Skip to content
2000
image of Synthesis of Substituted Quinolines Using the Friedlander Reaction Under Microwave Irradiation Techniques

Abstract

3-(N-morpholino)propanesulfonic acid (MOPS), used as an organocatalyst supported on acidic alumina (Al2O3), has been effectively employed for the synthesis of substituted quinolines through the Friedlander reaction under microwave irradiation. The process involves the cyclocondensation of 2-aminoaryl ketones with carbonyl-functionalized active methylene groups. The catalytic efficacy of the MOPS/Al2O3 system proves compatible with this cyclocondensation reaction, offering several advantages including rapid activation of reactants, maintenance of a near-neutral pH, cost-effectiveness, and high yield.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786355376241226131443
2025-02-20
2025-04-25
Loading full text...

Full text loading...

References

  1. Joule A.J. Mills K. Heterous Chemistry 5th Ed. Hoboken, New Jersey John Wiley & Sons, Inc. 2010
    [Google Scholar]
  2. Gul M. Turk Celikoglu E. Idil O. Tas G. Pelit E. Sci. Rep. 2023 13 1 1676 1696 10.1038/s41598‑023‑27777‑z 36717728
    [Google Scholar]
  3. Kumar S. Bawa S. Gupta H. Med. Chem. 2009 14 9 1648 1654
    [Google Scholar]
  4. Bilker O. Lindo V. Panico M. Etiene A.E. Paxton T. Dell A. Rogers M. Sinden R.E. Morris H.R. Nature 1998 392 289 292 10.1038/32667 9521324
    [Google Scholar]
  5. Kubica K. Taciak P. Czajkowska A. Sztokfisz-Ignasiak A. Wyrebiak R. Podsadni P. Mlynarczuk-Bialy I. Malejczyk J. Mazurek A. Acta Pol. Pharm. Drug Res 2018 75 891 901
    [Google Scholar]
  6. Bénard C. Zouhiri F. Normand-Bayle M. Danet M. Desmaële D. Leh H. Mouscadet J.F. Mbemba G. Thomas C.M. Bonnenfant S. Le Bret M. d’Angelo J. Bioorg. Med. Chem. Lett. 2004 14 10 2473 2476 10.1016/j.bmcl.2004.03.005 15109635
    [Google Scholar]
  7. Fu H.G. Li Z.W. Hu X.X. Si S.Y. You X.F. Tang S. Wang Y.X. Song D.Q. Molecules 2019 24 3 548 558 10.3390/molecules24030548 30717338
    [Google Scholar]
  8. Kaur H. Singh J. Narasimhan B. BMC Chem. 2019 13 1 65 82 10.1186/s13065‑019‑0580‑0 31384812
    [Google Scholar]
  9. Ugwu D.I. Okoro U.C. Ukoha P.O. Gupta A. Okafor S.N. Med. Chem. 2018 33 1 405 415
    [Google Scholar]
  10. Ustundag C.G. Gursoy E. Naesens L. Guzeldemirci N.U. Çapan G. Med. Chem. 2016 24 240 246
    [Google Scholar]
  11. Yousif M.N.M. Hussein H.A.R. Yousif N.M. El-Manawaty M.A. El-Sayed W.A. J. Appl. Pharm. Sci. 2019 9 1 6 14 10.7324/JAPS.2019.90102
    [Google Scholar]
  12. Shehab W.S. Amer M.M.K. Elsayed D.A. Yadav K.K. Abdellattif M.H. Med. Chem. Res. 2023 32 12 2443 2457 10.1007/s00044‑023‑03121‑y
    [Google Scholar]
  13. Varala R. Enugala R. Adapa S.R. Synthesis 2006 22 3825 3830
    [Google Scholar]
  14. Zare R.M. Nazafi R. Sci. Rep. 2023 13 16501 16509 10.1038/s41598‑023‑43793‑5 37779154
    [Google Scholar]
  15. Rezayati S. Jafroudi M.T. Nezhad E.R. Hajinasiri R. Abbaspour S. Res. Chem. Intermed. 2016 42 6 5887 5898 10.1007/s11164‑015‑2411‑9
    [Google Scholar]
  16. Wu J. Zhang L. Diao T.N. Synlett 2005 17 17 2653 2657 10.1055/s‑2005‑917111
    [Google Scholar]
  17. Chauhan S. Chakravarti R. Zaidi S.M.J. Al-Deyab S. Subba Reddy B.V. Vinu A. Synlett 2010 2597 2600
    [Google Scholar]
  18. Tanwar B. Kumar D. Kumar A. New J. Chem. 2013 ••• 1 3
    [Google Scholar]
  19. Wu J. Xia H.G. Gao K. Org. Biomol. Chem. 2006 4 1 126 129 10.1039/B514635F 16358006
    [Google Scholar]
  20. Hasaninejad A. Zare A. Shekouhy M. Ameri-Rad J. Green Chem. 2011 13 4 958 964 10.1039/c0gc00953a
    [Google Scholar]
  21. Baghbanian S.M. Farhang M. RSC Advances 2014 4 23 11624 11633 10.1039/c3ra46119j
    [Google Scholar]
  22. Elderfield R.C. Heterocyclic Compounds. New York Wiley 1952 45
    [Google Scholar]
  23. Fehnel E.A. J. Heterocycl. Chem. 1966 31 2899 2902
    [Google Scholar]
  24. Kiss Á. Potor A. Hell Z. Catal. Lett. 2008 125 3-4 250 253 10.1007/s10562‑008‑9573‑7
    [Google Scholar]
  25. Zolfigol M.A. Salehi P. Ghaderi A. Shiri M. Catal. Commun. 2007 8 8 1214 1218 10.1016/j.catcom.2006.11.004
    [Google Scholar]
  26. Genovese S. Epifano F. Marcotullio M.C. Pelucchini C. Curini M. Tetrahedron Lett. 2011 52 27 3474 3477 10.1016/j.tetlet.2011.04.109
    [Google Scholar]
  27. Li H. Wang C. Huang H. Xu X. Li Y. Tetrahedron Lett. 2011 52 10 1108 1111 10.1016/j.tetlet.2010.12.102
    [Google Scholar]
  28. Gunasekaran P. Prasanna P. Perumal S. Almansour A.I. Tetrahedron Lett. 2013 54 25 3248 3252 10.1016/j.tetlet.2013.04.022
    [Google Scholar]
  29. Sharma N. Asthana M. Kumar R. Mishra K. Singh R.M. Tetrahedron Lett. 2014 55 15 2348 2351 10.1016/j.tetlet.2014.02.081
    [Google Scholar]
/content/journals/loc/10.2174/0115701786355376241226131443
Loading
/content/journals/loc/10.2174/0115701786355376241226131443
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test