Skip to content
2000
image of Visible Light-Induced Catalyst-Free Synthesis of Dibenzo[a,g]carbazoles

Abstract

Dibenzocarbazoles are a class of important materials used in optoelectronic devices. Their simple and practical construction, therefore, holds great potential from both academic and industrial application aspects. However, the conventional synthetic methods for these compounds often suffer the inadequacies, such as tedious synthetic processes, harsh reaction conditions, limited substrate scope, and high cost. Considering the advantage of the rapid development of photochemistry in organic synthesis, we report a concise and efficient synthetic method for these dibenzo[]carbazole compounds under visible light irradiation. This new protocol enables the reaction to proceed under ambient temperature without any catalyst or metal additives, representing a highly efficient and cost-effective pattern. The results infer that the synthesis takes place 6π electrocyclization and the consequent dehydrogenation in one pot under mild reaction conditions. Starting from the easily available -tetralone and arylamine, a variety of substrates bearing diverse substituents are smoothly converted into the corresponding dibenzo[]carbazoles with moderate to good yields. It is concluded that the electronic properties of the substituents could not exert a significant influence on the product yield, but the steric hindrance showed an obvious negative effect. This newly developed protocol features the easy availability of starting materials and high cost-efficiency, providing a good alternative for the efficient synthesis of dibenzocarbazoles and their derivatives.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786365977250129044853
2025-02-04
2025-04-07
Loading full text...

Full text loading...

References

  1. Grazulevicius J.V. Strohriegl P. Pielichowski J. Pielichowski K. Prog. Polym. Sci. 2003 28 9 1297 1353 10.1016/S0079‑6700(03)00036‑4
    [Google Scholar]
  2. Sigwalt P. Wegner G. Morin J-F. Leclerc M. Ades D. Siove A. Macromol. Rapid Commun. 2005 26 761 10.1002/marc.200500096
    [Google Scholar]
  3. Blouin N. Leclerc M. Acc. Chem. Res. 2008 41 9 1110 1119 10.1021/ar800057k 18656967
    [Google Scholar]
  4. Boudreault P-L.T. Beaupre S. Leclerc M. Polym. Chem.-UK 2010 1 127
    [Google Scholar]
  5. Ledwon P. Org. Electron. 2019 75 105422 10.1016/j.orgel.2019.105422
    [Google Scholar]
  6. Naik P. Planchat A. Pellegrin Y. Odobel F. Vasudeva Adhikari A. Sol. Energy 2017 157 1064 1073 10.1016/j.solener.2017.09.024
    [Google Scholar]
  7. Daskeviciene M. Paek S. Wang Z. Malinauskas T. Jokubauskaite G. Rakstys K. Cho K.T. Magomedov A. Jankauskas V. Ahmad S. Snaith H.J. Getautis V. Nazeeruddin M.K. Nano Energy 2017 32 551 557 10.1016/j.nanoen.2017.01.015
    [Google Scholar]
  8. Das B.P. Int. Pest. Control 1989 31 144
    [Google Scholar]
  9. Knoelker H-J. Reddy K.R. Chem. Rev. 2002 102 4303 10.1021/cr020059j 12428991
    [Google Scholar]
  10. Ding Y-Y. Zhou H. Deng P. Zhang B.-Q. Zhang Z.-J. Wang G.-H. Zhang S.-Y. Wu Z.-R. Wang Y.-R. Liu Y.-Q. Eur. J. Med. Chem. 2023 259 115627 10.1016/j.ejmech.2023.115627 37467619
    [Google Scholar]
  11. Wang G. Sun S. Guo H. Eur. J. Med. Chem. 2022 229 113999 10.1016/j.ejmech.2021.113999 34838335
    [Google Scholar]
  12. Schmidt A.W. Reddy K.R. Knölker H.J. Chem. Rev. 2012 112 6 3193 3328 10.1021/cr200447s 22480243
    [Google Scholar]
  13. Głuszyńska A. Eur. J. Med. Chem. 2015 94 405 426 10.1016/j.ejmech.2015.02.059 25794500
    [Google Scholar]
  14. Thevissen K. Marchand A. Chaltin P. Meert E. Cammue B. Curr. Med. Chem. 2009 16 17 2205 2211 10.2174/092986709788612701 19519387
    [Google Scholar]
  15. Caruso A. Ceramella J. Iacopetta D. Saturnino C. Mauro M.V. Bruno R. Aquaro S. Sinicropi M.S. Molecules 2019 24 10 1912 10.3390/molecules24101912 31109016
    [Google Scholar]
  16. Tsutsumi L. Curr. Top. Med. Chem. 2016 16 1290 26369811
    [Google Scholar]
  17. Choi T.A. Czerwonka R. Forke R. Jäger A. Knöll J. Krahl M.P. Krause T. Reddy K.R. Franzblau S.G. Knölker H-J. Med. Chem. Res. 2008 17 2-7 374 385 10.1007/s00044‑007‑9073‑0
    [Google Scholar]
  18. Nandy B.C. Gupta A.K. Mittal A. Vyas V. J. Biomed. Pharm. Res. 2014 3 42
    [Google Scholar]
  19. Granda M. Menéndez R. Moinelo S.R. Bermejo J. Snape C.E. Fuel 1993 72 1 19 23 10.1016/0016‑2361(93)90370‑H
    [Google Scholar]
  20. Ni H. Xu C. Wang R. Guo X. Long Y. Ma C. Yan L. Liu X. Shi Q. Energy Fuels 2018 32 3 3077 3084 10.1021/acs.energyfuels.7b03659
    [Google Scholar]
  21. Marzinzik A.L. Rademacher P. Zander M. J. Mol. Struct. THEOCHEM 1996 375 1-2 117 126 10.1016/S0166‑1280(96)91289‑0
    [Google Scholar]
  22. Han J. Guo S. Lu H. Liu S. Zhao Q. Huang W. Adv. Opt. Mater. 2018 6 17 1800538 10.1002/adom.201800538
    [Google Scholar]
  23. Ma S. Sun H. Chen J. Yu Y. Lu H. Wang S. Zhang J. Zhao J. Long G. Wang X.D. Adv. Opt. Mater. 2023 11 13 2203087 10.1002/adom.202203087
    [Google Scholar]
  24. Jung S-Y. Lee S-H. Lee M-J. Moon D-H. Cho S-H. US Patent 2021126203 2021
  25. Lee S-H. Kim B. Jung S-Y. Shin H-N. Lee M-J. US Patent 2022384744 2022
  26. Weavers R.T. Sondheimer F. Angew. Chem. Int. Ed. Engl. 1974 13 2 141 142 10.1002/anie.197401411
    [Google Scholar]
  27. Đorđević L. Milano D. Demitri N. Bonifazi D. Org. Lett. 2020 22 11 4283 4288 10.1021/acs.orglett.0c01331 32429668
    [Google Scholar]
  28. Shao J. Zhao X. Wang L. Tang Q. Li W. Yu H. Tian H. Zhang X. Geng Y. Wang F. Tetrahedron Lett. 2014 55 41 5663 5666 10.1016/j.tetlet.2014.08.073
    [Google Scholar]
  29. Luo C.E. Ding Z. Wu X.W. Liu Z. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018 194 111 116 10.1016/j.saa.2018.01.004
    [Google Scholar]
  30. Ito H. Itami K. Kawahara K.P. Synthesis 2024 56 9 1335 1354 10.1055/a‑2169‑4078
    [Google Scholar]
  31. Matsumura M. Kawahata M. Muranaka A. Hiraiwa M. Yamaguchi K. Uchiyama M. Yasuike S. Eur. J. Org. Chem. 2019 2019 23 3788 3793 10.1002/ejoc.201900464
    [Google Scholar]
  32. Bellotti P. Huang H.M. Faber T. Glorius F. Chem. Rev. 2023 123 8 4237 4352 10.1021/acs.chemrev.2c00478 36692361
    [Google Scholar]
  33. Shaw M.H. Twilton J. MacMillan D.W.C. J. Org. Chem. 2016 81 16 6898 6926 10.1021/acs.joc.6b01449 27477076
    [Google Scholar]
  34. Prier C.K. Rankic D.A. MacMillan D.W.C. Chem. Rev. 2013 113 7 5322 5363 10.1021/cr300503r 23509883
    [Google Scholar]
  35. Chan A.Y. Perry I.B. Bissonnette N.B. Buksh B.F. Edwards G.A. Frye L.I. Garry O.L. Lavagnino M.N. Li B.X. Liang Y. Mao E. Millet A. Oakley J.V. Reed N.L. Sakai H.A. Seath C.P. Chem. Rev. 2022 122 1485 10.1021/acs.chemrev.1c00383 34793128
    [Google Scholar]
  36. Strieth-Kalthoff F. James M.J. Teders M. Pitzer L. Glorius F. Chem. Soc. Rev. 2018 47 19 7190 7202 10.1039/C8CS00054A 30088504
    [Google Scholar]
  37. Zhou Q.Q. Zou Y.Q. Lu L.Q. Xiao W.J. Angew. Chem. Int. Ed. 2019 58 6 1586 1604 10.1002/anie.201803102
    [Google Scholar]
  38. Cannalire R. Pelliccia S. Sancineto L. Novellino E. Tron G.C. Giustiniano M. Chem. Soc. Rev. 2021 50 2 766 897 10.1039/D0CS00493F 33350402
    [Google Scholar]
  39. Salum M.L. Protti S. Mella M. Bonesi S.M. ChemPhotoChem 2024 8 e202400051 10.1002/cptc.202400051
    [Google Scholar]
  40. Zhang W. Bu J. Wang L. Li P. Li H. Org. Chem. Front. 2021 8 18 5045 5051 10.1039/D1QO00739D
    [Google Scholar]
  41. Manna K. Ganguly T. Baitalik S. Jana R. Org. Lett. 2021 23 21 8634 8639 10.1021/acs.orglett.1c03343 34643396
    [Google Scholar]
  42. Liu Q. Liu Y-X. Song H-J. Wang Q-M. Adv. Synth. Catal. 2020 362 3110 10.1002/adsc.202000578
    [Google Scholar]
  43. Wu Y. Kang J. Zhu H. Bi M. Li J. Meng Q. Lyu X. Wu Z. ACS Sustain. Chem.& Eng. 2024 12 17 6640 6647 10.1021/acssuschemeng.4c00202
    [Google Scholar]
  44. Qu Z. Chen X. Zhong S. Org. Lett. 2021 23 5349 10.1021/acs.orglett.1c01654 34180677
    [Google Scholar]
  45. Das S. Kundu S. Metya A. Maji M.S. Chem. Sci. (Camb.) 2024 15 33 13466 13474 10.1039/D4SC03438D
    [Google Scholar]
  46. Babu S.S. Shahid M. Gopinath P. Chem. Commun. (Camb.) 2020 56 44 5985 5988 10.1039/D0CC01443E 32347860
    [Google Scholar]
  47. Sheng H. Liu Q. Zhang B.B. Wang Z.X. Chen X.Y. Angew. Chem. Int. Ed. 2023 62 12 e202218468 10.1002/anie.202218468
    [Google Scholar]
  48. Heredia M.D. Guerra W.D. Barolo S.M. Fornasier S.J. Rossi R.A. Budén M.E. J. Org. Chem. 2020 85 21 13481 13494 10.1021/acs.joc.0c01523 32893628
    [Google Scholar]
  49. Yuan Z.G. Wang Q. Zheng A. Zhang K. Lu L.Q. Tang Z. Xiao W.J. Chem. Commun. (Camb.) 2016 52 29 5128 5131 10.1039/C5CC10542K 26987917
    [Google Scholar]
  50. Zhang L. Wang Z. Song Z. J. Org. Chem. 2024 89 12 8888 8895 10.1021/acs.joc.4c00746 38818883
    [Google Scholar]
  51. Zhang Q.L. Fan Q.T. Zhou Y. Zhang J. Zhang F.L. Org. Chem. Front. 2024 11 10 2884 2890 10.1039/D4QO00140K
    [Google Scholar]
  52. Wang E.B. Fan Q. Lu X. Sun B. Zhang F.L. Org. Biomol. Chem. 2024 22 24 4968 4972 10.1039/D4OB00656A 38825973
    [Google Scholar]
  53. Duan T. Zhang Y. Zhang J. Lu X. Ma L. Sun B. Zhang F.L. Tetrahedron Lett. 2023 121 154476 10.1016/j.tetlet.2023.154476
    [Google Scholar]
  54. Dutta S. Erchinger J.E. Strieth-Kalthoff F. Kleinmans R. Glorius F. Chem. Soc. Rev. 2024 53 3 1068 1089 10.1039/D3CS00190C 38168974
    [Google Scholar]
  55. Hoffmann N. Chem. Rev. 2008 108 3 1052 1103 10.1021/cr0680336 18302419
    [Google Scholar]
  56. Liu B. Wang Q. Cheng B. Wang T. Liao H. Lin H.W. Green Chem. 2024 26 8 4742 4748 10.1039/D3GC03983H
    [Google Scholar]
  57. Mashraqui S. Keehn P. Synth. Commun. 1982 12 8 637 645 10.1080/00397918208061895
    [Google Scholar]
  58. Bonnaud B. Bigg D.C.H. Synthesis 1994 1994 5 465 467 10.1055/s‑1994‑25500
    [Google Scholar]
  59. Hughes B. Suschitzky H. J. Chem. Soc. 1965 875 10.1039/jr9650000875
    [Google Scholar]
  60. Yu C. Zhang Y. Zhang S. Li H. Wang W. Chem. Commun. (Camb.) 2011 47 3 1036 1038 10.1039/C0CC03186K 21072421
    [Google Scholar]
  61. Xie J. Huang Y. Song H. Liu Y. Wang Q. Org. Lett. 2017 19 22 6056 6059 10.1021/acs.orglett.7b02767 29086568
    [Google Scholar]
  62. Peng F. McLaughlin M. Liu Y. Mangion I. Tschaen D.M. Xu Y. J. Org. Chem. 2016 81 20 10009 10015 10.1021/acs.joc.6b01854 27700080
    [Google Scholar]
  63. Llopis N. Gisbert P. Baeza A. Correa-Campillo J. Adv. Synth. Catal. 2022 364 6 1205 1210 10.1002/adsc.202101360
    [Google Scholar]
  64. Llopis N. Gisbert P. Baeza A. Adv. Synth. Catal. 2021 363 13 3245 3249 10.1002/adsc.202100214
    [Google Scholar]
  65. Llopis N. Baeza A. J. Org. Chem. 2020 85 9 6159 6164 10.1021/acs.joc.0c00218 32274926
    [Google Scholar]
  66. Llopis N. Gisbert P. Baeza A. J. Org. Chem. 2020 85 17 11072 11079 10.1021/acs.joc.0c01579 32786613
    [Google Scholar]
/content/journals/loc/10.2174/0115701786365977250129044853
Loading
/content/journals/loc/10.2174/0115701786365977250129044853
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: dibenzo[a,g]carbazole ; β-tetralone ; aryl amine ; catalyst-free ; photochemistry ; Visible light
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test