Skip to content
2000
image of Computational Fluid Dynamics Analysis and Optimization of a Double-suction Turbine Agitator

Abstract

Background

As one of the essential pieces of chemical equipment, a reactor provides the necessary reaction space and conditions for the materials involved in the reaction during the stirring process. However, under typical operating conditions, issues such as uneven gas distribution, suboptimal gas-liquid mixing, and low product yield often arise in gas-liquid phase reactors.

Purpose

To address the issues prevalent in current stirred reactors, a new design for a stirred reactor equipped with a double-suction turbine agitator was developed.

Method

In this paper, a stirred reactor equipped with a double-suction turbine agitator was designed, and its three-dimensional modeling was conducted using SolidWorks. Computational Fluid Dynamics (CFD) simulations, based on the Euler-Euler two-phase approach with the RNG turbulence model, were performed to assess variables such as stirring speed, installation height, blade diameter and agitator inner diameter. The dispersion characteristics and flow field behaviors of the gas-liquid two-phase under varying conditions were comparatively analyzed. Optimizations were conducted across various parameters to enhance the gas mixing efficiency in the liquid phase.

Result

The results show that a diameter of 370mm for the double-suction turbine agitator, an installation height of 640mm, a blade diameter of 500mm, and an inner hole diameter of 200mm yield optimal gas-liquid two-phase mixing performance. This configuration results in a broad and uniform gas distribution within the reactor, maintaining a desired high level of gas holdup at specific positions.

Conclusion

The double suction turbine agitator is a type of radial agitator. During operation, it induces significant centrifugal forces in the liquid, exerts a robust shear effect, and enhances the mixing of the gas-liquid phases, thereby increasing the production efficiency of the product.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976338968241016045114
2024-11-07
2025-01-19
Loading full text...

Full text loading...

References

  1. Cailly W. Mc Carogher K. Bolze H. Yin J. Kuhn S. Analysis of dynamic acoustic resonance effects in a sonicated gas–liquid flow microreactor. Ultrason. Sonochem. 2023 93 106300 10.1016/j.ultsonch.2023.106300 36696780
    [Google Scholar]
  2. Doyle B.J. Morin F. Haelssig J.B. Roberge D.M. Macchi A. Gas-liquid flow and interphase mass transfer in ll microreactors. Fluids (Basel) 2020 5 4 223 10.3390/fluids5040223
    [Google Scholar]
  3. Akbari M. Rahimi M. Faryadi M. Gas–liquid flow mass transfer in a T-shape microreactor stimulated with 1.7 MHz ultrasound waves. Chin. J. Chem. Eng. 2017 25 9 1143 1152 10.1016/j.cjche.2017.03.010
    [Google Scholar]
  4. Zha L. Shang M. Qiu M. Zhang H. Su Y. Process intensification of mixing and chemical modification for polymer solutions in microreactors based on gas-liquid two-phase flow. Chem. Eng. Sci. 2019 195 62 73 10.1016/j.ces.2018.11.043
    [Google Scholar]
  5. Yue J. Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. Catal. Today 2018 308 3 19 10.1016/j.cattod.2017.09.041
    [Google Scholar]
  6. Qiao N. Yue S. Cheng J. Wang C. Wang X. Shi Y. Guo J. Yu D. A gas distributor capable of multiple injection directions to improve the gas–liquid dispersion performance in the airlift loop reactor. Biochem. Eng. J. 2023 190 108770 10.1016/j.bej.2022.108770
    [Google Scholar]
  7. Danilov I.M. Son E.E. The simulation of a gas-liquid chemical reactor with dispersed medium. High Temp. 2010 48 4 572 582 10.1134/S0018151X10040152
    [Google Scholar]
  8. Gu D. Liu Z. Tao C. Li J. Wang Y. Numerical simulation of gas-liquid dispersion in a stirred tank agitated by punched rigid-flexible impeller. Int. J. Chem. React. Eng. 2019 17 4 20180196 10.1515/ijcre‑2018‑0196
    [Google Scholar]
  9. Buffo A. Marchisio D.L. Modeling and simulation of turbulent polydisperse gas-liquid systems via the generalized population balance equation. Rev. Chem. Eng. 2014 30 1 73 126 10.1515/revce‑2013‑0015
    [Google Scholar]
  10. Reichmann F. Tollkötter A. Körner S. Kockmann N. Gas-liquid dispersion in micronozzles and microreactor design for high interfacial area. Chem. Eng. Sci. 2017 169 151 163 10.1016/j.ces.2016.10.028
    [Google Scholar]
  11. Tan J. Zhang J.S. Lu Y.C. Xu J.H. Luo G.S. Process intensification of catalytic hydrogenation of ethylanthraquinone with gas‐liquid microdispersion. AIChE J. 2012 58 5 1326 1335 10.1002/aic.12670
    [Google Scholar]
  12. Long S. Yang J. Huang X. Li G. Shi W. Sommerfeld M. Yang X. Large-eddy simulation of gas–liquid two-phase flow in a bubble column reactor using a modified sub-grid scale model with the consideration of bubble-eddy interaction. Int. J. Heat Mass Transf. 2020 161 120240 10.1016/j.ijheatmasstransfer.2020.120240
    [Google Scholar]
  13. Zhang Q. Dong Z. Zhao S. Liu Z. Chen G. Ultrasound-assisted gas–liquid mass transfer process in microreactors: The influence of surfactant, channel size and ultrasound frequency. Chem. Eng. J. 2021 405 126720 10.1016/j.cej.2020.126720
    [Google Scholar]
  14. Issa H.M. Power consumption, mixing time, and oxygen mass transfer in a gas-liquid contactor stirred with a dual impeller for different spacing. J. Eng. 2016 2016 1 1 7 10.1155/2016/3954305
    [Google Scholar]
  15. Jamshed A. Cooke M. Rodgers T.L. Effect of zoning on mixing and mass transfer in dual agitated gassed vessels. Chem. Eng. Res. Des. 2019 142 237 244 10.1016/j.cherd.2018.12.011
    [Google Scholar]
  16. Rasouli M. Mousavi S.M. Azargoshasb H. Jamialahmadi O. Ajabshirchi Y. CFD simulation of fluid flow in a novel prototype radial mixed plug-flow reactor. J. Ind. Eng. Chem. 2018 64 124 133 10.1016/j.jiec.2018.03.008
    [Google Scholar]
  17. Feng D. Ferrasse J.H. Soric A. Boutin O. Bubble characterization and gas–liquid interfacial area in two phase gas–liquid system in bubble column at low Reynolds number and high temperature and pressure. Chem. Eng. Res. Des. 2019 144 95 106 10.1016/j.cherd.2019.02.001
    [Google Scholar]
  18. Varela S. Martínez M. Delgado J.A. Godard C. Curulla-Ferré D. Pallares J. Vernet A. Numerical and experimental modelization of the two-phase mixing in a small scale stirred vessel. J. Ind. Eng. Chem. 2018 60 286 296 10.1016/j.jiec.2017.11.015
    [Google Scholar]
  19. Karadimou D.P. Papadopoulos P.A. Markatos N.C. Mathematical modelling and numerical simulation of two-phase gas-liquid flows in stirred-tank reactors. J. King Saud Univ. Sci. 2019 31 1 33 41 10.1016/j.jksus.2017.05.015
    [Google Scholar]
  20. Jaszczur M. Młynarczykowska A. A general review of the current development of mechanically agitated vessels. Processes (Basel) 2020 8 8 982 10.3390/pr8080982
    [Google Scholar]
  21. Liu T. Sheng Y. Han L. Liu Q. Simulation of the bubble behaviors for gas–liquid dispersion in agitated vessel. J. Chem. Eng. of Jpn 2017 50 1 4 14 10.1252/jcej.16we023
    [Google Scholar]
  22. Jadhav A.J. Barigou M. Eulerian-Lagrangian modelling of turbulent two-phase particle-liquid flow in a stirred vessel: CFD and experiments compared. Int. J. Multiph. Flow 2022 155 104191 10.1016/j.ijmultiphaseflow.2022.104191
    [Google Scholar]
  23. Kiełbus-Rąpała A Rapisarda A Karcz J. Experimental analysis of conditions of gas-liquid-floating particles system production in an agitated vessel equipped with two impellers. J. Chem. Eng. Trans. 2019 74 2 1974172
    [Google Scholar]
  24. Gu D. Mei Y. Wen L. Wang X. Liu Z. Chaotic mixing and mass transfer characteristics of fractal impellers in gas-liquid stirred tank. J. Taiwan Inst. Chem. Eng. 2021 121 20 28 10.1016/j.jtice.2021.03.038
    [Google Scholar]
  25. Buffo A. Vanni M. Marchisio D.L. Multidimensional population balance model for the simulation of turbulent gas–liquid systems in stirred tank reactors. Chem. Eng. Sci. 2012 70 31 44 10.1016/j.ces.2011.04.042
    [Google Scholar]
  26. Liu B. Zheng Y. Cheng R. Xu Z. Wang M. Jin Z. Experimental study on gas–liquid dispersion and mass transfer in shear-thinning system with coaxial mixer. Chin. J. Chem. Eng. 2018 26 9 1785 1791 10.1016/j.cjche.2018.02.009
    [Google Scholar]
  27. Ranganathan P. Sivaraman S. Investigations on hydrodynamics and mass transfer in gas–liquid stirred reactor using computational fluid dynamics. Chem. Eng. Sci. 2011 66 14 3108 3124 10.1016/j.ces.2011.03.007
    [Google Scholar]
  28. Petitti M. Vanni M. Marchisio D.L. Buffo A. Podenzani F. Simulation of coalescence, break-up and mass transfer in a gas–liquid stirred tank with CQMOM. Chem. Eng. J. 2013 228 1182 1194 10.1016/j.cej.2013.05.047
    [Google Scholar]
  29. Qiu F. Liu Z. Liu R. Quan X. Tao C. Wang Y. Experimental study of power consumption, local characteristics distributions and homogenization energy in gas–liquid stirred tank reactors. Chin. J. Chem. Eng. 2019 27 2 278 285 10.1016/j.cjche.2018.10.011
    [Google Scholar]
  30. Othman N.T.A. Ngaliman M.P. CFD simulation of gas-liquid in an agitated vessel. Indian J. Sci. Technol. 2016 9 21 10.17485/ijst/2016/v9i21/95246
    [Google Scholar]
  31. Amiraftabi M. Khiadani M. Mohammed H.A. Performance of a dual helical ribbon impeller in a two-phase (gas-liquid) stirred tank reactor. Chem. Eng. Process. 2020 148 107811 10.1016/j.cep.2020.107811
    [Google Scholar]
  32. Li L.C. CFD simulation of gas residence time distribution in agitated tank. Adv. Mat. Res. 2013 732-733 467 471 10.4028/www.scientific.net/AMR.732‑733.467
    [Google Scholar]
  33. Heidari A. CFD simulation of impeller shape effect on quality of mixing in two-phase gas–liquid agitated vessel. Chin. J. Chem. Eng. 2020 28 11 2733 2745 10.1016/j.cjche.2020.06.036
    [Google Scholar]
  34. Li L. Xu B. CFD simulation of gas-liquid floating particles mixing in an agitated vessel. Chem. Ind. Chem. Eng. Q. 2017 23 3 377 389 10.2298/CICEQ160129052L
    [Google Scholar]
  35. Bombač A. Pirnar J. Numerical and experimental analyses of a stirred vessel for a large volumetric flow rate of sparged air. Chin. J. Chem. Eng. 2019 27 10 2304 2312 10.1016/j.cjche.2019.03.009
    [Google Scholar]
  36. Liu X. Liu W. Zhao Y. Unsteady vibration aerodynamic modeling and evaluation of dynamic derivatives using computational fluid dynamics. Math. Probl. Eng. 2015 2015 1 15 10.1155/2015/813462
    [Google Scholar]
  37. Pouraria H. Park K.H. Seo Y. Numerical modelling of dispersed water in oil flows using eulerian-eulerian approach and population balance model. Processes (Basel) 2021 9 8 1345 10.3390/pr9081345
    [Google Scholar]
  38. Liao S. Series solutions of unsteady boundary‐layer flows over a stretching flat plate. Stud. Appl. Math. 2006 117 3 239 263 10.1111/j.1467‑9590.2006.00354.x
    [Google Scholar]
  39. Perarasu VT Arivazhagan M Sivashanmugam P CFD modelling study of heat transfer in a coiled agitated vessel. Prog. Comput. Fluid Dyn.: Int. J. 2014 14 3 177 188 10.1504/PCFD.2014.062426
    [Google Scholar]
  40. Mathur A. Dovizio D. Frederix E.M.A. Komen E.M.J. A Hybrid Dispersed-Large Interface Solver for multi-scale two-phase flow modelling. Nucl. Eng. Des. 2019 344 69 82 10.1016/j.nucengdes.2019.01.020
    [Google Scholar]
  41. Olejnik M. Szewc K. Pozorski J. Modelling of the dispersed phase motion in free-surface flows with the two-fluid smoothed particle hydrodynamics approach. proceedings of the V International Conference on Particle-Based Methods: fundamentals and applications 2017 (pp. 21-32).
    [Google Scholar]
  42. Liangchao L. Ning C. Kefeng X. Beiping X. A comparative CFD study on gas-liquid dispersion in a stirred tank with low and high gas loadings. Int. J. Chem. React. Eng. 2018 16 8 20170147 10.1515/ijcre‑2017‑0147
    [Google Scholar]
  43. Gao X. Kong B. Ramezani M. Olsen M.G. Vigil R.D. An adaptive model for gas–liquid mass transfer in a Taylor vortex reactor. Int. J. Heat Mass Transf. 2015 91 433 445 10.1016/j.ijheatmasstransfer.2015.07.125
    [Google Scholar]
  44. Li L.C. Xu B. CFD simulation of floating particles suspension in a stirred tank. Chem. Pap. 2017 71 8 1377 1387 10.1007/s11696‑017‑0128‑5
    [Google Scholar]
  45. Cheng D. Wang S. Yang C. Mao Z.S. Numerical simulation of turbulent flow and mixing in gas–liquid–liquid stirred tanks. Ind. Eng. Chem. Res. 2017 56 45 13050 13063 10.1021/acs.iecr.7b01327
    [Google Scholar]
  46. Suh J.W. Kim J.W. Choi Y.S. Kim J.H. Joo W.G. Lee K.Y. Development of numerical Eulerian-Eulerian models for simulating multiphase pumps. J. Petrol. Sci. Eng. 2018 162 588 601 10.1016/j.petrol.2017.10.073
    [Google Scholar]
  47. Elqotbi M. Vlaev S.D. Montastruc L. Nikov I. CFD modelling of two-phase stirred bioreaction systems by segregated solution of the Euler–Euler model. Comput. Chem. Eng. 2013 48 113 120 10.1016/j.compchemeng.2012.08.005
    [Google Scholar]
  48. Davy G. Reyssat E. Vincent S. Mimouni S. Euler–Euler simulations of condensing two-phase flows in mini-channel: Combination of a sub-grid approach and an interface capturing approach. Int. J. Multiph. Flow 2022 149 103964 10.1016/j.ijmultiphaseflow.2021.103964
    [Google Scholar]
  49. Argyropoulos C.D. Markatos N.C. Recent advances on the numerical modelling of turbulent flows. Appl. Math. Model. 2015 39 2 693 732 10.1016/j.apm.2014.07.001
    [Google Scholar]
  50. Lane G.L. Improving the accuracy of CFD predictions of turbulence in a tank stirred by a hydrofoil impeller. Chem. Eng. Sci. 2017 169 188 211 10.1016/j.ces.2017.03.061
    [Google Scholar]
  51. Monte Verde W. Biazussi J.L. Sassim N.A. Bannwart A.C. Experimental study of gas-liquid two-phase flow patterns within centrifugal pumps impellers. Exp. Therm. Fluid Sci. 2017 85 37 51 10.1016/j.expthermflusci.2017.02.019
    [Google Scholar]
  52. Lou W. Zhu M. Numerical simulation of gas and liquid two-phase flow in gas-stirred systems based on Euler–Euler approach. Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci. 2013 44 5 1251 1263 10.1007/s11663‑013‑9897‑6
    [Google Scholar]
  53. Mowla A. Agnaou M. Treeratanaphitak T. Budman H.M. Abukhdeir N.M. Ioannidis M.A. On the prediction of gas hold‐up in two‐phase flow systems using an Euler–Euler model. AIChE J. 2020 66 6 e16959 10.1002/aic.16959
    [Google Scholar]
  54. Tas-Koehler S. Liao Y. Hampel U. A critical analysis of drag force modelling for disperse gas-liquid flow in a pipe with an obstacle. Chem. Eng. Sci. 2021 246 117007 10.1016/j.ces.2021.117007
    [Google Scholar]
  55. Yang F. Sun H. Zhang C. Gas‐liquid mixing in a grid‐disc impeller stirred tank. Chem. Eng. Technol. 2020 43 7 1297 1307 10.1002/ceat.201900651
    [Google Scholar]
  56. Joshi J.B. Nere N.K. Rane C.V. Murthy B.N. Mathpati C.S. Patwardhan A.W. Ranade V.V. CFD simulation of stirred tanks: Comparison of turbulence models. Part I: Radial flow impellers. Can. J. Chem. Eng. 2011 89 1 23 82 10.1002/cjce.20446
    [Google Scholar]
  57. Gelves R. Dietrich A. Takors R. Modeling of gas–liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller. Bioprocess Biosyst. Eng. 2014 37 3 365 375 10.1007/s00449‑013‑1001‑8 23828243
    [Google Scholar]
  58. Torotwa I. Ji C. A study of the mixing performance of different impeller designs in stirred vessels using computational fluid dynamics. Designs (Basel) 2018 2 1 10 10.3390/designs2010010
    [Google Scholar]
  59. Yang F.L. Zhou S.J. Effect of gravity on the hydrodynamics in an unbaffled stirred vessel. Chem. Eng. Technol. 2015 38 5 819 826 10.1002/ceat.201400223
    [Google Scholar]
  60. Sajjadi B. Raman A.A.A. Ibrahim S. A comparative fluid flow characterisation in a low frequency/high power sonoreactor and mechanical stirred vessel. Ultrason. Sonochem. 2015 27 359 373 10.1016/j.ultsonch.2015.04.034 26186855
    [Google Scholar]
  61. Hoseini S.S. Najafi G. Ghobadian B. Akbarzadeh A.H. Impeller shape-optimization of stirred-tank reactor: CFD and fluid structure interaction analyses. Chem. Eng. J. 2021 413 127497 10.1016/j.cej.2020.127497
    [Google Scholar]
  62. Escamilla-Ruíz I.A. Sierra-Espinosa F.Z. García J.C. Valera-Medina A. Carrillo F. Experimental data and numerical predictions of a single-phase flow in a batch square stirred tank reactor with a rotating cylinder agitator. Heat Mass Transf. 2017 53 9 2933 2949 10.1007/s00231‑017‑2030‑7
    [Google Scholar]
  63. Gao F. Wang H. Wang H. Comparison of different turbulence models in simulating unsteady flow. Procedia Eng. 2017 205 3970 3977 10.1016/j.proeng.2017.09.856
    [Google Scholar]
  64. Şibil R. Aras E. Kankal M. Comparison of various turbulence model performance in computational fluid dynamics analyses of the oxidation ditches with experimental validation. Process Saf. Environ. Prot. 2021 154 43 59 10.1016/j.psep.2021.07.046
    [Google Scholar]
  65. Koutsourakis N. Bartzis J.G. Markatos N.C. Evaluation of Reynolds stress, k-ε and RNG k-ε turbulence models in street canyon flows using various experimental datasets. Environ. Fluid Mech. 2012 12 4 379 403 10.1007/s10652‑012‑9240‑9
    [Google Scholar]
  66. Khalaji M.N. Koca A. Kotcioğlu İ. Investigation of numerical analysis velocity contours k-ε model of RNG, standard and realizable turbulence for different geometries. Int. J. Innov. Res. Rev. 2019 3 2 29 34
    [Google Scholar]
  67. Daróczy L. Janiga G. Petrasch K. Webner M. Thévenin D. Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors. Energy 2015 90 680 690 10.1016/j.energy.2015.07.102
    [Google Scholar]
  68. Liu Z. Chen Y. Wu Y. Wang W. Li L. Simulation of exchange flow between open water and floating vegetation using a modified RNG k-ε turbulence model. Environ. Fluid Mech. 2017 17 2 355 372 10.1007/s10652‑016‑9489‑5
    [Google Scholar]
  69. Escue A. Cui J. Comparison of turbulence models in simulating swirling pipe flows. Appl. Math. Model. 2010 34 10 2840 2849 10.1016/j.apm.2009.12.018
    [Google Scholar]
  70. Saeed M. Yu J.Y. Abdalla A.A.A. Zhong X.P. Ghazanfar M.A. An assessment of k-ε turbulence models for gas distribution analysis. Nucl. Sci. Tech. 2017 28 10 146 10.1007/s41365‑017‑0304‑x
    [Google Scholar]
  71. Wang P. Reviol T. Ren H. Böhle M. Effects of turbulence modeling on the prediction of flow characteristics of mixing non-Newtonian fluids in a stirred vessel. Chem. Eng. Res. Des. 2019 147 259 277 10.1016/j.cherd.2019.05.001
    [Google Scholar]
  72. Ebrahimi M Roozbahani MH Comparative investigation in a turbine blade passage flows with several different turbulence models. Int. J. Innov. Res. Rev. 2019 3 2 29 34
    [Google Scholar]
  73. Wang Mao Z-S. Yang C. Wang, Mao ZS, Yang C. Experimental and numerical investigation on gas holdup and flooding in an aerated stirred tank with Rushton impeller. Ind. Eng. Chem. Res. 2006 45 3 1141 1151 10.1021/ie0503085
    [Google Scholar]
  74. Jamshidzadeh M. Kazemzadeh A. Ein-Mozaffari F. Lohi A. Intensification of gas dispersion in pseudoplastic fluids with coaxial mixers. Chem. Eng. Process. 2020 155 108058 10.1016/j.cep.2020.108058
    [Google Scholar]
  75. Montante G. Paglianti A. Gas hold-up distribution and mixing time in gas–liquid stirred tanks. Chem. Eng. J. 2015 279 648 658 10.1016/j.cej.2015.05.058
    [Google Scholar]
  76. Liu B. Xiao Q. Sun N. Gao P. Fan F. Sunden B. Effect of gas distributor on gas–liquid dispersion and mass transfer characteristics in stirred tank. Chem. Eng. Res. Des. 2019 145 314 322 10.1016/j.cherd.2019.03.035
    [Google Scholar]
  77. Jain S.V. Swarnkar A. Motwani K.H. Patel R.N. Effects of impeller diameter and rotational speed on performance of pump running in turbine mode. Energy Convers. Manage. 2015 89 808 824 10.1016/j.enconman.2014.10.036
    [Google Scholar]
/content/journals/meng/10.2174/0122127976338968241016045114
Loading
/content/journals/meng/10.2174/0122127976338968241016045114
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test