Skip to content
2000
Volume 16, Issue 4
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

S-nitrosylation is one of the most prominent posttranslational modification among proteins. It involves the addition of nitrogen oxide group to cysteine thiols forming S-nitrosocysteine. Evidence suggests that S-nitrosylation plays a foremost role in numerous human diseases and disorders. The incorporation of techniques for robust identification of S-nitrosylated proteins is highly anticipated in biological research and drug discovery. The proposed system endeavors a novel strategy based on a statistical and computational intelligent methods for the identification of S-nitrosocystiene sites within a given primary protein sequence. For this purpose, 5-step rule was approached comprising of benchmark dataset creation, mathematical modelling, prediction, evaluation and web-server development. For position relative feature extraction, statistical moments were used and a multilayer neural network was trained adapting Gradient Descent and Adaptive Learning algorithms. The results were comparatively analyzed with existing techniques using benchmark datasets. It is inferred through conclusive experimentation that the proposed scheme is very propitious, accurate and exceptionally effective for the prediction of S-nitrosocystiene in protein sequences.

Loading

Article metrics loading...

/content/journals/loc/10.2174/1570178615666180802122953
2019-04-01
2025-07-03
Loading full text...

Full text loading...

/content/journals/loc/10.2174/1570178615666180802122953
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test