Skip to content
2000
Volume 14, Issue 6
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Selenium is a significant trace microelement responsible for detoxification and supporting the health of human beings. Selenium is consumed as a part of dietary supplements where in it has a very narrow margin for its physiological role and the toxic effects produced. Selenium nanoparticles (SeNP) have proven significant as a chemoprotective agent in treatment of the neurodegenerative conditions, diabetes, and antimicrobial, and antioxidant activity. The present review briefs the requirement of selenium and its various methods of preparation. Further emphasizing on the application of SeNP for the treatment of various disease conditions. A literature search on Science Direct, Pubmed, and Google Scholar, was done and the recent articles regarding the preparation of Selenium NP by chemical and biological techniques including microbial conversions and using plant extracts along with physical conversions were studied. Further diversified applications were looked for where SeNP can exhibit antioxidant properties as Se is an innate member of the antioxidant system. Summarizing the review on SeNP has been more exciting as Se as an element is known as trace element but phytofabricated and biogenic preparations of SeNP having low toxicity with synergistic effects. Toxicity studies indicate the safety of SeNP as compared to selenium oxide and itsinorganic salts, however in-depth study and species-to-species variation must be understoodto formulate the SeNP in the appropriate dosage form. Various techniques have been studied for the preparation of SeleniumNanoparticles and havethe potential for application in the treatment of various life-threateningdiseases and metabolic disorders, infectious conditions. The synergistic effect of Se and the plants or microorganisms known for their medicinal application reduces the toxicity of the selenium nanoparticles when compared within organic salts. Further extensive studies on the epidemiology regarding the variation in serum level of Se and its administration as a supplement or therapeutic purpose can be a cut-edge treatment for life-threatening conditions.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812220085241024041311
2024-10-29
2025-01-27
Loading full text...

Full text loading...

References

  1. BishtN. PhalswalP. KhannaP.K. Selenium nanoparticles: A review on synthesis and biomedical applications.Mater. Adv.2022331415143110.1039/D1MA00639H
    [Google Scholar]
  2. MehdiY. HornickJ.L. IstasseL. DufrasneI. Selenium in the environment, metabolism and involvement in body functions.Molecules20131833292331110.3390/molecules18033292 23486107
    [Google Scholar]
  3. Selenium2024Available from: https://ods.od.nih.gov/factsheets/Selenium-HealthProfessional
  4. S, K.; Iyer, S.; Sinkar, P.; Sengupta, C. Selenium levels in whole blood - the borderline low analysis.Clin. Chim. Acta201848730931010.1016/j.cca.2018.10.023 30326216
    [Google Scholar]
  5. KiełczykowskaM. KocotJ. PaździorM.A.R.E.K. MusikI. Selenium – a fascinating antioxidant of protective properties.Adv. Clin. Exp. Med.201827224525510.17219/acem/67222 29521069
    [Google Scholar]
  6. ErogluC. UnalD. CetinA. OrhanO. SivginS. OztürkA. Effect of serum selenium levels on radiotherapy-related toxicity in patients undergoing radiotherapy for head and neck cancer.Anticancer Res.201232835873590 22843950
    [Google Scholar]
  7. AlvesM.R.A. StarlingA.L.P. KanufreV.C. SoaresR.D.L. NortonR.C. AguiarM.J.B. JanuarioJ.N. Selenium intake and nutritional status of children with phenylketonuria in Minas Gerais, Brazil.J. Pediatr. (Rio J.)201288539640010.2223/JPED.2217 23092958
    [Google Scholar]
  8. FinleyJ.W. Selenium accumulation in plant foods.Nutr. Rev.200563619620210.1111/j.1753‑4887.2005.tb00137.x 16028563
    [Google Scholar]
  9. KieliszekM. Selenium–fascinating microelement, properties, and sources in food.Molecules2019247129810.3390/molecules24071298 30987088
    [Google Scholar]
  10. AronowL. Kerdel-VegasF. Seleno-cystathionine, a pharmacologically active factor in the seeds of Lecythisollaria: Cytotoxic and depilatory effects of extracts of Lecythisollaria.Nature196520549771185118610.1038/2051185a0
    [Google Scholar]
  11. MasekoT. CallahanD.L. DunsheaF.R. DoronilaA. KolevS.D. NgK. Chemical characterisation and speciation of organic selenium in cultivated selenium-enriched Agaricus bisporus.Food Chem.201314143681368710.1016/j.foodchem.2013.06.027 23993536
    [Google Scholar]
  12. ArnaultI. AugerJ. Seleno-compounds in garlic and onion.J. Chromatogr. A200611121-2233010.1016/j.chroma.2006.01.036 16480995
    [Google Scholar]
  13. RomanM. JitaruP. BarbanteC. Selenium biochemistry and its role for human health.Metallomics201461255410.1039/C3MT00185G 24185753
    [Google Scholar]
  14. SchallreuterK.U. WoodJ.M. Thioredoxin reductase — its role in epidermal redox status.J. Photochem. Photobiol. B2001642-317918410.1016/S1011‑1344(01)00235‑4 11744405
    [Google Scholar]
  15. ShiniS. SultanA. BrydenW. Selenium biochemistry and bioavailability: Implications for animal agriculture.Agriculture2015541277128810.3390/agriculture5041277
    [Google Scholar]
  16. MostertV. SelenoproteinP. Properties, functions, and regulation.Arch. Biochem. Biophys.2000376243343810.1006/abbi.2000.1735 10775431
    [Google Scholar]
  17. YaoH.D. WuQ. ZhangZ.W. LiS. WangX.L. LeiX.G. XuS.W. Selenoprotein W serves as an antioxidant in chicken myoblasts.Biochim. Biophys. Acta, Gen. Subj.2013183043112312010.1016/j.bbagen.2013.01.007 23333634
    [Google Scholar]
  18. LabunskyyV.M. HatfieldD.L. GladyshevV.N. Selenoproteins: Molecular pathways and physiological roles.Physiol. Rev.201494373977710.1152/physrev.00039.2013 24987004
    [Google Scholar]
  19. NieX. YangX. HeJ. LiuP. ShiH. WangT. ZhangD. Bioconversion of inorganic selenium to less toxic selenium forms by microbes: A review.Front. Bioeng. Biotechnol.202311116712310.3389/fbioe.2023.1167123 36994362
    [Google Scholar]
  20. RosenB.P. LiuZ. Transport pathways for arsenic and selenium: A minireview.Environ. Int.200935351251510.1016/j.envint.2008.07.023 18789529
    [Google Scholar]
  21. FinleyJ.W. Bioavailability of selenium from foods.Nutr. Rev.200664314615110.1111/j.1753‑4887.2006.tb00198.x 16572602
    [Google Scholar]
  22. HosnedlovaB. KepinskaM. SkalickovaS. FernandezC. Ruttkay-NedeckyB. PengQ. BaronM. MelcovaM. OpatrilovaR. ZidkovaJ. BjørklundG. SochorJ. KizekR. Nano-selenium and its nanomedicine applications: A critical review.Int. J. Nanomedicine2018132107212810.2147/IJN.S157541 29692609
    [Google Scholar]
  23. DrakeE.N. Cancer chemoprevention: Selenium as a prooxidant, not an antioxidant.Med. Hypotheses200667231832210.1016/j.mehy.2006.01.058 16574336
    [Google Scholar]
  24. ChandrakalaV. ArunaV. AngajalaG. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems.Emergent Mater.2022561593161510.1007/s42247‑021‑00335‑x 35005431
    [Google Scholar]
  25. AboyewaJ.A. SibuyiN.R.S. MeyerM. OguntibejuO.O. Green synthesis of metallic nanoparticles using some selected medicinal plants from southern africa and their biological applications.Plants2021109192910.3390/plants10091929 34579460
    [Google Scholar]
  26. Antunes FilhoS. dos SantosM.S. dos SantosO.A.L. BackxB.P. SoranM.L. OprişO. LungI. StegarescuA. BououdinaM. Biosynthesis of nanoparticles using plant extracts and essential oils.Molecules2023287306010.3390/molecules28073060 37049821
    [Google Scholar]
  27. AlsaiariN.S. AlzahraniF.M. AmariA. OsmanH. HarharahH.N. ElboughdiriN. TahoonM.A. Plant and microbial approaches as green methods for the synthesis of nanomaterials: Synthesis, applications, and future perspectives.Molecules202328146310.3390/molecules28010463 36615655
    [Google Scholar]
  28. SentkowskaA. PyrzyńskaK. The influence of synthesis conditions on the antioxidant activity of selenium nanoparticles.Molecules2022278248610.3390/molecules27082486 35458683
    [Google Scholar]
  29. Panahi-KalamueiM. Mousavi-KamazaniM. Salavati-NiasariM. Hosseinpour-MashkaniS.M. A simple sonochemical approach for synthesis of selenium nanostructures and investigation of its light harvesting application.Ultrason. Sonochem.20152324625610.1016/j.ultsonch.2014.09.006 25248917
    [Google Scholar]
  30. SharA.H. LakhanM.N. WangJ. AhmedM. AlaliK.T. AhmedR. AliI. DayoA.Q. Facile synthesis and characterization of selenium nanoparticles by the hydrothermal approach.Dig. J. Nanomater. Biostruct.201914867872
    [Google Scholar]
  31. SinghS.C. MishraS.K. SrivastavaR.K. GopalR. Optical properties of selenium quantum dots produced with laser irradiation of water suspended se nanoparticles.J. Phys. Chem. C201011441173741738410.1021/jp105037w
    [Google Scholar]
  32. ThakkarK.N. MhatreS.S. ParikhR.Y. Biological synthesis of metallic nanoparticles.Nanomedicine20106225726210.1016/j.nano.2009.07.002 19616126
    [Google Scholar]
  33. ShiX.D. TianY.Q. WuJ.L. WangS.Y. Synthesis, characterization, and biological activity of selenium nanoparticles conjugated with polysaccharides.Crit. Rev. Food Sci. Nutr.202161132225223610.1080/10408398.2020.1774497 32567982
    [Google Scholar]
  34. LangiB. ShahC. SinghK. ChaskarA. KumarM. BajajP.N. Ionic liquid-induced synthesis of selenium nanoparticles.Mater. Res. Bull.201045666867110.1016/j.materresbull.2010.03.005
    [Google Scholar]
  35. GuleriaA. NeogyS. RaoraneB.S. AdhikariS. Room temperature ionic liquid assisted rapid synthesis of amorphous Se nanoparticles: Their prolonged stabilization and antioxidant studies.Mater. Chem. Phys.202025312336910.1016/j.matchemphys.2020.123369
    [Google Scholar]
  36. MehtaS.K. ChaudharyS. KumarS. BhasinK.K. TorigoeK. SakaiH. AbeM. Surfactant assisted synthesis and spectroscopic characterization of selenium nanoparticles in ambient conditions.Nanotechnology2008192929560110.1088/0957‑4484/19/29/295601 21730604
    [Google Scholar]
  37. ShahC.P. KumarM. PushpaK.K. BajajP.N. Acrylonitrile-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles.Cryst. Growth Des.20088114159416410.1021/cg800669d
    [Google Scholar]
  38. DwivediC. ShahC.P. SinghK. KumarM. BajajP.N. An organic acid-induced synthesis and characterization of selenium nanoparticles.J. Nanotechnol.201120111610.1155/2011/651971
    [Google Scholar]
  39. ShahC.P. SinghK.K. KumarM. BajajP.N. Vinyl monomers-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles.Mater. Res. Bull.2010451566210.1016/j.materresbull.2009.09.001
    [Google Scholar]
  40. YuB. YouP. SongM. ZhouY. YuF. ZhengW. A facile and fast synthetic approach to create selenium nanoparticles with diverse shapes and their antioxidation ability.New J. Chem.20164021118112310.1039/C5NJ02519B
    [Google Scholar]
  41. Van OverscheldeO. GuisbiersG. SnydersR. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water.Appl Materials2013141610.1063/1.4824148
    [Google Scholar]
  42. QuintanaM. Haro-PoniatowskiE. MoralesJ. BatinaN. Synthesis of selenium nanoparticles by pulsed laser ablation.Appl. Surf. Sci.20021951-417518610.1016/S0169‑4332(02)00549‑4
    [Google Scholar]
  43. TzengW.Y. TsengY.H. YehT.T. TuC.M. SankarR. ChenY.H. HuangB.H. ChouF.C. LuoC.W. Selenium nanoparticle prepared by femtosecond laser-induced plasma shock wave.Opt. Express202028168569410.1364/OE.381898 32118991
    [Google Scholar]
  44. IoninA. IvanovaA. Khmel’nitskiiR. KlevkovY. KudryashovS. Mel’nikN. NastulyavichusA. RudenkoA. SaraevaI. SmirnovN. ZayarnyD. BaranovA. KirilenkoD. BrunkovP. ShakhminA. Milligram-per-second femtosecond laser production of Se nanoparticle inks and ink-jet printing of nanophotonic 2D-patterns.Appl. Surf. Sci.201843666266910.1016/j.apsusc.2017.12.057
    [Google Scholar]
  45. KarthikK.K. CheriyanB.V. RajeshkumarS. GopalakrishnanM. A review on selenium nanoparticles and their biomedical applications.Biomed Technol20246617410.1016/j.bmt.2023.12.001
    [Google Scholar]
  46. El-BatalA.I. MosallamF.M. GhorabM.M. HanoraA. GobaraM. BarakaA. ElsayedM.A. PalK. FathyR.M. Abd ElkodousM. El-SayyadG.S. Factorial design-optimized and gamma irradiation-assisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells.Int. J. Biol. Macromol.20201561584159910.1016/j.ijbiomac.2019.11.210 31790741
    [Google Scholar]
  47. AlagesanV. VenugopalS. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities.Bionanoscience20199110511610.1007/s12668‑018‑0566‑8
    [Google Scholar]
  48. Al-QaralehS.Y. Al-ZereiniW.A. OranS.A. Phyto-decoration of selenium nanoparticles using Moringa peregrina (forssk.) Fiori aqueous extract: Chemical characterization and bioactivity evaluation.Biointerface Res. Appl. Chem.202213211210.33263/BRIAC132.112
    [Google Scholar]
  49. FriteaL. LasloV. CavaluS. CosteaT. VicasS.I. Green biosynthesis of selenium nanoparticles using parsley (Petroselinum crispum) leaves extract. Stud. Univ. Vasile Goldiş” Arad.Lif. Sci. Seri.2017273203208
    [Google Scholar]
  50. MirzaK. NaazF. AhmadT. ManzoorN. SardarM. Development of cost-effective, ecofriendly selenium nanoparticle-functionalized cotton fabric for antimicrobial and antibiofilm activity.Fermentation2022911810.3390/fermentation9010018
    [Google Scholar]
  51. SantanuS. SowmiyaR. BalakrishnarajaR. Biosynthesis of selenium nanoparticles using citrus reticulata peel extract.World J. Pharm. Res.20154113221330
    [Google Scholar]
  52. Mohammed AliI.A. AL-Ahmed, H.I.; Ben Ahmed, A. AL-Ahmed HI, Ben Ahmed A. Evaluation of green synthesis (Withania somnifera) of selenium nanoparticles to reduce sperm DNA fragmentation diabetic mice induced with streptozotocin.Appl. Sci. 202313272810.3390/app13020728
    [Google Scholar]
  53. KokilaK. ElavarasanN. SujathaV. Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications.New J. Chem.201741157481749010.1039/C7NJ01124E
    [Google Scholar]
  54. PuriA. PatilS. Biogenic synthesis of selenium nanoparticles using Diospyros montana bark extract: Characterization, antioxidant, antibacterial, and antiproliferative activity.Biosci. Biotechnol. Res. Asia202219242344110.13005/bbra/2997
    [Google Scholar]
  55. RamamurthyC. SampathK.S. ArunkumarP. KumarM.S. SujathaV. PremkumarK. ThirunavukkarasuC. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells.Bioprocess Biosyst. Eng.20133681131113910.1007/s00449‑012‑0867‑1 23446776
    [Google Scholar]
  56. FardsadeghB. Jafarizadeh-MalmiriH. Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their In vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains.Green Process Synth20198139940710.1515/gps‑2019‑0007
    [Google Scholar]
  57. KapurM. SoniK. KohliK. Green synthesis of selenium nanoparticles from broccoli, characterization, application and toxicity.Adv. Techn. Biol. Med.2017512379176410.4172/2379‑1764.1000198
    [Google Scholar]
  58. DhanrajG. RajeshkumarS. Anticariogenic effect of selenium nanoparticles synthesized using Brassica oleracea.J. Nanomater.202120211910.1155/2021/8115585
    [Google Scholar]
  59. SribenjaratP. JirakanjanakitN. JirasripongpunK. Selenium nanoparticles biosynthesized by garlic extract as antimicrobial agent.Sci Enginee Heal Stud202030223110.14456/sehs.2020.3
    [Google Scholar]
  60. EzhuthupurakkalP.B. PolakiL.R. SuyavaranA. SubastriA. SujathaV. ThirunavukkarasuC. Selenium nanoparticles synthesized in aqueous extract of Allium sativum perturbs the structural integrity of Calf thymus DNA through intercalation and groove binding.Mater. Sci. Eng. C20177459760810.1016/j.msec.2017.02.003 28254334
    [Google Scholar]
  61. AlizadehS.R. SeyedabadiM. MontazeriM. KhanB.A. EbrahimzadehM.A. Allium paradoxum extract mediated green synthesis of SeNPs: Assessment of their anticancer, antioxidant, iron chelating activities, and antimicrobial activities against fungi, ATCC bacterial strains, Leishmania parasite, and catalytic reduction of methylene blue.Mater. Chem. Phys.202329612724010.1016/j.matchemphys.2022.127240
    [Google Scholar]
  62. SharmaG. SharmaA. BhaveshR. ParkJ. GanboldB. NamJ.S. LeeS.S. Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract.Molecules20141932761277010.3390/molecules19032761 24583881
    [Google Scholar]
  63. KirupagaranR. SarithaA. BhuvaneswariS. Green synthesis of selenium nanoparticles from leaf and stem extract of Leucas lavandulifolia Sm. and their application.J. Nanosci. Tech.201631224226
    [Google Scholar]
  64. HashemA.H. SelimT.A. AlruhailiM.H. SelimS. AlkhalifahD.H.M. Al JaouniS.K. SalemS.S. Unveiling antimicrobial and insecticidal activities of biosynthesized selenium nanoparticles using prickly pear peel waste.J. Funct. Biomater.202213311210.3390/jfb13030112 35997450
    [Google Scholar]
  65. SalemS.S. BadawyM.S.E.M. Al-AskarA.A. ArishiA.A. ElkadyF.M. HashemA.H. Green biosynthesis of selenium nanoparticles using orange peel waste: Characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria.Life202212689310.3390/life12060893 35743924
    [Google Scholar]
  66. PearceC.I. PattrickR.A.D. LawN. CharnockJ.M. CokerV.S. FellowesJ.W. OremlandR.S. LloydJ.R. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica.Environ. Technol.200930121313132610.1080/09593330902984751 19950474
    [Google Scholar]
  67. EswayahA.S. SmithT.J. GardinerP.H.E. Microbial transformations of selenium species of relevance to bioremediation.Appl. Environ. Microbiol.201682164848485910.1128/AEM.00877‑16 27260359
    [Google Scholar]
  68. WellsM. McGarryJ. GayeM.M. BasuP. OremlandR.S. StolzJ.F. Respiratory selenite reductase from Bacillus selenitireducens strain MLS10.J. Bacteriol.201920171012810.1128/JB.00614‑18 30642986
    [Google Scholar]
  69. Switzer BlumJ. StolzJ.F. OrenA. OremlandR.S. Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from dead sea sediments that respires selenate.Arch. Microbiol.2001175320821910.1007/s002030100257 11357513
    [Google Scholar]
  70. StaicuL.C. BartonL.L. Bacterial Metabolism of Selenium—For Survival or Profit. Bioremediation of Selenium Contaminated Wastewater. van HullebuschE. ChamSpringer201710.1007/978‑3‑319‑57831‑6_1
    [Google Scholar]
  71. FesharakiP.J. NazariP. ShakibaieM. RezaieS. BanoeeM. AbdollahiM. ShahverdiA.R. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process.Braz. J. Microbiol.201041246146610.1590/S1517‑83822010000200028 24031517
    [Google Scholar]
  72. PresentatoA. PiacenzaE. AnikovskiyM. CappellettiM. ZannoniD. TurnerR.J. Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1.N. Biotechnol.2018411810.1016/j.nbt.2017.11.002 29174512
    [Google Scholar]
  73. AlamH. KhatoonN. KhanM.A. HusainS.A. SaravananM. SardarM. Synthesis of selenium nanoparticles using probiotic bacteria Lactobacillus acidophilus and their enhanced antimicrobial activity against resistant bacteria.J. Cluster Sci.20203151003101110.1007/s10876‑019‑01705‑6
    [Google Scholar]
  74. ShoeibiS. MashreghiM. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities.J. Trace Elem. Med. Biol.20173913513910.1016/j.jtemb.2016.09.003 27908405
    [Google Scholar]
  75. KumarA. BeraS. SinghM. MondalD. Agrobacterium-assisted selenium nanoparticles: Molecular aspect of antifungal activity.Adv. Nat. Sci: Nanosci. Nanotechnol.20179101500410.1088/2043‑6254/aa9f4a
    [Google Scholar]
  76. MartínezF.G. Moreno-MartinG. PescumaM. Madrid-AlbarránY. MozziF. Biotransformation of selenium by lactic acid bacteria: Formation of seleno-nanoparticles and seleno-amino acids.Front. Bioeng. Biotechnol.2020850610.3389/fbioe.2020.00506 32596220
    [Google Scholar]
  77. WangZ. LiY. HuiZ. LiuJ. GuoX. ChenZ. YuZ. ZhaoA. WangS. CaiY. HeN. XuJ. ZhuangW. YingH. Biologically active selenium nanoparticles composited with Bacillus licheniformis extracellular polymeric substances fermented from cane molasses.Lebensm. Wiss. Technol.202318711525510.1016/j.lwt.2023.115255
    [Google Scholar]
  78. ZareB. BabaieS. SetayeshN. ShahverdiA.R. Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles.Nanomed. J.201311131910.7508/nmj.2013.01.002
    [Google Scholar]
  79. WangY. ShuX. ZhouQ. FanT. WangT. ChenX. LiM. MaY. NiJ. HouJ. ZhaoW. LiR. HuangS. WuL. Selenite reduction and the biogenesis of selenium nanoparticles by Alcaligenes faecalis Se03 isolated from the gut of Monochamusalternatus (Coleoptera: Cerambycidae).Int. J. Mol. Sci.2018199279910.3390/ijms19092799 30227664
    [Google Scholar]
  80. WangY. ShuX. HouJ. LuW. ZhaoW. HuangS. WuL. Selenium nanoparticle synthesized by Proteus mirabilis YC801: An efficacious pathway for selenite biotransformation and detoxification.Int. J. Mol. Sci.20181912380910.3390/ijms19123809 30501097
    [Google Scholar]
  81. HassanM.G. HawwaM.T. BarakaD.M. El-ShoraH.M. HamedA.A. Biogenic selenium nanoparticles and selenium/chitosan-Nanoconjugate biosynthesized by Streptomyces parvulus MAR4 with antimicrobial and anticancer potential.BMC Microbiol.20242412110.1186/s12866‑023‑03171‑7 38216871
    [Google Scholar]
  82. WadhwaniS. GorainM. BanerjeeP. ShedbalkarU. SinghR. KunduG. ChopadeB.A. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: Optimization, characterization and its anticancer activity in breast cancer cells.Int. J. Nanomedicine2017126841685510.2147/IJN.S139212 28979122
    [Google Scholar]
  83. AshengrophM. TozandehjaniS. Optimized resting cell method for green synthesis of selenium nanoparticles from a new Rhodotorula mucilaginosa strain.Process Biochem.202211619720510.1016/j.procbio.2022.03.014
    [Google Scholar]
  84. UllahA. YinX. WangF. XuB. MiraniZ.A. XuB. ChanM.W.H. AliA. UsmanM. AliN. NaveedM. Biosynthesis of selenium nanoparticles (via Bacillus subtilis BSN313), and their isolation, characterization, and bioactivities.Molecules20212618555910.3390/molecules26185559 34577029
    [Google Scholar]
  85. BlinovA.V. NagdalianA.A. SiddiquiS.A. MaglakelidzeD.G. GvozdenkoA.A. BlinovaA.A. YasnayaM.A. GolikA.B. RebezovM.B. JafariS.M. ShahM.A. Synthesis and characterization of selenium nanoparticles stabilized with cocamidopropyl betaine.Sci. Rep.20221212197510.1038/s41598‑022‑25884‑x 36539549
    [Google Scholar]
  86. PatraA.R. HajraS. BaralR. BhattacharyaS. Use of selenium as micronutrients and for future anticancer drug: A review.Nucleus202063210711810.1007/s13237‑019‑00306‑y
    [Google Scholar]
  87. RadomskaD. CzarnomysyR. RadomskiD. BielawskaA. BielawskiK. Selenium as a bioactive micronutrient in the human diet and its cancer chemopreventive activity.Nutrients2021135164910.3390/nu13051649 34068374
    [Google Scholar]
  88. ZengH. Selenium as an essential micronutrient: Roles in cell cycle and apoptosis.Molecules20091431263127810.3390/molecules14031263 19325522
    [Google Scholar]
  89. KuršvietienėL. MongirdienėA. BernatonienėJ. ŠulinskienėJ. StanevičienėI. Selenium anticancer properties and impact on cellular redox status.Antioxidants2020918010.3390/antiox9010080 31963404
    [Google Scholar]
  90. ZouJ. SuS. ChenZ. LiangF. ZengY. CenW. ZhangX. XiaY. HuangD. Hyaluronic acid-modified selenium nanoparticles for enhancing the therapeutic efficacy of paclitaxel in lung cancer therapy.Artif. Cells Nanomed. Biotechnol.20194713456346410.1080/21691401.2019.1626863 31469318
    [Google Scholar]
  91. MaiyoF. SinghM. Polymerized selenium nanoparticles for folate-receptor-targeted delivery of anti-luc-siRNA: Potential for gene silencing.Biomedicines2020847610.3390/biomedicines8040076 32260507
    [Google Scholar]
  92. OthmanM.S. ObeidatS.T. Al-BagawiA.H. FareidM.A. FehaidA. Abdel MoneimA.E. Green-synthetized selenium nanoparticles using berberine as a promising anticancer agent.J. Integr. Med.2022201657210.1016/j.joim.2021.11.002 34802980
    [Google Scholar]
  93. SinghD. SinghM. Hepatocellular-targeted mRNA delivery using functionalized selenium nanoparticles in vitro.Pharmaceutics202113329810.3390/pharmaceutics13030298 33668320
    [Google Scholar]
  94. FuY. JiC. MaZ. XuD. HuH. Targeted delivery of doxorubicin to hepatoma cells by lactobionic acid-decorated dual redox-responsive polyethylene glycol-doxorubicin nanoparticles.Int. J. Nanosci.2023223235001910.1142/S0219581X23500199
    [Google Scholar]
  95. RajeshkumarS. GaneshL. SanthoshkumarJ. Selenium nanoparticles as therapeutic agents in neurodegenerative diseases. In: In Book: Nanobiotechnology in neurodegenerative diseases; ,201920922410.1007/978‑3‑030‑30930‑5_8
    [Google Scholar]
  96. CongW. BaiR. LiY.F. WangL. ChenC. Selenium nanoparticles as an efficient nanomedicine for the therapy of Huntington’s disease.ACS Appl. Mater. Interfaces20191138347253473510.1021/acsami.9b12319 31479233
    [Google Scholar]
  97. NazıroğluM. MuhamadS. PeczeL. Nanoparticles as potential clinical therapeutic agents in Alzheimer’s disease: Focus on selenium nanoparticles.Expert Rev. Clin. Pharmacol.201710777378210.1080/17512433.2017.1324781 28463572
    [Google Scholar]
  98. AbozaidO.A.R. SallamM.W. El-SonbatyS. AzizaS. EmadB. AhmedE.S.A. Resveratrol-selenium nanoparticles alleviate neuroinflammation and neurotoxicity in a rat model of Alzheimer’s disease by regulating sirt1/miRNA-134/gsk3β expression.Biol. Trace Elem. Res.2022200125104511410.1007/s12011‑021‑03073‑7 35059981
    [Google Scholar]
  99. LiC. WangN. ZhengG. YangL. Oral administration of resveratrol-selenium-peptide nanocomposites alleviates Alzheimer’s disease-like pathogenesis by inhibiting Aβ aggregation and regulating gut microbiota.ACS Appl. Mater. Interfaces20211339464064642010.1021/acsami.1c14818 34569225
    [Google Scholar]
  100. YinT. YangL. LiuY. ZhouX. SunJ. LiuJ. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease.Acta Biomater.20152517218310.1016/j.actbio.2015.06.035 26143603
    [Google Scholar]
  101. YangL. WangY. Resveratrol-loaded selenium/chitosan nano-flowers alleviate glucolipid metabolism disorder-associated cognitive impairment in Alzheimer’s disease.Int. J. Biol. Macromol.202323912431610.1016/j.ijbiomac.2023.124316
    [Google Scholar]
  102. XuK. HuangP. WuY. LiuT. ShaoN. ZhaoL. HuX. ChangJ. PengY. QuS. Engineered selenium/human serum albumin nanoparticles for efficient targeted treatment of parkinson’s disease via oral gavage.ACS Nano20231720199611998010.1021/acsnano.3c05011 37807265
    [Google Scholar]
  103. SalaramoliS. JoshaghaniH.R. HosseiniM. HashemyS.I. Therapeutic effects of selenium on alpha-synuclein accumulation in substantia nigra pars compacta in a rat model of parkinson’s disease: Behavioral and biochemical outcomes.Biol. Trace Elem. Res.202420231115112510.1007/s12011‑023‑03748‑3 37386228
    [Google Scholar]
  104. YueD. ZengC. OkyereS.K. ChenZ. HuY. Glycine nano-selenium prevents brain oxidative stress and neurobehavioral abnormalities caused by MPTP in rats.J. Trace Elem. Med. Biol.20216412668010.1016/j.jtemb.2020.126680 33242795
    [Google Scholar]
  105. AltuhafiA. AltunM. HadwanM.H. The correlation between selenium-dependent glutathione peroxidase activity and oxidant/antioxidant balance in sera of diabetic patients with nephropathy.Rep. Biochem. Mol. Biol.202110216417210.52547/rbmb.10.2.164 34604406
    [Google Scholar]
  106. GeY.M. XueY. ZhaoX.F. LiuJ.Z. XingW.C. HuS.W. GaoH.M. Antibacterial and antioxidant activities of a novel biosynthesized selenium nanoparticles using Rosa roxburghii extract and chitosan: Preparation, characterization, properties, and mechanisms.Int. J. Biol. Macromol.2024254Pt 312797110.1016/j.ijbiomac.2023.127971 37944720
    [Google Scholar]
  107. KoraA.J. Tree gum stabilised selenium nanoparticles: Characterisation and antioxidant activity.IET Nanobiotechnol.201812565866210.1049/iet‑nbt.2017.0310 30095429
    [Google Scholar]
  108. LiuY. HuangW. HanW. LiC. ZhangZ. HuB. ChenS. CuiP. LuoS. TangZ. WuW. LuoQ. Structure characterization of Oudemansiella radicata polysaccharide and preparation of selenium nanoparticles to enhance the antioxidant activities.Lebensm. Wiss. Technol.202114611146910.1016/j.lwt.2021.111469
    [Google Scholar]
  109. YaoM. DengY. ZhaoZ. YangD. WanG. XuX. Selenium Nanoparticles Based on Morinda officinalis Polysaccharides: Characterization, Anti-Cancer Activities, and Immune-Enhancing Activities Evaluation In Vitro.Molecules2023286242610.3390/molecules28062426 36985397
    [Google Scholar]
  110. QiuW.Y. WangY.Y. WangM. YanJ.K. Construction, stability, and enhanced antioxidant activity of pectin-decorated selenium nanoparticles.Colloids Surf. B Biointerfaces201817069270010.1016/j.colsurfb.2018.07.003 29986266
    [Google Scholar]
  111. HanH.W. PatelK.D. KwakJ.H. JunS.K. JangT.S. LeeS.H. KnowlesJ.C. KimH.W. LeeH.H. LeeJ.H. Selenium nanoparticles as candidates for antibacterial substitutes and supplements against multidrug-resistant bacteria.Biomolecules2021117102810.3390/biom11071028 34356651
    [Google Scholar]
  112. YuanQ. XiaoR. AfolabiM. BommaM. XiaoZ. Evaluation of antibacterial activity of selenium nanoparticles against food-borne pathogens.Microorganisms2023116151910.3390/microorganisms11061519 37375021
    [Google Scholar]
  113. SentkowskaA. KonarskaJ. SzmytkeJ. GrudniakA. Herbal polyphenols as selenium reducers in the green synthesis of selenium nanoparticles: Antibacterial and antioxidant capabilities of the obtained SeNPs.Molecules2024298168610.3390/molecules29081686 38675506
    [Google Scholar]
  114. TomićN. StevanovićM.M. FilipovićN. GanićT. NikolićB. GajićI. ĆulafićD.M. Resveratrol/selenium nanocomposite with antioxidative and antibacterial properties.Nanomaterials 202414436810.3390/nano14040368 38392741
    [Google Scholar]
  115. Green synthesis of Annona muricata mediated selenium nanoparticles and its antifungal activity against Candida albicans.J. Popul. Ther. Clin. Pharmacol.2023301628228710.47750/jptcp.2023.30.16.038
    [Google Scholar]
  116. NileS.H. ThombreD. ShelarA. GosaviK. SangshettiJ. ZhangW. SieniawskaE. PatilR. KaiG. Antifungal properties of biogenic selenium nanoparticles functionalized with nystatin for the inhibition of Candida albicans biofilm formation.Molecules2023284183610.3390/molecules28041836 36838823
    [Google Scholar]
  117. SatpathyS. PanigrahiL.L. ArakhaM. The role of selenium nanoparticles in addressing diabetic complications: A comprehensive study.Curr. Top. Med. Chem.202424151327134210.2174/0115680266299494240326083936 38561614
    [Google Scholar]
  118. Abdel MoneimA. Al-QuraishyS. DkhilM.A. Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats.Int. J. Nanomedicine2015106741675610.2147/IJN.S91377 26604749
    [Google Scholar]
  119. LotfyM.M. DowidarM.F. AliH.A. GhonimiW.A.M. AL-Farga, A.; Ahmed, A.I. Effect of selenium nanoparticles and/or bee venom against STZ-induced diabetic cardiomyopathy and nephropathy.Metabolites202313340010.3390/metabo13030400 36984840
    [Google Scholar]
  120. BelliniS. BaruttaF. MastrocolaR. ImperatoreL. BrunoG. GrudenG. Heat shock proteins in vascular diabetic complications: Review and future perspective.Int. J. Mol. Sci.20171812270910.3390/ijms18122709 29240668
    [Google Scholar]
  121. KumarG.S. KulkarniA. KhuranaA. KaurJ. TikooK. Selenium nanoparticles involve HSP-70 and SIRT1 in preventing the progression of type 1 diabetic nephropathy.Chem. Biol. Interact.201422312513310.1016/j.cbi.2014.09.017 25301743
    [Google Scholar]
  122. HariharanS. DharmarajS. Selenium and selenoproteins: It’s role in regulation of inflammation.Inflammopharmacology202028366769510.1007/s10787‑020‑00690‑x 32144521
    [Google Scholar]
  123. YA A. Effect of Selenium nanoparticles in wound healing.Biochemistry Letters.202016116016810.21608/blj.2020.146617
    [Google Scholar]
  124. RamyaS. ShanmugasundaramT. BalagurunathanR. Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities.J. Trace Elem. Med. Biol.201532303910.1016/j.jtemb.2015.05.005 26302909
    [Google Scholar]
  125. GangadeviV. ThatikondaS. PooladandaV. DevabattulaG. GoduguC. Selenium nanoparticles produce a beneficial effect in psoriasis by reducing epidermal hyperproliferation and inflammation.J. Nanobiotechnology202119110110.1186/s12951‑021‑00842‑3 33849555
    [Google Scholar]
  126. El-GhazalyM.A. FadelN. RashedE. El-BatalA. KenawyS.A. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats.Can. J. Physiol. Pharmacol.201795210111010.1139/cjpp‑2016‑0183 27936913
    [Google Scholar]
  127. JavdaniM. BarzegarA. Application of chitosan hydrogels in traumatic spinal cord injury: A therapeutic approach based on the anti-inflammatory and antioxidant properties of selenium nanoparticles.Front. Biomed. Technolog.2023111610.18502/fbt.v10i3.13166
    [Google Scholar]
  128. MalhotraS. WellingM.N. MantriS.B. DesaiK. In vitro and in vivo antioxidant, cytotoxic, and anti‐chronic inflammatory arthritic effect of selenium nanoparticles.J. Biomed. Mater. Res. B Appl. Biomater.20161045993100310.1002/jbm.b.33448 25994972
    [Google Scholar]
  129. UrbankovaL. SkalickovaS. PribilovaM. RidoskovaA. PelcovaP. SkladankaJ. HorkyP. Effects of sub-lethal doses of selenium nanoparticles on the health status of rats.Toxics2021922810.3390/toxics9020028 33546233
    [Google Scholar]
  130. KalishwaralalK. JeyabharathiS. SundarK. MuthukumaranA. A novel one-pot green synthesis of selenium nanoparticles and evaluation of its toxicity in zebrafish embryos.Artif. Cells Nanomed. Biotechnol.201644247147710.3109/21691401.2014.962744 25287880
    [Google Scholar]
  131. ChandramohanS. SundarK. MuthukumaranA. Monodispersed spherical shaped selenium nanoparticles (SeNPs) synthesized by Bacillus subtilis and its toxicity evaluation in zebrafish embryos.Mater. Res. Express20185202502010.1088/2053‑1591/aaabeb
    [Google Scholar]
  132. ZhangZ. DuY. LiuT. WongK.H. ChenT. Systematic acute and subchronic toxicity evaluation of polysaccharide–protein complex-functionalized selenium nanoparticles with anticancer potency.Biomater. Sci.20197125112512310.1039/C9BM01104H 31573569
    [Google Scholar]
  133. PatilD.P. UsharaniM. ReddyG. KalakumarB. SawaleGK. RindheSL. Subacute intravenous dose toxicity evaluation of nano selenium particles in rabbits.Int J Vet Sci Anim Husbandry202492101710.22271/veterinary.2024.v9.i2a.1163
    [Google Scholar]
  134. VahdatiM. Tohidi MoghadamT. Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties.Sci. Rep.202010151010.1038/s41598‑019‑57333‑7 31949299
    [Google Scholar]
  135. AnnaV. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesized by the bacterium Azospirillum thiophilum spectrochimica acta part A Molec. Biomolecul.Spectros.201819245846310.1016/j.saa.2017.11.050
    [Google Scholar]
  136. ZamboninoM.C. QuizhpeE.M. JaramilloF.E. RahmanA. Santiago VispoN. JeffryesC. DahoumaneS.A. Green synthesis of selenium and tellurium nanoparticles: Current trends, biological properties and biomedical applications.Int. J. Mol. Sci.202122398910.3390/ijms22030989 33498184
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812220085241024041311
Loading
/content/journals/nanoasi/10.2174/0122106812220085241024041311
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test