Skip to content
2000
image of Investigation of the Antibacterial Activity and Antiproliferative Properties of Ag Nanoparticles Synthesized Using Lavandula angustifolia Sevtopolis Extract against Prostate Cancer Cell Lines

Abstract

Introduction

In this study, silver nanoparticles (AgNPs) were synthesized using () plant extract without using any reducing or stabilizing agent.

Methods

The morphologies, optical properties, and crystallinities of the prepared AgNPs were determined using scanning electron microscopy, UV-visible spectroscopy, and X-ray diffraction.

Results

The antibacterial activities of the synthesized AgNPs against some gram-negative and gram-positive bacterial species were investigated. The lowest effect was observed against the Gram-positive B. cereus ATCC 11778 with a concentration of 0.0375 µg/mL. Additionally, the toxic effect on the human normal cell line HEK-293T and the antiproliferative activity against the prostate (PC3) cancer cell line were examined. The IC values of AgNPs against PC3 and HEK-293T cells were found to be 4.72 µL/mL and 6.838 µL/mL, respectively.

Conclusion

In conclusion, due to their antiproliferative and antibacterial activities, AgNPs synthesized using LA Sevtopolis extract were found to have potential applications in various biomedical fields.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029351072250106052955
2025-01-24
2025-06-21
Loading full text...

Full text loading...

References

  1. Nel A. Xia T. Mädler L. Li N. Toxic potential of materials at the nanolevel. Science 2006 311 5761 622 627 10.1126/science.1114397 16456071
    [Google Scholar]
  2. Zahin N. Anwar R. Tewari D. Kabir M.T. Sajid A. Mathew B. Uddin M.S. Aleya L. Abdel-Daim M.M. Nanoparticles and its biomedical applications in health and diseases: Special focus on drug delivery. Environ. Sci. Pollut. Res. Int. 2020 27 16 19151 19168 10.1007/s11356‑019‑05211‑0 31079299
    [Google Scholar]
  3. Hasan A. Morshed M. Memic A. Hassan S. Webster T. Marei H. Nanoparticles in tissue engineering: Applications, challenges and prospects. Int. J. Nanomedicine 2018 13 5637 5655 10.2147/IJN.S153758 30288038
    [Google Scholar]
  4. Haider A. Kang I.K. Preparation of silver nanoparticles and their industrial and biomedical applications: A comprehensive review. Adv. Mater. Sci. Eng. 2015 2015 1 16 10.1155/2015/165257
    [Google Scholar]
  5. Borah D. Das N. Das N. Bhattacharjee A. Sarmah P. Ghosh K. Chandel M. Rout J. Pandey P. Ghosh N.N. Bhattacharjee C.R. Alga‐mediated facile green synthesis of silver nanoparticles: Photophysical, catalytic and antibacterial activity. Appl. Organomet. Chem. 2020 34 5 e5597 10.1002/aoc.5597
    [Google Scholar]
  6. Ghosh T. Chattopadhyay A. Mandal A.C. Pramanik S. Kuiri P.K. Optical, structural, and antibacterial properties of biosynthesized Ag nanoparticles at room temperature using Azadirachta indica leaf extract. Zhongguo Wuli Xuekan 2020 68 835 848 10.1016/j.cjph.2020.10.025
    [Google Scholar]
  7. Anjana V.N. Koshy E.P. Mathew B. Facile synthesis of silver nanoparticles using Azolla caroliniana, their cytotoxicity, catalytic, optical and antibacterial activity. Mater. Today Proc. 2020 25 163 168 10.1016/j.matpr.2019.12.250
    [Google Scholar]
  8. Mahmoudi R. Aghaei S. Salehpour Z. Mousavizadeh A. Khoramrooz S.S. Taheripour Sisakht M. Christiansen G. Baneshi M. Karimi B. Bardania H. Antibacterial and antioxidant properties of phyto‐synthesized silver nanoparticles using Lavandula stoechas extract. Appl. Organomet. Chem. 2020 34 2 e5394 10.1002/aoc.5394
    [Google Scholar]
  9. Ödemiş Ö. Özdemir S. Gonca S. Ağırtaş M.S. Characterization of silver nanoparticles fabricated by green synthesis using Urtica dioica and Lavandula angustifolia and investigation of antimicrobial and antioxidant. Inorg. Nano-Metal Chem. 2022 54 5 429 442 10.1080/24701556.2022.2068584
    [Google Scholar]
  10. Simsek A. Pehlivanoglu S. Aydin Acar C. Anti-proliferative and apoptotic effects of green synthesized silver nanoparticles using Lavandula angustifolia on human glioblastoma cells. 3 Biotech 2021 11 374 10.1007/s13205‑021‑02923‑4
    [Google Scholar]
  11. Huang H. Yang X. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydr. Res. 2004 339 15 2627 2631 10.1016/j.carres.2004.08.005 15476726
    [Google Scholar]
  12. Sharma V.K. Yngard R.A. Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009 145 1-2 83 96 10.1016/j.cis.2008.09.002 18945421
    [Google Scholar]
  13. Mert Sivri F. Akkoc S. Önem E. Uysal E. Biosynthesis of Ag nanoparticles using Laurus nobilis leaf extract and biomedical applications. Inorg. Nano-Metal Chem. 2024 1 8 10.1080/24701556.2024.2358339
    [Google Scholar]
  14. Thangamuniyandi P. Nagaraj K. Velmurugan G. Kamalesu S. Alshalwi M. Alotaibi K.M. Maity P. Abhijith S.M. Shah F. Kaliyaperumal R. Rajaraman D. Green synthesis of starch‐capped CdS nanoparticles doped with Copper (II) and Manganese (II): Structural, optical, and photocatalytic properties. Eur. J. Inorg. Chem. 2024 202400291 e202400291 10.1002/ejic.202400291
    [Google Scholar]
  15. Muhammed M.T. Er M. Akkoc S. Molecular modeling and in vitro antiproliferative activity studies of some imidazole and isoxazole derivatives. J. Mol. Struct. 2023 1282 135066 10.1016/j.molstruc.2023.135066
    [Google Scholar]
  16. Umashankari J. Inbakandan D. Ajithkumar T.T. Balasubramanian T. Mangrove plant, Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens. Aquat. Biosyst. 2012 8 1 11 10.1186/2046‑9063‑8‑11 22608057
    [Google Scholar]
  17. Saxena A. Tripathi R. Singh R. Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig. J. Nanomater. Biostruct. 2010 5 427 432
    [Google Scholar]
  18. Hoda N. Budama Akpolat L. Mert Si̇vri̇ F. Kurtuluş D. Biosynthesis of bimetallic Ag-Au (core-shell) nanoparticles using aqueous extract of bay leaves (Laurus nobilis L.). J. Turk. Chem. Soc. Sect. A Chem. 2021 8 4 1035 1044 10.18596/jotcsa.885558
    [Google Scholar]
  19. Vinod M. Gopchandran K.G. Ag@Au core–shell nanoparticles synthesized by pulsed laser ablation in water: Effect of plasmon coupling and their SERS performance. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015 149 913 919 10.1016/j.saa.2015.05.004 26004101
    [Google Scholar]
  20. Philip D. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009 73 2 374 381 10.1016/j.saa.2009.02.037 19324587
    [Google Scholar]
  21. Patra J.K. Baek K.H. Green nanobiotechnology: Factors affecting synthesis and characterization techniques. J. Nanomater. 2014 2014 1 417305 10.1155/2014/417305
    [Google Scholar]
  22. Azad A. Zafar H. Raza F. Sulaiman M. Factors influencing the green synthesis of metallic nanoparticles using plant extracts: A comprehensive review. Pharmaceutical Fronts 2023 5 3 e117 e131 10.1055/s‑0043‑1774289
    [Google Scholar]
  23. Elemike E.E. Onwudiwe D.C. Ekennia A.C. Katata-Seru L. Biosynthesis, characterization, and antimicrobial effect of silver nanoparticles obtained using Lavandula × intermedia. Res. Chem. Intermed. 2017 43 3 1383 1394 10.1007/s11164‑016‑2704‑7
    [Google Scholar]
  24. Draviana H.T. Fitriannisa I. Khafid M. Krisnawati D.I. Widodo Lai C.H. Fan Y.J. Kuo T.R. Size and charge effects of metal nanoclusters on antibacterial mechanisms. J. Nanobiotechnology 2023 21 1 428 10.1186/s12951‑023‑02208‑3 37968705
    [Google Scholar]
  25. Singh M. Singh S. Prasad S. Gambhir I. Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig. J. Nanomater. Biostruct. 2008 3 115 122
    [Google Scholar]
  26. Taglietti A. Diaz Fernandez Y.A. Amato E. Cucca L. Dacarro G. Grisoli P. Necchi V. Pallavicini P. Pasotti L. Patrini M. Antibacterial activity of glutathione-coated silver nanoparticles against Gram positive and Gram negative bacteria. Langmuir 2012 28 21 8140 8148 10.1021/la3003838 22546237
    [Google Scholar]
  27. Firdhouse M.J. Lalitha P. Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis—antiproliferative effect against prostate cancer cells. Cancer Nanotechnol. 2013 4 6 137 143 10.1007/s12645‑013‑0045‑4 26069509
    [Google Scholar]
  28. Abdelhameed R.F.A. Nafie M.S. Hal D.M. Nasr A.M. Swidan S.A. Abdel-Kader M.S. Ibrahim A.K. Ahmed S.A. Badr J.M. Eltamany E.E. Comparative cytotoxic evaluation of Zygophyllum album root and aerial parts of different extracts and their biosynthesized silver nanoparticles on lung A549 and prostate PC-3 cancer cell lines. Pharmaceuticals 2022 15 11 1334 10.3390/ph15111334 36355507
    [Google Scholar]
  29. Prasannaraj G. Sahi S.V. Ravikumar S. Venkatachalam P. Enhanced cytotoxicity of biomolecules loaded metallic silver nanoparticles against human liver (HepG2) and prostate (PC3) cancer cell lines. J. Nanosci. Nanotechnol. 2016 16 4948 4959 10.1166/jnn.2016.12336
    [Google Scholar]
  30. Bhat M.P. Kumar R.S. Rudrappa M. Basavarajappa D.S. Swamy P.S. Almansour A.I. Perumal K. Nayaka S. Bio-inspired silver nanoparticles from Artocarpus lakoocha fruit extract and evaluation of their antibacterial activity and anticancer activity on human prostate cancer cell line. Appl. Nanosci. 2023 13 4 3041 3051 10.1007/s13204‑022‑02381‑1
    [Google Scholar]
  31. Vasanth K. Ilango K. MohanKumar R. Agrawal A. Dubey G.P. Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloids Surf. B Biointerfaces 2014 117 354 359 10.1016/j.colsurfb.2014.02.052 24681047
    [Google Scholar]
  32. Amini S.M. Samareh Salavati Pour M. Vahidi R. Kouhbananinejad S.M. Sattarzadeh Bardsiri M. Farsinejad A. Green synthesis of stable silver nanoparticles using teucrium polium extract: In-vitro anticancer activity on NALM-6. Nanomed Res J. 2021 6 10.22034/nmrj.2021.02.008
    [Google Scholar]
  33. Masimen M.A.A. Harun N.A. Maulidiani M. Ismail W.I.W. Overcoming methicillin-resistance Staphylococcus aureus (MRSA) using antimicrobial peptides-silver nanoparticles. Antibiotics 2022 11 7 951 10.3390/antibiotics11070951 35884205
    [Google Scholar]
/content/journals/mns/10.2174/0118764029351072250106052955
Loading
/content/journals/mns/10.2174/0118764029351072250106052955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test