Skip to content
2000
image of Microwave-assisted Reduction of Ketones Using Decaborane in Aqueous Solution

Abstract

The reduction of ketones to secondary alcohols is an essential reaction in organic chemistry, and various reagents are utilized for this purpose. Herein, we have reported the reduction of ketone using decaborane in conventional as well as microwave-assisted methods in aqueous solution. Different types of aromatic ketones containing distinct functional groups were analyzed. We observed that ketones having an electron-withdrawing group showed a faster reaction rate with higher yield as compared to the ketones with electron-donating groups. Additionally, a comparison between microwave-assisted and conventional synthesis was done by evaluating the total reaction time and percentage yield. The results indicate that microwave-assisted syntheses lead to higher yields within very short reaction times.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786350307241114101405
2024-11-22
2025-01-18
Loading full text...

Full text loading...

References

  1. Mohanazadeh F. Hosini M. Tajbakhsh M. Monatsh. Chem. 2005 136 12 2041 2043 10.1007/s00706‑005‑0376‑x
    [Google Scholar]
  2. Brandt P. Roth P. Andersson P.G. J. Org. Chem. 2004 69 15 4885 4890 10.1021/jo030378q 15255712
    [Google Scholar]
  3. Liu P.N. Deng J.G. Tu Y.Q. Wang S.H. Chem. Commun. 2004 2070-2071 18 2070 2071 10.1039/b408533g 15367979
    [Google Scholar]
  4. Zhao F. Fujita S. Sun J. Ikushima Y. Arai M. Chem. Commun. 2004 20 2326 2327 10.1039/b408434a 15490003
    [Google Scholar]
  5. Liu P.N. Gu P.M. Wang F. Tu Y.Q. Org. Lett. 2004 6 2 169 172 10.1021/ol036065z 14723520
    [Google Scholar]
  6. Milone C. Ingoglia R. Pistone A. Neri G. Frusteri F. Gal-vagno S. J. Catal. 2004 222 2 348 356 10.1016/j.jcat.2003.11.003
    [Google Scholar]
  7. Selvam P. Sonavane S.U. Mohapatra S.K. Jayaram R.V. Adv. Synth. Catal. 2004 346 5 542 544 10.1002/adsc.200303175
    [Google Scholar]
  8. Larock R.C. Comprehensive organic transformations: A guide to functional group preparations. 1st ed Wiley 2018 10.1002/9781118662083
    [Google Scholar]
  9. Kumar A. Kuang Y. Liang Z. Sun X. Mat. Today Nano 2020 11100076 10.1016/j.mtnano.2020.100076
    [Google Scholar]
  10. Sharma N. Sharma U.K. Eycken V.D.E.V. Green Techniques for Organic Synthesis and Medicinal Chemistry 1st ed Zhang W. Cue B.W. Wiley 2018 441 46 10.1002/9781119288152.ch17
    [Google Scholar]
  11. Yadav A.R. Mohite S.K. Res. J. Pharm. Dos. Forms Technol. 2020 12 3 191 10.5958/0975‑4377.2020.00033.6
    [Google Scholar]
  12. Kumar K. J. Heterocycl. Chem. 2022 59 2 205 238 10.1002/jhet.4376
    [Google Scholar]
  13. Jha A. Nanofibers - Synthesis. Kumar B. Properties and Applications, IntechOpen 2021 1 17 10.5772/intechopen.98224
    [Google Scholar]
  14. Henary M. Kananda C. Rotolo L. Savino B. Owens E.A. Cravotto G. RSC Advances 2020 10 24 14170 14197 10.1039/D0RA01378A 35498463
    [Google Scholar]
  15. Javahershenas R. Makarem A. Klika K.D. RSC Advances 2024 14 8 5547 5565 10.1039/D4RA00056K 38357035
    [Google Scholar]
  16. Gawande M.B. Shelke S.N. Zboril R. Varma R.S. Acc. Chem. Res. 2014 47 4 1338 1348 10.1021/ar400309b 24666323
    [Google Scholar]
  17. Li Y. Tixier F.A.S. Vian M.A. Chemat F. Trends Analyt. Chem. 2013 47 1 11 10.1016/j.trac.2013.02.007
    [Google Scholar]
  18. Nain S. Singh R. Ravichandran S. Adv J. Chem A 2019 2 2 94 104 10.29088/SAMI/AJCA.2019.2.94104
  19. Budarin V.L. Shuttleworth P.S. Bruyn D.M. Farmer T.J. Gronnow M.J. Pfaltzgraff L. Macquarrie D.J. Clark J.H. Catal. Today 2015 239 80 89 10.1016/j.cattod.2013.11.058
    [Google Scholar]
  20. Wang N. Zou W. Li X. Liang Y. Wang P. RSC Advances 2022 12 27 17158 17181 10.1039/D2RA00381C 35755588
    [Google Scholar]
  21. Wang J. Wu W. Kondo H. Fan T. Zhou H. Nanotechnology 2022 33 34 342002 10.1088/1361‑6528/ac6c97 35508114
    [Google Scholar]
  22. Paniagua B.D.K. Cruz D.E.B. Calderón B.A. Angelmo G.A.R. Pérez R.E. Torres D.P.R.M. Alonso M.C. J. Mater. Sci. Mater. Electron. 2022 33 29 22631 22667 10.1007/s10854‑022‑09024‑9
    [Google Scholar]
  23. Nandihalli N. Gregory D.H. Mori T. Adv. Sci. 2022 9 25 2106052 10.1002/advs.202106052 35843868
    [Google Scholar]
  24. Devi N. Sahoo S. Kumar R. Singh R.K. Nanoscale 2021 13 27 11679 11711 10.1039/D1NR01134K 34190274
    [Google Scholar]
  25. Adeola A.O. Duarte M.P. Naccache R. Front. Carb 2023 21220021 10.3389/frcrb.2023.1220021
    [Google Scholar]
  26. Nizamuddin S. Abbasi S.A. Jatoi A.S. Siddiqui M.T.H. Baloch H.A. Mubarak N.M. Griffin G.J. Abdullah E.C. Qureshi K. Karri R.R. Nanomaterials Synthesis. Elsevier 2019 121 147 10.1016/B978‑0‑12‑815751‑0.00005‑5
    [Google Scholar]
  27. Andrade F.K.J. Andrade F.A.A. Intriago Z.L.Á. Perez A.L.E. Martin A.S. Crespo B.R.J. Luque R. Díaz R.J.M. Assisted M.M.O.F. Chemosphere 2023 ••• 314137664 10.1016/j.chemosphere.2022.137664 36587919
    [Google Scholar]
  28. Vignesh N.S. Soosai M.R. Chia W.Y. Wahid S.N. Vara-lakshmi P. Moorthy I.M.G. Ashokkumar B. Arumugasamy S.K. Selvarajoo A. Chew K.W. Fuel 2022 ••• 313123023 10.1016/j.fuel.2021.123023
    [Google Scholar]
  29. Amparo S.Z.S. Vasconcelos C.K.B. Almeida A.I.A.R. Sena L.E.B. Lima M.C.F.S. Medeiros F.S. Caliman V. Silva G.G. Viana M.M. Fuel 2022 ••• 330125650 10.1016/j.fuel.2022.125650
    [Google Scholar]
  30. Greñu D.D.B. Pina M.S. Reyes D.L.R. Benitez M. Haskou-ri E.J. Amorós P. Lis R.J.V. ChemSusChem 2023 16 12 e202300123 10.1002/cssc.202300123 36883559
    [Google Scholar]
  31. Greñu D.D.B. Reyes D.L.R. Costero A.M. Amorós P. Lis R.J.V. Nanomaterials (Basel) 2020 10 6 1092 10.3390/nano10061092 32492889
    [Google Scholar]
  32. Janus Ł. Piątkowski M. Pragłowska R. J. Mater. 2019 12 23 3825 10.3390/ma12233825 31766363
    [Google Scholar]
  33. Garino N. Limongi T. Dumontel B. Canta M. Racca L. Laurenti M. Castellino M. Casu A. Falqui A. Cauda V. Nanomaterials (Basel) 2019 9 2 212 10.3390/nano9020212 30736299
    [Google Scholar]
  34. Wang Y. Wang R. Lin N. Wang Y. Zhang X.J. Col. Int. Sci. 2021 594 446 459 10.1016/j.jcis.2021.03.046 33774400
    [Google Scholar]
  35. Yin Z. Li S. Li X. Shi W. Liu W. Gao Z. Tao M. Ma C. Liu Y. RSC Advances 2023 13 5 3265 3277 10.1039/D2RA07936D 36756450
    [Google Scholar]
  36. Sinhamahapatra A. Sutradhar N. Roy B. Pal P. Bajaj H.C. Panda A.B. Appl. Catal. B 2011 103 3-4 378 387 10.1016/j.apcatb.2011.01.045
    [Google Scholar]
  37. Benaskar F. Abdelmoumen B.A. Patil N.G. Rebrov E.V. Meuldijk J. Hulshof L.A. Hessel V. Krtschil U. Schouten J.C. J. Flow Chem. 2011 1 2 74 89 10.1556/jfchem.2011.00015
    [Google Scholar]
  38. Patil N.G. Benaskar F. Rebrov E.V. Meuldijk J. Hulshof L.A. Hessel V. Schouten J.C. Ind. Eng. Chem. Res. 2012 51 44 14344 14354 10.1021/ie300754z
    [Google Scholar]
  39. Yunpu W.A.N.G. Leilei D.A.I. Liangliang F.A.N. Shaoqi S.H.A.N. Yuhuan L.I.U. Roger R.U.A.N. J. Anal. Appl. Pyrolysis 2016 119 104 113 10.1016/j.jaap.2016.03.011
    [Google Scholar]
  40. Gaudino C.E. Cravotto G. Manzoli M. Tabasso S. Green Chem. 2019 21 6 1202 1235 10.1039/C8GC03908A
    [Google Scholar]
  41. Asomaning J. Haupt S. Chae M. Bressler D.C. Renew. Sustain. Energy Rev. 2018 92 642 657 10.1016/j.rser.2018.04.084
    [Google Scholar]
  42. Llompart M. Celeiro M. Dagnac T. Trends Analyt. Chem. 2019 116 136 150 10.1016/j.trac.2019.04.029
    [Google Scholar]
  43. Tobon S.C. Panžić I. Bafti A. Matijašić G. Ljubas D. Ćurković L. Nanomaterials (Basel) 2022 12 22 3975 10.3390/nano12223975 36432262
    [Google Scholar]
  44. Marzouqi A.F. Farsi A.B. Kuvarega A.T. Lawati A.H.A.J. Kindy A.S.M.Z. Kim Y. Selvaraj R. ACS Omega 2019 4 3 4671 4678 10.1021/acsomega.8b03665 31459654
    [Google Scholar]
  45. Anfar Z. Zbair M. Ahsiane A.H. Jada A. Alem E.N. RSC Advances 2020 10 19 11371 11380 10.1039/D0RA00617C 35495320
    [Google Scholar]
  46. Laleman F. Mathot F. Bourlès E. Scutellà B. Hansen L. Beer D.T. Int. J. Pharm. 2024 ••• 664124640 10.1016/j.ijpharm.2024.124640 39191335
    [Google Scholar]
  47. Adhikari A. Bhakta S. Ghosh T. Tetrahedron 2022 ••• 126133085 10.1016/j.tet.2022.133085
    [Google Scholar]
  48. Kasper J.S. Lucht C.M. Harker D. Acta Crystallogr. 1950 3 6 436 455 10.1107/S0365110X50001270
    [Google Scholar]
  49. Zahkarkin L.I. Stanko V.I. Chapovskii Y.A. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1962 11 6 1048 1049 10.1007/BF00905234
    [Google Scholar]
  50. Park E.S. Lee J.H. Kim S.J. Yoon C.M. Synth. Commun. 2003 33 19 3387 3396 10.1081/SCC‑120023997
    [Google Scholar]
  51. Lee S.H. Park Y.J. Yoon C.M. Tetrahedron Lett. 1999 40 33 6049 6050 10.1016/S0040‑4039(99)01229‑0
    [Google Scholar]
  52. Funke U. Jia H. Fischer S. Scheunemann M. Steinbach J. J. Labelled Comp. Radiopharm. 2006 49 9 745 755 10.1002/jlcr.1087
    [Google Scholar]
  53. Bellott B.J. Noh W. Nuzzo R.G. Girolami G.S. Chem. Commun. 2009 3214-3215 22 3214 3215 10.1039/b902371b 19587917
    [Google Scholar]
  54. Ekimov E.A. Zibrov I.P. Zoteev A.V. Inorg. Mater. 2011 47 11 1194 1198 10.1134/S0020168511110069
    [Google Scholar]
  55. Ekimov E.A. Lebed J.B. Sidorov V.A. Lyapin S.G. Phys. Status Solidi, B Basic Res. 2013 250 4 721 725 [b 10.1002/pssb.201200493
    [Google Scholar]
  56. Guélou G. Martirossyan M. Ogata K. Ohkubo I. Kakefuda Y. Kawamoto N. Kitagawa Y. Ueda J. Tanabe S. Maeda K. Nakamura K. Aizawa T. Mori T. Materialia 2018 1 244 248 10.1016/j.mtla.2018.06.003
    [Google Scholar]
  57. Sun L. Yuan G. Gao L. Yang J. Chhowalla M. Gharahcheshmeh M.H. Gleason K.K. Choi Y.S. Hong B.H. Liu. Z. Nat. Rev. Meth. Pri. 2021 1 1 5 10.1038/s43586‑020‑00005‑y 35009151
    [Google Scholar]
  58. Saeed M. Alshammari Y. Majeed S.A. Nasrallah A.E. Molecules 2020 25 17 3856 10.3390/molecules25173856 32854226
    [Google Scholar]
  59. Kher S.S. Spencer J.T. Chemical vapor deposition precursor chemistry. 3. Formation and characterization of crystalline nickel boride thin films from the cluster-assisted deposition of polyhe-dral borane compounds. ACS Publications 2002 10.1021/cm00021a011
    [Google Scholar]
  60. Tynell T. Aizawa T. Ohkubo I. Nakamura K. Mori T. J. Cryst. Growth 2016 449 10 14 10.1016/j.jcrysgro.2016.05.030
    [Google Scholar]
  61. Kher S.S. Romero J.V. Caruso J.D. Spencer J.T. Appl. Organomet. Chem. 2008 22 6 300 307 10.1002/aoc.1383
    [Google Scholar]
  62. Ohkubo I. Aizawa T. Nakamura K. Mori T. Front Chem. 2021 9642388 https://www.frontiersin.org/articles/10.3389/fchem.2021.642388 10.3389/fchem.2021.642388 34386477
    [Google Scholar]
  63. Lee S.H. Jung Y.J. Cho Y.J. Yoon C.O.M. Hwang H.J. Yoon C.M. Synth. Commun. 2001 31 15 2251 2254 10.1081/SCC‑100104823
    [Google Scholar]
  64. Lee S.H. Park Y.J. Yoon C.M. Tetrahedron Lett. 2000 41 6 887 889 10.1016/S0040‑4039(99)02137‑1
    [Google Scholar]
  65. Lee S.H. Nam M.H. Cho M.Y. Yoo B.W. Rhee H.J. Yoon C.M. Synth. Commun. 2006 36 17 2469 2474 10.1080/00397910600781224
    [Google Scholar]
  66. Bae J.W. Lee S.H. Jung Y.J. Yoon M.C.O. Yoon C.M. Tetrahedron Lett. 2001 42 11 2137 2139 10.1016/S0040‑4039(01)00005‑3
    [Google Scholar]
  67. Yu J. Huang F. Fang W. Yin C. Shi C. Lang Q. Chen G.Q. Zhang X. Green Synth. Catal. 2022 3 2 175 178 10.1016/j.gresc.2022.03.004
    [Google Scholar]
  68. Kang M.S. Khoo X.J.Y. Jia Z. Loh T.P. Green Synth. Catal. 2022 3 4 309 316 10.1016/j.gresc.2022.09.002
    [Google Scholar]
  69. Bai J. Xu X. Zheng Y. Song W. Zheng N. Green Synth. Catal. 2024 5 3 186 190 10.1016/j.gresc.2023.03.001
    [Google Scholar]
  70. Wei D. Roisnel T. Darcel C. Clot E. Sortais J.B. ChemCatChem 2017 9 1 80 83 10.1002/cctc.201601141
    [Google Scholar]
  71. Gaykar R.N. Bhunia A. Biju A.T. J. Org. Chem. 2018 83 18 11333 11340 10.1021/acs.joc.8b01549 29989411
    [Google Scholar]
  72. Yadav J. Reddy B. Sreelakshmi C. Rao A. Synthesis 2009 11 1881 1885 10.1055/s‑0028‑1088047
    [Google Scholar]
  73. Voisine B.A. Wang D. Dorcet V. Roisnel T. Darcel C. Sortais J.B. Org. Lett. 2017 19 13 3656 3659 10.1021/acs.orglett.7b01657 28632391
    [Google Scholar]
  74. Swain B.R. Jena S.R. Beriha S.K. Mahanta C.S. Jena B.B. Prasanth T. Samanta L. Satapathy R. Dash B.P. New J. Chem. 2023 47 21 10296 10308 10.1039/D3NJ00182B
    [Google Scholar]
  75. Dash B.P. Satapathy R. Gaillard E.R. Norton K.M. Maguire J.A. Chug N. Hosmane N.S. Inorg. Chem. 2011 50 12 5485 5493 10.1021/ic200010q 21612206
    [Google Scholar]
/content/journals/loc/10.2174/0115701786350307241114101405
Loading
/content/journals/loc/10.2174/0115701786350307241114101405
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: Microwave-assisted ; Ketone ; Secondary alcohol ; Decaborane ; Reduction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test