Skip to content
2000
image of The Role of Noncoding RNAs in the Prognosis and Diagnosis of Colorectal Cancer: An Emerging Biomarker

Abstract

Colorectal cancer has become the leading cause of death worldwide, and it is the second most common cancer in women and the third most common cancer in men. Accumulating evidence suggests that genetic and epigenetic factors play a key role in the development of colorectal cancer. Cancer Stem Cells (CSC) play an important role in the suppression or development of cancer in various conditions. In recent years, non-coding RNAs (ncRNA) have been the focus, and the association of CSC and non-coding RNA has played a crucial role in the development of human cancers. These non-coding RNAs are known to be expressed in many cancers. Studies have suggested that ncRNAs are dysregulated in colorectal cancer cells, and different factors, like Wnt and Notch, are involved in this dysregulation. ncRNAs play a significant role in cancer initiation, migration, and resistance to therapies. Moreover, long noncoding RNAs are known to regulate tumor suppressor genes or oncogenes. Targeting different ncRNAs like miRNA, circular RNA, long noncoding RNAs, and small interfering RNA may provide efficient, targeted therapeutic strategies for colon cancer treatment. This review aims to briefly discuss the latest findings on the role of noncoding RNAs in the prognosis and diagnosis of colon cancer.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366340944241122100236
2024-11-26
2025-07-15
Loading full text...

Full text loading...

References

  1. Liau X.L. Salvamani S. Gunasekaran B. Chellappan D.K. Rhodes A. Ulaganathan V. Tiong Y.L. CCAT 1- A pivotal oncogenic long non-coding RNA in colorectal cancer. Br. J. Biomed. Sci. 2023 80 11103 10.3389/bjbs.2023.11103 37025163
    [Google Scholar]
  2. Asthana S. Khenchi R. Labani S. Incidence of colorectal cancers in India. Curr Med Res Pract. 2021 11 2 91 96 10.4103/cmrp.cmrp_65_20
    [Google Scholar]
  3. Qiu C. Shen X. Lu H. Chen Y. Xu C. Zheng P. Xia Y. Wang J. Zhang Y. Li S. Zou P. Cui R. Chen J. Combination therapy with HSP90 inhibitors and piperlongumine promotes ROS-mediated ER stress in colon cancer cells. Cell Death Discov. 2023 9 1 375 10.1038/s41420‑023‑01672‑y 37833257
    [Google Scholar]
  4. Li N. Shen J. Qiao X. Gao Y. Su H.B. Zhang S. Long non-coding RNA signatures associated with ferroptosis predict prognosis in colorectal cancer. Int. J. Gen. Med. 2022 15 33 43 10.2147/IJGM.S331378 35018112
    [Google Scholar]
  5. Hullings A.G. Sinha R. Liao L.M. Freedman N.D. Graubard B.I. Loftfield E. Whole grain and dietary fiber intake and risk of colorectal cancer in the NIH-AARP diet and health study cohort. Am. J. Clin. Nutr. 2020 112 3 603 612 10.1093/ajcn/nqaa161 32619213
    [Google Scholar]
  6. Ye P. Xi Y. Huang Z. Xu P. Linking obesity with colorectal cancer: Epidemiology and mechanistic insights. Cancers 2020 12 6 1408 10.3390/cancers12061408 32486076
    [Google Scholar]
  7. Zeng Z. Fu M. Hu Y. Wei Y. Wei X. Luo M. Regulation and signaling pathways in cancer stem cells: Implications for targeted therapy for cancer. Mol. Cancer 2023 22 1 172 10.1186/s12943‑023‑01877‑w 37853437
    [Google Scholar]
  8. Gao Z. Li Z. Liu Y. Liu Z. Forkhead box O3 promotes colon cancer proliferation and drug resistance by activating MDR1 expression. Mol. Genet. Genomic Med. 2019 7 3 e554 10.1002/mgg3.554 30623608
    [Google Scholar]
  9. Anusewicz D. Orzechowska M. Bednarek A.K. Notch signaling pathway in cancer—review with bioinformatic analysis. Cancers 2021 13 4 768 10.3390/cancers13040768 33673145
    [Google Scholar]
  10. Koveitypour Z. Panahi F. Vakilian M. Peymani M. Seyed Forootan F. Nasr Esfahani M.H. Ghaedi K. Signaling pathways involved in colorectal cancer progression. Cell Biosci. 2019 9 1 97 10.1186/s13578‑019‑0361‑4 31827763
    [Google Scholar]
  11. Sarangi M. Padhi S. Novel herbal drug delivery system: An overview. Arch Med Health Sci. 2018 6 1 171 10.4103/amhs.amhs_88_17
    [Google Scholar]
  12. Babaei F. Moafizad A. Darvishvand Z. Mirzababaei M. Hosseinzadeh H. Nassiri-Asl M. Review of the effects of vitexin in oxidative stress‐related diseases. Food Sci. Nutr. 2020 8 6 2569 2580 10.1002/fsn3.1567 32566174
    [Google Scholar]
  13. Barret M. Boustiere C. Canard J.M. Arpurt J.P. Bernardini D. Bulois P. Chaussade S. Heresbach D. Joly I. Lapuelle J. Laugier R. Lesur G. Pienkowski P. Ponchon T. Pujol B. Richard-Molard B. Robaszkiewicz M. Systchenko R. Abbas F. Schott-Pethelaz A.M. Cellier C. Société Française d’Endoscopie Digestive Factors associated with adenoma detection rate and diagnosis of polyps and colorectal cancer during colonoscopy in France: Results of a prospective, nationwide survey. PLoS One 2013 8 7 e68947 10.1371/journal.pone.0068947 23874822
    [Google Scholar]
  14. Kaminski M.F. Regula J. Kraszewska E. Polkowski M. Wojciechowska U. Didkowska J. Zwierko M. Rupinski M. Nowacki M.P. Butruk E. Quality indicators for colonoscopy and the risk of interval cancer. N. Engl. J. Med. 2010 362 19 1795 1803 10.1056/NEJMoa0907667 20463339
    [Google Scholar]
  15. Phalguni A. Seaman H. Routh K. Halloran S. Simpson S. Tests detecting biomarkers for screening of colorectal cancer: What is on the horizon? GMS Health Technol. Assess. 2015 11 Doc01 26131022
    [Google Scholar]
  16. Nikolouzakis T. Vassilopoulou L. Fragkiadaki P. Mariolis Sapsakos T. Papadakis G. Spandidos D. Tsatsakis A. Tsiaoussis J. Improving diagnosis, prognosis and prediction by using biomarkers in CRC patients (Review). Oncol. Rep. 2018 39 6 2455 2472 10.3892/or.2018.6330 29565457
    [Google Scholar]
  17. Ding Q. Kong X. Zhong W. Liu W. Fecal biomarkers: Non-invasive diagnosis of colorectal cancer. Front. Oncol. 2022 12 971930 10.3389/fonc.2022.971930 36119474
    [Google Scholar]
  18. Okugawa Y. Grady W.M. Goel A. Epigenetic alterations in colorectal cancer: Emerging biomarkers. Gastroenterology 2015 149 5 1204 1225.e12 10.1053/j.gastro.2015.07.011 26216839
    [Google Scholar]
  19. Chen M. Lin M. Wang X. Overexpression of miR-19a inhibits colorectal cancer angiogenesis by suppressing KRAS expression Oncol Rep 2018 39 2 619 626 10.3892/or.2017.6110
    [Google Scholar]
  20. Arribas-Martin A. Díaz-Pizarro-Graf J.I. Muñoz-Hinojosa J.D. Valdés-Castañeda A. Cruz-Ramírez O. Bertrand M.M. Laparoscopic versus open surgery for colorectal cancer. A comparative study. Cir. Cir. 2014 82 3 274 281 25238469
    [Google Scholar]
  21. Girigoswami K. Girigoswami A. A review on the role of nanosensors in detecting cellular miRNA expression in colorectal cancer. Endocr. Metab. Immune Disord. Drug Targets 2021 21 1 12 26 10.2174/1871530320666200515115723 32410567
    [Google Scholar]
  22. Janani G. Girigoswami A. Deepika B. Udayakumar S. Girigoswami K. Unveiling the role of nano-formulated red algae extract in cancer management. Molecules 2024 29 9 2077 10.3390/molecules29092077 38731568
    [Google Scholar]
  23. Deepika B. Pallavi P. Gowtham P. Girigoswami A. Girigoswami K. Anticancer potential of nanoformulated extract of Passiflora incarnata leaves. Biocatal. Agric. Biotechnol. 2024 57 103109 10.1016/j.bcab.2024.103109
    [Google Scholar]
  24. Statello L. Guo C.J. Chen L.L. Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021 22 2 96 118 10.1038/s41580‑020‑00315‑9 33353982
    [Google Scholar]
  25. Ramos A. Sadeghi S. Tabatabaeian H. Battling chemoresistance in cancer: Root causes and strategies to uproot them. Int. J. Mol. Sci. 2021 22 17 9451 10.3390/ijms22179451 34502361
    [Google Scholar]
  26. Li Y. Wang Z. Ajani J.A. Song S. Drug resistance and cancer stem cells. Cell Commun. Signal. 2021 19 1 19 10.1186/s12964‑020‑00627‑5 33588867
    [Google Scholar]
  27. Schwerdtfeger M. Desiderio V. Kobold S. Regad T. Zappavigna S. Caraglia M. Long non-coding RNAs in cancer stem cells. Transl. Oncol. 2021 14 8 101134 10.1016/j.tranon.2021.101134 34051619
    [Google Scholar]
  28. Feng B. Wu J. Shen B. Jiang F. Feng J. Cancer-associated fibroblasts and resistance to anticancer therapies: Status, mechanisms, and countermeasures. Cancer Cell Int. 2022 22 1 166 10.1186/s12935‑022‑02599‑7 35488263
    [Google Scholar]
  29. Liu Q. Guo Z. Li G. Zhang Y. Liu X. Li B. Wang J. Li X. Cancer stem cells and their niche in cancer progression and therapy. Cancer Cell Int. 2023 23 1 305 10.1186/s12935‑023‑03130‑2 38041196
    [Google Scholar]
  30. Plaks V. Kong N. Werb Z. The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2015 16 3 225 238 10.1016/j.stem.2015.02.015 25748930
    [Google Scholar]
  31. Zheng Z. Li P. Shen F. Shi Y. Shao C. Mesenchymal stem/stromal cells in cancer: From initiation to metastasis. Arch. Med. Res. 2022 53 8 785 793 10.1016/j.arcmed.2022.11.001 36462949
    [Google Scholar]
  32. Ayob A.Z. Ramasamy T.S. Cancer stem cells as key drivers of tumour progression. J. Biomed. Sci. 2018 25 1 20 10.1186/s12929‑018‑0426‑4 29506506
    [Google Scholar]
  33. Serrano-Gomez S.J. Maziveyi M. Alahari S.K. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol. Cancer 2016 15 1 18 10.1186/s12943‑016‑0502‑x 26905733
    [Google Scholar]
  34. Hao Y. Baker D. ten Dijke P. TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int. J. Mol. Sci. 2019 20 11 2767 10.3390/ijms20112767 31195692
    [Google Scholar]
  35. Khan A. Ahmed E. Elareer N. Junejo K. Steinhoff M. Uddin S. Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies. Cells 2019 8 8 840 10.3390/cells8080840 31530793
    [Google Scholar]
  36. Liu J. Xiao Q. Xiao J. Niu C. Li Y. Zhang X. Zhou Z. Shu G. Yin G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022 7 1 3 10.1038/s41392‑021‑00762‑6 34980884
    [Google Scholar]
  37. Xu W. Hua Y. Deng F. Wang D. Wu Y. Zhang W. Tang J. MiR‐145 in cancer therapy resistance and sensitivity: A comprehensive review. Cancer Sci. 2020 111 9 3122 3131 10.1111/cas.14517 32506767
    [Google Scholar]
  38. Zhu Y. Wang C. Becker S.A. Hurst K. Nogueira L.M. Findlay V.J. Camp E.R. miR-145 antagonizes SNAI1-mediated stemness and radiation resistance in colorectal cancer. Mol. Ther. 2018 26 3 744 754 10.1016/j.ymthe.2017.12.023 29475734
    [Google Scholar]
  39. Bryl R. Piwocka O. Kawka E. Mozdziak P. Kempisty B. Knopik-Skrocka A. Cancer stem cells—the insight into non-coding RNAs. Cells 2022 11 22 3699 10.3390/cells11223699 36429127
    [Google Scholar]
  40. Liu C. Liu R. Zhang D. Deng Q. Liu B. Chao H.P. Rycaj K. Takata Y. Lin K. Lu Y. Zhong Y. Krolewski J. Shen J. Tang D.G. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat. Commun. 2017 8 1 14270 10.1038/ncomms14270 28112170
    [Google Scholar]
  41. Pan W. Chai B. Li L. Lu Z. Ma Z. p53/MicroRNA-34 axis in cancer and beyond. Heliyon 2023 9 4 e15155 10.1016/j.heliyon.2023.e15155 37095919
    [Google Scholar]
  42. Jiao X. Qian X. Wu L. Li B. Wang Y. Kong X. Xiong L. microRNA: The Impact on cancer stemness and therapeutic resistance. Cells 2019 9 1 8 10.3390/cells9010008 31861404
    [Google Scholar]
  43. Kristensen L.S. Hansen T.B. Venø M.T. Kjems J. Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene 2018 37 5 555 565 10.1038/onc.2017.361 28991235
    [Google Scholar]
  44. Qu S. Liu Z. Yang X. Zhou J. Yu H. Zhang R. Li H. The emerging functions and roles of circular RNAs in cancer. Cancer Lett. 2018 414 301 309 10.1016/j.canlet.2017.11.022 29174799
    [Google Scholar]
  45. Zepeda-Enríquez P. Silva-Cázares M.B. López-Camarillo C. Novel insights into circular RNAs in metastasis in breast cancer: An update. Noncoding RNA 2023 9 5 55 10.3390/ncrna9050055 37736901
    [Google Scholar]
  46. Li W. Yang X. Shi C. Zhou Z. Hsa_circ_002178 promotes the growth and migration of breast cancer cells and maintains cancer stem-like cell properties through regulating miR-1258/KDM7A axis. Cell Transplant. 2020 29 10.1177/0963689720960174 32951449
    [Google Scholar]
  47. Zhang L. Dong X. Yan B. Yu W. Shan L. CircAGFG1 drives metastasis and stemness in colorectal cancer by modulating YY1/CTNNB1. Cell Death Dis. 2020 11 7 542 10.1038/s41419‑020‑2707‑6 32681092
    [Google Scholar]
  48. Lin X. Chen W. Wei F. Xie X. TV-circRGPD6 nanoparticle suppresses breast cancer stem cell-mediated metastasis via the miR-26b/YAF2 Axis. Mol. Ther. 2021 29 1 244 262 10.1016/j.ymthe.2020.09.005 32950105
    [Google Scholar]
  49. Ismail N.H. Mussa A. Al-Khreisat M.J. Mohamed Yusoff S. Husin A. Al-Jamal H.A.N. Johan M.F. Islam M.A. Dysregulation of non-coding RNAs: Roles of miRNAs and lncRNAs in the pathogenesis of multiple myeloma. Noncoding RNA 2023 9 6 68 10.3390/ncrna9060068 37987364
    [Google Scholar]
  50. Valkov N. Das S. Y RNAs: Biogenesis, function and implications for the cardiovascular system. Adv. Exp. Med. Biol. 2020 1229 327 342 10.1007/978‑981‑15‑1671‑9_20 32285422
    [Google Scholar]
  51. Dezfuli N.K. Alipoor S.D. Dalil Roofchayee N. Seyfi S. Salimi B. Adcock I.M. Mortaz E. Evaluation expression of miR-146a and miR-155 in non-small-cell lung cancer patients. Front. Oncol. 2021 11 715677 10.3389/fonc.2021.715677 34790566
    [Google Scholar]
  52. Han W. Cui H. Liang J. Su X. Role of MicroRNA-30c in cancer progression. J. Cancer 2020 11 9 2593 2601 10.7150/jca.38449 32201529
    [Google Scholar]
  53. Marei H.E. Althani A. Afifi N. Hasan A. Caceci T. Pozzoli G. Morrione A. Giordano A. Cenciarelli C. p53 signaling in cancer progression and therapy. Cancer Cell Int. 2021 21 1 703 10.1186/s12935‑021‑02396‑8 34952583
    [Google Scholar]
  54. Baldassarre A. Masotti A. Long non-coding RNAs and p53 regulation. Int. J. Mol. Sci. 2012 13 12 16708 16717 10.3390/ijms131216708 23222637
    [Google Scholar]
  55. Wang J. Luo Z. Yao T. Li W. Pu J. LINC00707 promotes hepatocellular carcinoma progression through activating ERK/JNK/AKT pathway signaling pathway. J. Cell. Physiol. 2019 234 5 6908 6916 10.1002/jcp.27449 30317590
    [Google Scholar]
  56. Shao H.J. Li Q. Shi T. Zhang G.Z. Shao F. LINC00707 promotes cell proliferation and invasion of colorectal cancer via miR-206/FMNL2 axis. Eur. Rev. Med. Pharmacol. Sci. 2019 23 9 3749 3759 31115001
    [Google Scholar]
  57. Chen S. Shen X. Long noncoding RNAs: Functions and mechanisms in colon cancer. Mol. Cancer 2020 19 1 167 10.1186/s12943‑020‑01287‑2 33246471
    [Google Scholar]
  58. Zhou X. Updegraff B.L. Guo Y. Peyton M. Girard L. Larsen J.E. Xie X.J. Zhou Y. Hwang T.H. Xie Y. Rodriguez-Canales J. Villalobos P. Behrens C. Wistuba I.I. Minna J.D. O’Donnell K.A. PROTOCADHERIN 7 acts through SET and PP2A to potentiate MAPK signaling by EGFR and KRAS during lung tumorigenesis. Cancer Res. 2017 77 1 187 197 10.1158/0008‑5472.CAN‑16‑1267‑T 27821484
    [Google Scholar]
  59. Burr M.L. Sparbier C.E. Chan K.L. Chan Y.C. Kersbergen A. Lam E.Y.N. Azidis-Yates E. Vassiliadis D. Bell C.C. Gilan O. Jackson S. Tan L. Wong S.Q. Hollizeck S. Michalak E.M. Siddle H.V. McCabe M.T. Prinjha R.K. Guerra G.R. Solomon B.J. Sandhu S. Dawson S.J. Beavis P.A. Tothill R.W. Cullinane C. Lehner P.J. Sutherland K.D. Dawson M.A. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell 2019 36 4 385 401.e8 10.1016/j.ccell.2019.08.008 31564637
    [Google Scholar]
  60. Liang C. Zhao T. Li H. He F. Zhao X. Zhang Y. Chu X. Hua C. Qu Y. Duan Y. Ming L. Guo J. Long non-coding RNA ITIH4-AS1 accelerates the proliferation and metastasis of colorectal cancer by activating JAK/STAT3 signaling. Mol. Ther. Nucleic Acids 2019 18 183 193 10.1016/j.omtn.2019.08.009 31557619
    [Google Scholar]
  61. Micheel J. Safrastyan A. Wollny D. Advances in non-coding RNA sequencing. Noncoding RNA 2021 7 4 70 10.3390/ncrna7040070 34842804
    [Google Scholar]
  62. Guo Q. Li S. Zhu J. Wang Z. Li Z. Wang J. Wen R. Li H. Development and validation of prognostic nomograms for adult with papillary renal cell carcinoma: A retrospective study. Clinics (São Paulo) 2024 79 100374 10.1016/j.clinsp.2024.100374 38718696
    [Google Scholar]
  63. Xiao L. Yin W. Chen X. Zhang X. Zhang C. Yu Z. Lü M. A disulfidptosis-related lncRNA index predicting prognosis and the tumor microenvironment in colorectal cancer. Sci. Rep. 2023 13 1 20135 10.1038/s41598‑023‑47472‑3 37978247
    [Google Scholar]
  64. Yamane K. Toumazou C. Tsukada Y. Erdjument-Bromage H. Tempst P. Wong J. Zhang Y. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 2006 125 3 483 495 10.1016/j.cell.2006.03.027 16603237
    [Google Scholar]
  65. Wilson S. Fan L. Sahgal N. Qi J. Filipp F.V. The histone demethylase KDM3A regulates the transcriptional program of the androgen receptor in prostate cancer cells. Oncotarget 2017 8 18 30328 30343 10.18632/oncotarget.15681 28416760
    [Google Scholar]
  66. Li J. Yu B. Deng P. Cheng Y. Yu Y. Kevork K. Ramadoss S. Ding X. Li X. Wang C.Y. KDM3 epigenetically controls tumorigenic potentials of human colorectal cancer stem cells through Wnt/β-catenin signalling. Nat. Commun. 2017 8 1 15146 10.1038/ncomms15146 28440295
    [Google Scholar]
  67. Li D. Wen S. Silencing of lncRNA LINC00346 inhibits the proliferation and promotes the apoptosis of colorectal cancer cells through inhibiting JAK1/STAT3 signaling [Retraction]. Cancer Manag. Res. 2020 12 7209 7210 10.2147/CMAR.S275627 32884339
    [Google Scholar]
  68. Noh J.H. Kim K.M. McClusky W.G. Abdelmohsen K. Gorospe M. Cytoplasmic functions of long noncoding RNAs. Wiley Interdiscip. Rev. RNA 2018 9 3 e1471 10.1002/wrna.1471 29516680
    [Google Scholar]
  69. Zhang X. Wang W. Zhu W. Dong J. Cheng Y. Yin Z. Shen F. Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int. J. Mol. Sci. 2019 20 22 5573 10.3390/ijms20225573 31717266
    [Google Scholar]
  70. Li Z.N. Luo Y. HSP90 inhibitors and cancer: Prospects for use in targeted therapies (Review). Oncol. Rep. 2022 49 1 6 10.3892/or.2022.8443 36367182
    [Google Scholar]
  71. Shimomura K. Hattori N. Iida N. Muranaka Y. Sato K. Shiraishi Y. Arai Y. Hama N. Shibata T. Narushima D. Kato M. Takamaru H. Okamoto K. Takeda H. Sleeping beauty transposon mutagenesis identified genes and pathways involved in inflammation-associated colon tumor development. Nat. Commun. 2023 14 1 6514 10.1038/s41467‑023‑42228‑z 37845228
    [Google Scholar]
  72. Abarca-Buis R.F. Mandujano-Tinoco E.A. Cabrera-Wrooman A. Krötzsch E. The complexity of TGFβ/activin signaling in regeneration. J. Cell Commun. Signal. 2021 15 1 7 23 10.1007/s12079‑021‑00605‑7 33481173
    [Google Scholar]
  73. Idos G.E. Kwok J. Bonthala N. Kysh L. Gruber S.B. Qu C. The prognostic implications of tumor infiltrating lymphocytes in colorectal cancer: A systematic review and meta-analysis. Sci. Rep. 2020 10 1 3360 10.1038/s41598‑020‑60255‑4 32099066
    [Google Scholar]
  74. Lecerf C. Peperstraete E. Le Bourhis X. Adriaenssens E. Propagation and maintenance of cancer stem cells: A major influence of the long non-coding RNA H19. Cells 2020 9 12 2613 10.3390/cells9122613 33291403
    [Google Scholar]
  75. Liu X. Yin Z. Xu L. Liu H. Jiang L. Liu S. Sun X. Upregulation of LINC01426 promotes the progression and stemness in lung adenocarcinoma by enhancing the level of SHH protein to activate the hedgehog pathway. Cell Death Dis. 2021 12 2 173 10.1038/s41419‑021‑03435‑y 33568633
    [Google Scholar]
  76. Guo K. Gong W. Wang Q. Gu G. Zheng T. Li Y. Li W. Fang M. Xie H. Yue C. Yang J. Zhu Z. LINC01106 drives colorectal cancer growth and stemness through a positive feedback loop to regulate the Gli family factors. Cell Death Dis. 2020 11 10 869 10.1038/s41419‑020‑03026‑3 33067422
    [Google Scholar]
  77. Ma F. Liu X. Zhou S. Li W. Liu C. Chadwick M. Qian C. Long non-coding RNA FGF13-AS1 inhibits glycolysis and stemness properties of breast cancer cells through FGF13-AS1/IGF2BPs/Myc feedback loop. Cancer Lett. 2019 450 63 75 10.1016/j.canlet.2019.02.008 30771425
    [Google Scholar]
  78. Zagorac M. Giorgio A.D. Dabrowska A. SCIRT lncRNA restrains tumorigenesis by opposing transcriptional programs of tumor-initiating cells. Cancer Res 2024 81 3 580 593
    [Google Scholar]
  79. Wu H.J. Chu P.Y. Epigenetic regulation of breast cancer stem cells contributing to carcinogenesis and therapeutic implications. Int. J. Mol. Sci. 2021 22 15 8113 10.3390/ijms22158113 34360879
    [Google Scholar]
  80. Lulli M. Napoli C. Landini I. Mini E. Lapucci A. Role of non-coding RNAs in colorectal cancer: Focus on long non-coding RNAs. Int. J. Mol. Sci. 2022 23 21 13431 10.3390/ijms232113431 36362222
    [Google Scholar]
  81. Silva J.M. Perez D.S. Pritchett J.R. Halling M.L. Tang H. Smith D.I. Identification of Long stress-induced non-coding transcripts that have altered expression in cancer. Genomics 2010 95 6 355 362 10.1016/j.ygeno.2010.02.009 20214974
    [Google Scholar]
  82. Zhou W. Xu X. Cen Y. Chen J. The role of lncRNAs in the tumor microenvironment and immunotherapy of melanoma. Front. Immunol. 2022 13 1085766 10.3389/fimmu.2022.1085766 36601121
    [Google Scholar]
  83. Liu Y. Zhang M. Liang L. Li J. Chen Y.X. Over-expression of lncRNA DANCR is associated with advanced tumor progression and poor prognosis in patients with colorectal cancer. Int. J. Clin. Exp. Pathol. 2015 8 9 11480 11484 26617879
    [Google Scholar]
  84. Silva-Fisher J.M. Dang H.X. White N.M. Strand M.S. Krasnick B.A. Rozycki E.B. Jeffers G.G.L. Grossman J.G. Highkin M.K. Tang C. Cabanski C.R. Eteleeb A. Mudd J. Goedegebuure S.P. Luo J. Mardis E.R. Wilson R.K. Ley T.J. Lockhart A.C. Fields R.C. Maher C.A. Long non-coding RNA RAMS11 promotes metastatic colorectal cancer progression. Nat. Commun. 2020 11 1 2156 10.1038/s41467‑020‑15547‑8 32358485
    [Google Scholar]
  85. Kornienko A.E. Guenzl P.M. Barlow D.P. Pauler F.M. Gene regulation by the act of long non-coding RNA transcription. BMC Biol. 2013 11 1 59 10.1186/1741‑7007‑11‑59 23721193
    [Google Scholar]
  86. Santiago L. Daniels G. Wang D. Deng F.M. Lee P. Wnt signaling pathway protein LEF1 in cancer, as a biomarker for prognosis and a target for treatment. Am. J. Cancer Res. 2017 7 6 1389 1406 28670499
    [Google Scholar]
  87. Javed Z. Khan K. Sadia H. Raza S. Salehi B. Sharifi-Rad J. Cho W.C. LncRNA & Wnt signaling in colorectal cancer. Cancer Cell Int. 2020 20 1 326 10.1186/s12935‑020‑01412‑7 32699525
    [Google Scholar]
  88. MacDonald B.T. He X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb. Perspect. Biol. 2012 4 12 a007880 10.1101/cshperspect.a007880 23209147
    [Google Scholar]
  89. MacDonald B.T. Tamai K. He X. Wnt/β-catenin signaling: Components, mechanisms, and diseases. Dev. Cell 2009 17 1 9 26 10.1016/j.devcel.2009.06.016 19619488
    [Google Scholar]
  90. Wang Y.L. Shao J. Wu X. Li T. Xu M. Shi D. A long non-coding RNA signature for predicting survival in patients with colorectal cancer. Oncotarget 2018 9 31 21687 21695 10.18632/oncotarget.23431 29774095
    [Google Scholar]
  91. Wang F. Ni H. Sun F. Li M. Chen L. Overexpression of lncRNA AFAP1-AS1 correlates with poor prognosis and promotes tumorigenesis in colorectal cancer. Biomed. Pharmacother. 2016 81 152 159 10.1016/j.biopha.2016.04.009 27261589
    [Google Scholar]
  92. Luo H. Xue Q. Zhu P. Zhang Y. Liu F. Hao T. Long noncoding RNA AFAP1-AS1, a potential novel biomarker to predict the clinical outcome of cancer patients: A meta-analysis. OncoTargets Ther. 2016 9 4247 4254 10.2147/OTT.S107188
    [Google Scholar]
  93. He W. Cai Q. Sun F. Zhong G. Wang P. Liu H. Luo J. Yu H. Huang J. Lin T. linc-UBC1 physically associates with polycomb repressive complex 2 (PRC2) and acts as a negative prognostic factor for lymph node metastasis and survival in bladder cancer. Biochim. Biophys. Acta Mol. Basis Dis. 2013 1832 10 1528 1537 10.1016/j.bbadis.2013.05.010 23688781
    [Google Scholar]
  94. Ghafouri-Fard S. Dashti S. Taheri M. The role of long non-coding RNA CASC2 in the carcinogenesis process. Biomed. Pharmacother. 2020 127 110202 10.1016/j.biopha.2020.110202 32559846
    [Google Scholar]
  95. He X. Liu Z. Su J. Yang J. Yin D. Han L. De W. Guo R. Low expression of long noncoding RNA CASC2 indicates a poor prognosis and regulates cell proliferation in non-small cell lung cancer. Tumour Biol. 2016 37 7 9503 9510 10.1007/s13277‑016‑4787‑6 26790438
    [Google Scholar]
  96. Su J. Zhang E. Han L. Yin D. Liu Z. He X. Zhang Y. Lin F. Lin Q. Mao P. Mao W. Shen D. Long noncoding RNA BLACAT1 indicates a poor prognosis of colorectal cancer and affects cell proliferation by epigenetically silencing of p15. Cell Death Dis. 2017 8 3 e2665 10.1038/cddis.2017.83 28277544
    [Google Scholar]
  97. My S. Ferracin M.C. Pileczki V. Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA CCAT2 induce myeloid malignancies via unique SNP-specific RNA mutations. Genome Res. 2018 28 4 432 447 10.1101/gr.225128.117 5880235
    [Google Scholar]
  98. Wang L. Duan W. Yan S. Xie Y. Wang C. Circulating long non-coding RNA colon cancer-associated transcript 2 protected by exosome as a potential biomarker for colorectal cancer. Biomed. Pharmacother. 2019 113 108758 10.1016/j.biopha.2019.108758 30877883
    [Google Scholar]
  99. Pirlog R. Drula R. Nutu A. Calin G.A. Berindan-Neagoe I. The roles of the colon cancer associated transcript 2 (CCAT2) long non-coding RNA in cancer: A comprehensive characterization of the tumorigenic and molecular functions. Int. J. Mol. Sci. 2021 22 22 12491 10.3390/ijms222212491 34830370
    [Google Scholar]
  100. Zhou Y. Xia L. Wang H. Oyang L. Su M. Liu Q. Lin J. Tan S. Tian Y. Liao Q. Cao D. Cancer stem cells in progression of colorectal cancer. Oncotarget 2018 9 70 33403 33415 10.18632/oncotarget.23607 30279970
    [Google Scholar]
  101. Xu J. Lamouille S. Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2024 19 2 156 172 10.1038/cr.2009.5 19153598
    [Google Scholar]
  102. Zhang Q. Han Z. Zhu Y. Chen J. Li W. The role and specific mechanism of OCT4 in cancer stem cells: A review. Int. J. Stem Cells 2020 13 3 312 325 10.15283/ijsc20097 32840233
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366340944241122100236
Loading
/content/journals/mirna/10.2174/0122115366340944241122100236
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Colorectal cancer ; noncoding RNAs ; long noncoding RNA ; carcinogenesis ; cancer stem cell
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test