biointerfaces 2018 170 692 700 10.1016/j.colsurfb.2018.07.003 29986266
    [Google Scholar]
  111. Han H.W. Patel K.D. Kwak J.H. Jun S.K. Jang T.S. Lee S.H. Knowles J.C. Kim H.W. Lee H.H. Lee J.H. Selenium nanoparticles as candidates for antibacterial substitutes and supplements against multidrug-resistant bacteria. Biomolecules 2021 11 7 1028 10.3390/biom11071028 34356651
    [Google Scholar]
  112. Yuan Q. Xiao R. Afolabi M. Bomma M. Xiao Z. Evaluation of antibacterial activity of selenium nanoparticles against food-borne pathogens. Microorganisms 2023 11 6 1519 10.3390/microorganisms11061519 37375021
    [Google Scholar]
  113. Sentkowska A. Konarska J. Szmytke J. Grudniak A. Herbal polyphenols as selenium reducers in the green synthesis of selenium nanoparticles: Antibacterial and antioxidant capabilities of the obtained SeNPs. Molecules 2024 29 8 1686 10.3390/molecules29081686 38675506
    [Google Scholar]
  114. Tomić N. Stevanović M.M. Filipović N. Ganić T. Nikolić B. Gajić I. Ćulafić D.M. Resveratrol/selenium nanocomposite with antioxidative and antibacterial properties. Nanomaterials 2024 14 4 368 10.3390/nano14040368 38392741
    [Google Scholar]
  115. Green synthesis of Annona muricata mediated selenium nanoparticles and its antifungal activity against Candida albicans. J. Popul. Ther. Clin. Pharmacol. 2023 30 16 282 287 10.47750/jptcp.2023.30.16.038
    [Google Scholar]
  116. Nile S.H. Thombre D. Shelar A. Gosavi K. Sangshetti J. Zhang W. Sieniawska E. Patil R. Kai G. Antifungal properties of biogenic selenium nanoparticles functionalized with nystatin for the inhibition of Candida albicans biofilm formation. Molecules 2023 28 4 1836 10.3390/molecules28041836 36838823
    [Google Scholar]
  117. Satpathy S. Panigrahi L.L. Arakha M. The role of selenium nanoparticles in addressing diabetic complications: A comprehensive study. Curr. Top. Med. Chem. 2024 24 15 1327 1342 10.2174/0115680266299494240326083936 38561614
    [Google Scholar]
  118. Abdel Moneim A. Al-Quraishy S. Dkhil M.A. Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. Int. J. Nanomedicine 2015 10 6741 6756 10.2147/IJN.S91377 26604749
    [Google Scholar]
  119. Lotfy M.M. Dowidar M.F. Ali H.A. Ghonimi W.A.M. AL-Farga A. Ahmed A.I. Effect of selenium nanoparticles and/or bee venom against STZ-induced diabetic cardiomyopathy and nephropathy. Metabolites 2023 13 3 400 10.3390/metabo13030400 36984840
    [Google Scholar]
  120. Bellini S. Barutta F. Mastrocola R. Imperatore L. Bruno G. Gruden G. Heat shock proteins in vascular diabetic complications: Review and future perspective. Int. J. Mol. Sci. 2017 18 12 2709 10.3390/ijms18122709 29240668
    [Google Scholar]
  121. Kumar G.S. Kulkarni A. Khurana A. Kaur J. Tikoo K. Selenium nanoparticles involve HSP-70 and SIRT1 in preventing the progression of type 1 diabetic nephropathy. Chem. Biol. Interact. 2014 223 125 133 10.1016/j.cbi.2014.09.017 25301743
    [Google Scholar]
  122. Hariharan S. Dharmaraj S. Selenium and selenoproteins: It’s role in regulation of inflammation. Inflammopharmacology 2020 28 3 667 695 10.1007/s10787‑020‑00690‑x 32144521
    [Google Scholar]
  123. AT K YA A. Effect of Selenium nanoparticles in wound healing. Biochemistry Letters. 2020 16 1 160 168 10.21608/blj.2020.146617
    [Google Scholar]
  124. Ramya S. Shanmugasundaram T. Balagurunathan R. Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J. Trace Elem. Med. Biol. 2015 32 30 39 10.1016/j.jtemb.2015.05.005 26302909
    [Google Scholar]
  125. Gangadevi V. Thatikonda S. Pooladanda V. Devabattula G. Godugu C. Selenium nanoparticles produce a beneficial effect in psoriasis by reducing epidermal hyperproliferation and inflammation. J. Nanobiotechnology 2021 19 1 101 10.1186/s12951‑021‑00842‑3 33849555
    [Google Scholar]
  126. El-Ghazaly M.A. Fadel N. Rashed E. El-Batal A. Kenawy S.A. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Can. J. Physiol. Pharmacol. 2017 95 2 101 110 10.1139/cjpp‑2016‑0183 27936913
    [Google Scholar]
  127. Javdani M Barzegar A Application of chitosan hydrogels in traumatic spinal cord injury: A therapeutic approach based on the anti-inflammatory and antioxidant properties of selenium nanoparticles. Front. Biomed Technolog 2023 11 1 6 10.18502/fbt.v10i3.13166
    [Google Scholar]
  128. Malhotra S. Welling M.N. Mantri S.B. Desai K. In vitro and in vivo antioxidant, cytotoxic, and anti‐chronic inflammatory arthritic effect of selenium nanoparticles. J. Biomed. Mater. Res. B Appl. Biomater. 2016 104 5 993 1003 10.1002/jbm.b.33448 25994972
    [Google Scholar]
  129. Urbankova L. Skalickova S. Pribilova M. Ridoskova A. Pelcova P. Skladanka J. Horky P. Effects of sub-lethal doses of selenium nanoparticles on the health status of rats. Toxics 2021 9 2 28 10.3390/toxics9020028 33546233
    [Google Scholar]
  130. Kalishwaralal K. Jeyabharathi S. Sundar K. Muthukumaran A. A novel one-pot green synthesis of selenium nanoparticles and evaluation of its toxicity in zebrafish embryos. Artif. Cells Nanomed. Biotechnol. 2016 44 2 471 477 10.3109/21691401.2014.962744 25287880
    [Google Scholar]
  131. Chandramohan S. Sundar K. Muthukumaran A. Monodispersed spherical shaped selenium nanoparticles (SeNPs) synthesized by Bacillus subtilis and its toxicity evaluation in zebrafish embryos. Mater. Res. Express 2018 5 2 025020 10.1088/2053‑1591/aaabeb
    [Google Scholar]
  132. Zhang Z. Du Y. Liu T. Wong K.H. Chen T. Systematic acute and subchronic toxicity evaluation of polysaccharide–protein complex-functionalized selenium nanoparticles with anticancer potency. Biomater. Sci. 2019 7 12 5112 5123 10.1039/C9BM01104H 31573569
    [Google Scholar]
  133. Patil DP Usharani M Reddy G Kalakumar B Sawale GK Rindhe SL Subacute intravenous dose toxicity evaluation of nano selenium particles in rabbits. Int J Vet Sci Anim Husbandry 2024 9 2 10 17 10.22271/veterinary.2024.v9.i2a.1163
    [Google Scholar]
  134. Vahdati M. Tohidi Moghadam T. Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Sci. Rep. 2020 10 1 510 10.1038/s41598‑019‑57333‑7 31949299
    [Google Scholar]
  135. Anna V. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesized by the bacterium Azospirillum thiophilum spectrochimica acta part A Molec. Biomolecul. Spectros. 2018 192 458 463 10.1016/j.saa.2017.11.050
    [Google Scholar]
  136. Zambonino M.C. Quizhpe E.M. Jaramillo F.E. Rahman A. Santiago Vispo N. Jeffryes C. Dahoumane S.A. Green synthesis of selenium and tellurium nanoparticles: Current trends, biological properties and biomedical applications. Int. J. Mol. Sci. 2021 22 3 989 10.3390/ijms22030989 33498184
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812220085241024041311
Loading
/content/journals/nanoasi/10.2174/0122106812220085241024041311
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Selenium ; nanoparticles ; chemoprotective ; bioconversion ; neurodegeneration
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test