Skip to content
2000
image of Impact of 3D Printing Settings on Polylactic Acid Filament Mechanical Behaviors Based on the Taguchi Method

Abstract

Introduction

3D printing has become an activity changer in some sectors allowing the creation of personalized parts. With its growing popularity in areas needing mechanical capabilities, it is essential to grasp how the printing settings impact the mechanical traits of the printed pieces.

Method

This paper presents a novel investigation into the impact of critical 3D printing parameters on the mechanical characteristics of polylactic acid (PLA), a widely used biocompatible and biodegradable polymer. Our experimental approach systematically evaluated the effects of various printing parameters including infill density, raster orientation, outline overlap, and print speed on the printed parts' tensile strength and Young's modulus.

Result

The results consistently showed that increasing the infill density and outline overlap improved tensile strength and Young's modulus. However, higher print speeds decreased both underscoring the practical application of our unique findings. This research is a pioneering effort providing engineers and designers with valuable direction for working with 3D-printed PLA parts in aerospace, automotive, and biomedical applications.

Conclusion

It significantly adds to the expanding corpus of research on the connection between 3D printing process variables and the mechanical characteristics of advanced polymeric materials.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976328835241016094600
2024-12-12
2025-01-19
Loading full text...

Full text loading...

References

  1. Tliba K. Penas O. Diallo T.M.L. Ben Khalifa R. Ben Yahia N. Choley J-Y. Model Based Systems Engineering approach for the improvement of manufacturing system flexibility. 2020 21st International Conference on Research and Education in Mechatronics (REM) 09-11 December 2020 Cracow, Poland 2020 10.1109/REM49740.2020.9313871
    [Google Scholar]
  2. Zocca A. Franchin G. Colombo P. Günster J. Additive Manufacturing. Encyclopedia of Materials: Technical Ceramics and Glasses. Pomeroy M. Oxford Elsevier 2021 203 221 10.1016/B978‑0‑12‑803581‑8.12081‑8
    [Google Scholar]
  3. Hull C.W. Apparatus for production of three-dimensional objects by stereolithography. US Patent 4575330A 1984
  4. Ashish N. 3D Printing in Medicine: Current Challenges and Potential Applications. 3D Printing Technology in Nanomedicine Amsterdam Elsevier 2019 10.1016/B978‑0‑12‑815890‑6.00001‑3
    [Google Scholar]
  5. Shahrubudin N. Lee T.C. Ramlan R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manuf. 2019 35 1286 1296 10.1016/j.promfg.2019.06.089
    [Google Scholar]
  6. Kolamroudi M.K. Asmael M. Ilkan M. Kordani N. Developments on Electron Beam Melting (EBM) of Ti–6Al–4V: A Review. Trans. Indian Inst. Met. 2021 74 4 783 790 10.1007/s12666‑021‑02230‑9
    [Google Scholar]
  7. Al Rashid A. Khan S.A. Al-Ghamdi S.G. Koç M. Additive manufacturing: Technology, applications, markets, and opportunities for the built environment. Autom. Construct. 2020 118 103268 10.1016/j.autcon.2020.103268
    [Google Scholar]
  8. Mahmood A. Akram T. Chen H. Chen S. On the Evolution of Additive Manufacturing (3D/4D Printing) Technologies: Materials, Applications, and Challenges. Polymers (Basel) 2022 14 21 4698 10.3390/polym14214698 36365695
    [Google Scholar]
  9. Rajpurohit S.R. Dave H.K. Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer. Int. J. Adv. Manuf. Technol. 2019 101 5-8 1525 1536 10.1007/s00170‑018‑3047‑x
    [Google Scholar]
  10. Sturm L.D. Albakri M.I. Tarazaga P.A. Williams C.B. In situ monitoring of material jetting additive manufacturing process via impedance based measurements. Addit. Manuf. 2019 28 456 463 10.1016/j.addma.2019.05.022
    [Google Scholar]
  11. Bhatt P.M. Kabir A.M. Peralta M. Bruck H.A. Gupta S.K. A robotic cell for performing sheet lamination-based additive manufacturing. Addit. Manuf. 2019 27 278 289 10.1016/j.addma.2019.02.002
    [Google Scholar]
  12. Jeong W. Kwon Y.S. Kim D. Three-dimensional printing of tungsten structures by directed energy deposition. Mater. Manuf. Process. 2019 34 9 986 992 10.1080/10426914.2019.1594253
    [Google Scholar]
  13. Vaz V.M. Kumar L. 3D Printing as a Promising Tool in Personalized Medicine. AAPS PharmSciTech 2021 22 1 49 10.1208/s12249‑020‑01905‑8 33458797
    [Google Scholar]
  14. Jandyal A. Chaturvedi I. Wazir I. Raina A. Ul Haq M.I. 3D printing – A review of processes, materials and applications in industry 4.0. Sustainable Operat. Comp. 2022 3 33 42 10.1016/j.susoc.2021.09.004
    [Google Scholar]
  15. Zhang X. Chen L. Mulholland T. Osswald T.A. Effects of raster angle on the mechanical properties of PLA and Al/PLA composite part produced by fused deposition modeling. Polym. Adv. Technol. 2019 30 8 2122 2135 10.1002/pat.4645
    [Google Scholar]
  16. Asadollahi-Yazdi E. Gardan J. Lafon P. Multi-objective optimization of additive manufacturing process. IFAC-PapersOnLine 51 11 152 157 2018 10.1016/j.ifacol.2018.08.250
    [Google Scholar]
  17. Tran P. Ngo T.D. Ghazlan A. Hui D. Bimaterial 3D printing and numerical analysis of bio-inspired composite structures under in-plane and transverse loadings. Compos., Part B Eng. 2017 108 210 223 10.1016/j.compositesb.2016.09.083
    [Google Scholar]
  18. Rajaguru K. Karthikeyan T. Vijayan V. Additive manufacturing – State of art. Mater. Today: Proceed. 2020 21 1 628 633 10.1016/j.matpr.2019.06.728
    [Google Scholar]
  19. Daminabo S.C. Goel S. Grammatikos S.A. Nezhad H.Y. Thakur V.K. Fused deposition modeling-based additive manufacturing (3D printing): Techniques for polymer material systems. Mater. Today Chem. 2020 16 100248 10.1016/j.mtchem.2020.100248
    [Google Scholar]
  20. Gao G. Xu F. Xu J. Tang G. Liu Z. A survey of the influence of process parameters on mechanical properties of fused deposition modeling parts. Micromachines (Basel) 2022 13 4 553 10.3390/mi13040553 35457856
    [Google Scholar]
  21. Alafaghani A. Qattawi A. Alrawi B. Guzman A. Experimental optimization of fused deposition modelling processing parameters: A design-for-manufacturing approach. Procedia Manuf. 2017 10 791 803 10.1016/j.promfg.2017.07.079
    [Google Scholar]
  22. Aloyaydi B.A. Sivasankaran S. Ammar H.R. Influence of infill density on microstructure and flexural behavior of 3D printed PLA thermoplastic parts processed by fusion deposition modeling. AIMS Mater. Sci. 2019 6 6
    [Google Scholar]
  23. Kreiger M. Pearce J.M. Environmental impacts of distributed manufacturing from 3-D printing of polymer components and products. Proc. MRS 2013 1492 85 90 10.1557/opl.2013.319
    [Google Scholar]
  24. Hikmat M. Rostam S. Ahmed Y.M. Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology. Results Eng. 2021 11 100264 10.1016/j.rineng.2021.100264
    [Google Scholar]
  25. Heidari-Rarani M. Ezati N. Sadeghi P. Badrossamay M.R. Optimization of FDM process parameters for tensile properties of polylactic acid specimens using Taguchi design of experiment method. J. Thermoplast. Compos. Mater. 2022 35 12 2435 2452 10.1177/0892705720964560
    [Google Scholar]
  26. Kechagias J.D. Vidakis N. Petousis M. Mountakis N. A multi-parametric process evaluation of the mechanical response of PLA in FFF 3D printing. Mater. Manuf. Process. 2023 38 8 941 953 10.1080/10426914.2022.2089895
    [Google Scholar]
  27. Tontowi A. Ramdani L. Erdizon R. Baroroh D. Optimization of 3D-printer process parameters for improving quality of polylactic acid printed part. Int. J. Eng. Technol. 2017 9 2 589 600 10.21817/ijet/2017/v9i2/170902044
    [Google Scholar]
  28. Abouelmajd M. Bahlaoui A. Arroub I. Zemzami M. Hmina N. Lagache M. Belhouideg S. Experimental analysis and optimization of mechanical properties of FDM-processed polylactic acid using Taguchi design of experiment. International Journal for Simulation and Multidisciplinary Design Optimization 2021 12 30 10.1051/smdo/2021031
    [Google Scholar]
  29. Ngo T.D. Kashani A. Imbalzano G. Nguyen K.T.Q. Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos., Part B Eng. 2018 143 172 196 10.1016/j.compositesb.2018.02.012
    [Google Scholar]
  30. Liu Y. Wang T. Chen H. Li Z. Li S. Wang D. Wang Y. Kosiba K. Impact behaviors of additively manufactured metals and structures: A review. Int. J. Impact Eng. 2024 191 104992 10.1016/j.ijimpeng.2024.104992
    [Google Scholar]
  31. Fountas N.A. Papantoniou I. Kechagias J.D. Manolakos D.E. Vaxevanidis N.M. Modeling and optimization of flexural properties of FDM-processed PET-G specimens using RSM and GWO algorithm. Eng. Fail. Anal. 2022 138 106340 10.1016/j.engfailanal.2022.106340
    [Google Scholar]
  32. Sood A.K. Ohdar R.K. Mahapatra S.S. Experimental investigation and empirical modelling of FDM process for compressive strength improvement. J. Adv. Res. 2012 3 1 81 90 10.1016/j.jare.2011.05.001
    [Google Scholar]
  33. Atakok G. Kam M. Koc H.B. Tensile, three-point bending and impact strength of 3D printed parts using PLA and recycled PLA filaments: A statistical investigation. J. Mater. Res. Technol. 2022 18 1542 1554 10.1016/j.jmrt.2022.03.013
    [Google Scholar]
/content/journals/meng/10.2174/0122127976328835241016094600
Loading
/content/journals/meng/10.2174/0122127976328835241016094600
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: DOE ; Fused filament fabrication ; Taguchi ; 3D printing ; Additive manufacturing ; mechanical behavior ; PLA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test