Skip to content
2000
Volume 14, Issue 1
  • ISSN: 2211-5366
  • E-ISSN: 2211-5374

Abstract

Introduction

MicroRNAs (miRNAs), a distinct category of non-coding RNAs, exert multifaceted regulatory functions in a variety of organisms, including humans, animals, and plants. The inventory of identified miRNAs stands at approximately 60,000 among all species and 1,926 in manifests miRNA expression. Their theranostic role has been explored by researchers over the last few decades, positioning them as prominent therapeutic targets as our understanding of RNA targeting advances. However, limited availability of experimentally determined miRNA structures has constrained drug discovery efforts relying on virtual screening or computational methods, including machine learning and artificial intelligence.

Methods

To address this lacuna, miRVim has been developed, providing a repository of human miRNA structures derived from both two-dimensional (MXFold2, CentroidFold, and RNAFold) and three-dimensional (RNAComposer and 3dRNA) structure prediction algorithms, in addition to experimentally available structures from the RCSB PDB repository.

Results

miRVim contains 13,971 predicted secondary structures and 17,045 predicted three-dimensional structures filling the gap of unavailability of miRNA structure data bank. This database aims to facilitate computational data analysis for drug discovery, opening new avenues for advancing technologies such as machine learning-based predictions in the field of RNA biology.

Conclusion

The publicly accessible structures provided by miRVim, available at https://mirna.in/miRVim, offer a valuable resource for the research community, advancing the field of miRNA-related computational analysis and drug discovery.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366307988240809045125
2024-08-20
2025-06-15
Loading full text...

Full text loading...

References

  1. WightmanB. HaI. RuvkunG. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans.Cell199375585586210.1016/0092‑8674(93)90530‑4 8252622
    [Google Scholar]
  2. ReinhartB.J. SlackF.J. BassonM. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.Nature2000403677290190610.1038/35002607 10706289
    [Google Scholar]
  3. Lagos-QuintanaM. RauhutR. LendeckelW. TuschlT. Identification of novel genes coding for small expressed RNAs.Science2001294554385385810.1126/science.1064921 11679670
    [Google Scholar]
  4. MacfarlaneL.A. MurphyP.R. MicroRNA: Biogenesis, function and role in cancer.Curr. Genomics201011753756110.2174/138920210793175895 21532838
    [Google Scholar]
  5. MogilyanskyE. RigoutsosI. The miR-17/92 cluster: A comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease.Cell Death Differ.201320121603161410.1038/cdd.2013.125 24212931
    [Google Scholar]
  6. SiH. SunX. ChenY. Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer.J. Cancer Res. Clin. Oncol.2013139222322910.1007/s00432‑012‑1315‑y 23052693
    [Google Scholar]
  7. WangY-Z. TianF-F. YanM. Delivery of an miR155 inhibitor by anti-CD20 single-chain antibody into B cells reduces the acetylcholine receptor-specific autoantibodies and ameliorates experimental autoimmune myasthenia gravis.Clin. Exp. Immunol.2014176220722110.1111/cei.12265 24387321
    [Google Scholar]
  8. BartelD.P. MicroRNAs: Target recognition and regulatory functions.Cell2009136221523310.1016/j.cell.2009.01.002 19167326
    [Google Scholar]
  9. CarletonM. ClearyM.A. LinsleyP.S. MicroRNAs and cell cycle regulation.Cell Cycle20076172127213210.4161/cc.6.17.4641 17786041
    [Google Scholar]
  10. JovanovicM. HengartnerM.O. miRNAs and apoptosis: RNAs to die for.Oncogene200625466176618710.1038/sj.onc.1209912 17028597
    [Google Scholar]
  11. BoehmM. SlackF.J. MicroRNA control of lifespan and metabolism.Cell Cycle20065883784010.4161/cc.5.8.2688 16627994
    [Google Scholar]
  12. HarfeB.D. MicroRNAs in vertebrate development.Curr. Opin. Genet. Dev.200515441041510.1016/j.gde.2005.06.012 15979303
    [Google Scholar]
  13. PoyM.N. EliassonL. KrutzfeldtJ. A pancreatic islet-specific microRNA regulates insulin secretion.Nature2004432701422623010.1038/nature03076 15538371
    [Google Scholar]
  14. RottiersV. NäärA.M. MicroRNAs in metabolism and metabolic disorders.Nat. Rev. Mol. Cell Biol.201213423925010.1038/nrm3313 22436747
    [Google Scholar]
  15. DalmayT. EdwardsD.R. MicroRNAs and the hallmarks of cancer.Oncogene200625466170617510.1038/sj.onc.1209911 17028596
    [Google Scholar]
  16. SoiferH.S. RossiJ.J. SætromP. MicroRNAs in disease and potential therapeutic applications.Mol. Ther.200715122070207910.1038/sj.mt.6300311 17878899
    [Google Scholar]
  17. AcunzoM. RomanoG. WernickeD. CroceC.M. MicroRNA and cancer – A brief overview.Adv. Biol. Regul.2015571910.1016/j.jbior.2014.09.013 25294678
    [Google Scholar]
  18. FengS. CongS. ZhangX. MicroRNA-192 targeting retinoblastoma 1 inhibits cell proliferation and induces cell apoptosis in lung cancer cells.Nucleic Acids Res.201139156669667810.1093/nar/gkr232 21511813
    [Google Scholar]
  19. LiX. WeiY. WangZ. microRNA-21 and hypertension.Hypertens. Res.201841964966110.1038/s41440‑018‑0071‑z 29973661
    [Google Scholar]
  20. WangQ. JiangF. ZhaoC. miR-21-5p prevents doxorubicin-induced cardiomyopathy by downregulating BTG2.Heliyon202395e1545110.1016/j.heliyon.2023.e15451 37131441
    [Google Scholar]
  21. YektaS. ShihI. BartelD.P. MicroRNA-Directed Cleavage of HOXB8 mRNA.Science2004304567059459610.1126/science.1097434 15105502
    [Google Scholar]
  22. CalinG.A. CroceC.M. MicroRNA signatures in human cancers.Nat. Rev. Cancer200661185786610.1038/nrc1997 17060945
    [Google Scholar]
  23. IorioM.V. CroceC.M. microRNA involvement in human cancer.Carcinogenesis20123361126113310.1093/carcin/bgs140 22491715
    [Google Scholar]
  24. WilkG. BraunR. Integrative analysis reveals disrupted pathways regulated by microRNAs in cancer.Nucleic Acids Res.20184631089110110.1093/nar/gkx1250 29294105
    [Google Scholar]
  25. HeB. ZhaoZ. CaiQ. miRNA-based biomarkers, therapies, and resistance in Cancer.Int. J. Biol. Sci.202016142628264710.7150/ijbs.47203 32792861
    [Google Scholar]
  26. ReddyK.B. MicroRNA (miRNA) in cancer.Cancer Cell Int.20151513810.1186/s12935‑015‑0185‑1 25960691
    [Google Scholar]
  27. RathS.N. DasD. KonkimallaV.B. PradhanS.K. In silico study of miRNA based gene regulation, involved in solid cancer, by the assistance of argonaute protein.Genomics Inform.201614311212410.5808/GI.2016.14.3.112 27729841
    [Google Scholar]
  28. WangY. LiY. MaZ. YangW. AiC. Mechanism of microRNA-target interaction: Molecular dynamics simulations and thermodynamics analysis.PLOS Comput. Biol.201067e100086610.1371/journal.pcbi.1000866 20686687
    [Google Scholar]
  29. JumperJ. EvansR. PritzelA. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  30. VaradiM. AnyangoS. DeshpandeM. AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models.Nucleic Acids Res.202250D1D439D44410.1093/nar/gkab1061 34791371
    [Google Scholar]
  31. HuangH.Y. LinY.C.D. CuiS. miRTarBase update 2022: An informative resource for experimentally validated miRNA–target interactions.Nucleic Acids Res.202250D1D222D23010.1093/nar/gkab1079 34850920
    [Google Scholar]
  32. YangY.C.T. DiC. HuB. CLIPdb: A CLIP-seq database for protein-RNA interactions.BMC Genomics20151615110.1186/s12864‑015‑1273‑2 25652745
    [Google Scholar]
  33. ChenY. WangX. miRDB: An online database for prediction of functional microRNA targets.Nucleic Acids Res.202048D1D127D13110.1093/nar/gkz757 31504780
    [Google Scholar]
  34. RioloG. CantaraS. MarzocchiC. RicciC. miRNA Targets: From prediction tools to experimental validation.Methods Protoc.202041110.3390/mps4010001 33374478
    [Google Scholar]
  35. KozomaraA. BirgaoanuM. Griffiths-JonesS. miRBase: From microRNA sequences to function.Nucleic Acids Res.201947D1D155D16210.1093/nar/gky1141 30423142
    [Google Scholar]
  36. SatoK. AkiyamaM. SakakibaraY. RNA secondary structure prediction using deep learning with thermodynamic integration.Nat. Commun.202112194110.1038/s41467‑021‑21194‑4 33574226
    [Google Scholar]
  37. SatoK HamadaM AsaiK MituyamaT. CentroidFold: A web server for RNA secondary structure prediction. Nucleic Acids Res200937Web Server issueW2778010.1093/nar/gkp367
    [Google Scholar]
  38. LorenzR. BernhartS.H. Höner zu SiederdissenC. ViennaRNA Package 2.0.Algorithms Mol. Biol.2011612610.1186/1748‑7188‑6‑26 22115189
    [Google Scholar]
  39. BiesiadaM. PurzyckaK.J. SzachniukM. BlazewiczJ. AdamiakR.W. Automated RNA 3D structure prediction with RNAComposer.Methods Mol. Biol.2016146019921510.1007/978‑1‑4939‑6433‑8_13
    [Google Scholar]
  40. WangJ. WangJ. HuangY. XiaoY. 3dRNA v2.0: An Updated Web Server for RNA 3D Structure Prediction.Int. J. Mol. Sci.20192017411610.3390/ijms20174116 31450739
    [Google Scholar]
  41. BermanH.M. WestbrookJ. FengZ. The Protein Data Bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  42. PettersenE.F. GoddardT.D. HuangC.C. UCSF ChimeraX: Structure visualization for researchers, educators, and developers.Protein Sci.2021301708210.1002/pro.3943 32881101
    [Google Scholar]
  43. TurnerD.H. MathewsD.H. NNDB: The nearest neighbor parameter database for predicting stability of nucleic acid secondary structure.Nucleic Acids Res.201038Suppl. 1D280D28210.1093/nar/gkp892 19880381
    [Google Scholar]
  44. ZukerM. Mfold web server for nucleic acid folding and hybridization prediction.Nucleic Acids Res.200331133406341510.1093/nar/gkg595 12824337
    [Google Scholar]
  45. HamadaM. KiryuH. SatoK. MituyamaT. AsaiK. Prediction of RNA secondary structure using generalized centroid estimators.Bioinformatics200925446547310.1093/bioinformatics/btn601 19095700
    [Google Scholar]
  46. ZukerM. StieglerP. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information.Nucleic Acids Res.19819113314810.1093/nar/9.1.133 6163133
    [Google Scholar]
  47. McCaskillJ.S. The equilibrium partition function and base pair binding probabilities for RNA secondary structure.Biopolymers1990296-71105111910.1002/bip.360290621 1695107
    [Google Scholar]
  48. MatteiE. AusielloG. FerrèF. Helmer-CitterichM. A novel approach to represent and compare RNA secondary structures.Nucleic Acids Res.201442106146615710.1093/nar/gku283 24753415
    [Google Scholar]
  49. NawrockiE.P. EddyS.R. Infernal 1.1: 100-fold faster RNA homology searches.Bioinformatics201329222933293510.1093/bioinformatics/btt509 24008419
    [Google Scholar]
  50. WangJ. MaoK. ZhaoY. Optimization of RNA 3D structure prediction using evolutionary restraints of nucleotide–nucleotide interactions from direct coupling analysis.Nucleic Acids Res.201745116299630910.1093/nar/gkx386 28482022
    [Google Scholar]
  51. WangJ. ZhaoY. ZhuC. XiaoY. 3dRNAscore: A distance and torsion angle dependent evaluation function of 3D RNA structures.Nucleic Acids Res.20154310e6310.1093/nar/gkv141 25712091
    [Google Scholar]
  52. MitternachtS. FreeSASA: An open source C library for solvent accessible surface area calculations.F1000 Res.20165189
    [Google Scholar]
  53. RegoN. KoesD. 3Dmol.js: Molecular visualization with WebGL.Bioinformatics20153181322132410.1093/bioinformatics/btu829 25505090
    [Google Scholar]
  54. SahuVK ParidaAS RanjanA BasuS miRVim: Human miRNA structure database. 2024Available from: https://www.mirna.in/miRVim
  55. RupaimooleR. SlackF.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases.Nat. Rev. Drug Discov.201716320322210.1038/nrd.2016.246 28209991
    [Google Scholar]
  56. MottiniC. NapolitanoF. LiZ. GaoX. CardoneL. Computer-aided drug repurposing for cancer therapy: Approaches and opportunities to challenge anticancer targets.Semin. Cancer Biol.202168597410.1016/j.semcancer.2019.09.023 31562957
    [Google Scholar]
  57. OginoM. IchimuraM. NakanoN. MinamiA. KitagishiY. MatsudaS. Roles of PTEN with DNA Repair in Parkinson’s Disease.Int. J. Mol. Sci.201617695410.3390/ijms17060954 27314344
    [Google Scholar]
  58. ApteR.S. ChenD.S. FerraraN. VEGF in signaling and disease: Beyond discovery and development.Cell201917661248126410.1016/j.cell.2019.01.021 30849371
    [Google Scholar]
  59. EstellerM. Non-coding RNAs in human disease.Nat. Rev. Genet.2011121286187410.1038/nrg3074 22094949
    [Google Scholar]
  60. Ghafouri-FardS. AbakA. ShooreiH. Regulatory role of microRNAs on PTEN signaling.Biomed. Pharmacother.202113311098610.1016/j.biopha.2020.110986 33166764
    [Google Scholar]
  61. KaszaZ. Fredlund FuchsP. TammC. MicroRNA-24 suppression of N-deacetylase/N-sulfotransferase-1 (NDST1) reduces endothelial cell responsiveness to vascular endothelial growth factor A (VEGFA).J. Biol. Chem.201328836259562596310.1074/jbc.M113.484360 23884416
    [Google Scholar]
  62. FuY. WangY. BiK. MicroRNA 208a 3p promotes osteosarcoma progression via targeting PTEN.Exp. Ther. Med.2020206110.3892/etm.2020.9385 33178353
    [Google Scholar]
  63. ChenZ. ZhangW. JiangK. MicroRNA-300 regulates the ubiquitination of PTEN through the CRL4BDCAF13 E3 ligase in osteosarcoma cells.Mol. Ther. Nucleic Acids20181025426810.1016/j.omtn.2017.12.010 29499938
    [Google Scholar]
  64. AhmedE.A. RajendranP. ScherthanH. The microRNA-202 as a diagnostic biomarker and a potential tumor suppressor.Int. J. Mol. Sci.20222311587010.3390/ijms23115870 35682549
    [Google Scholar]
  65. YanY. ZhangD. ZhouP. LiB. HuangS.Y. HDOCK: A web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy.Nucleic Acids Res.201745W1W365-7310.1093/nar/gkx407 28521030
    [Google Scholar]
  66. PulidoR. PTEN inhibition in human disease therapy.Molecules201823228510.3390/molecules23020285 29385737
    [Google Scholar]
  67. TaylorH. LaurenceA.D.J. UhligH.H. The role of PTEN in innate and adaptive immunity.Cold Spring Harb. Perspect. Med.2019912a03699610.1101/cshperspect.a036996 31501268
    [Google Scholar]
  68. ZhouY. ZhuX. CuiH. The Role of the VEGF Family in Coronary Heart Disease.Front. Cardiovasc. Med.2021873832510.3389/fcvm.2021.738325 34504884
    [Google Scholar]
  69. BernettiM. AgutiR. BosioS. RecanatiniM. MasettiM. CavalliA. Computational drug discovery under RNA times.QRB Discovery.20223e2210.1017/qrd.2022.20 37529286
    [Google Scholar]
  70. ContiB.A. OppikoferM. Biomolecular condensates: New opportunities for drug discovery and RNA therapeutics.Trends Pharmacol. Sci.2022431082083710.1016/j.tips.2022.07.001 36028355
    [Google Scholar]
  71. SchaeferM. KapoorU. JantschM.F. Understanding RNA modifications: The promises and technological bottlenecks of the ‘epitranscriptome’.Open Biol.20177517007710.1098/rsob.170077 28566301
    [Google Scholar]
  72. TyagiW. PandeyV. PokharelY.R. Membrane linked RNA glycosylation as new trend to envision epi-transcriptome epoch.Cancer Gene Ther.202330564164610.1038/s41417‑022‑00430‑z 35136215
    [Google Scholar]
  73. GanH.H. GunsalusK.C. Tertiary structure-based analysis of microRNA–target interactions.RNA201319453955110.1261/rna.035691.112 23417009
    [Google Scholar]
  74. KrolJ. LoedigeI. FilipowiczW. The widespread regulation of microRNA biogenesis, function and decay.Nat. Rev. Genet.201011959761010.1038/nrg2843 20661255
    [Google Scholar]
  75. NegoitaS.I. SandescD. RogobeteA.F. miRNAs expressions and interaction with biological systems in patients with alzheimer’s disease. Using miRNAs as a diagnosis and prognosis biomarker.Clin. Lab.201763913151321 28879701
    [Google Scholar]
  76. PlotnikovaO. BaranovaA. SkoblovM. Comprehensive analysis of human microRNA–mRNA interactome.Front. Genet.20191093310.3389/fgene.2019.00933 31649721
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366307988240809045125
Loading
/content/journals/mirna/10.2174/0122115366307988240809045125
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test