Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

The reduction of ketones to secondary alcohols is an essential reaction in organic chemistry and various reagents are utilized for this purpose. Herein, we have reported the reduction of ketone using decaborane in conventional as well as microwave-assisted methods in aqueous solution. Different types of aromatic ketones containing distinct functional groups were analyzed. We observed that ketones having an electron-withdrawing group showed a faster reaction rate with higher yield as compared to the ketones with electron-donating groups. Additionally, a comparison between microwave-assisted and conventional synthesis was done by evaluating the total reaction time and percentage yield. The results indicate that microwave-assisted synthesis lead to higher yields within very short reaction times.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786350307241114101405
2024-11-22
2025-07-15
Loading full text...

Full text loading...

References

  1. MohanazadehF. HosiniM. TajbakhshM. Monatsh. Chem.2005136122041204310.1007/s00706‑005‑0376‑x
    [Google Scholar]
  2. BrandtP. RothP. AnderssonP.G. J. Org. Chem.200469154885489010.1021/jo030378q 15255712
    [Google Scholar]
  3. LiuP.N. DengJ.G. TuY.Q. WangS.H. Chem. Commun.20042070-2071182070207110.1039/b408533g 15367979
    [Google Scholar]
  4. ZhaoF. FujitaS. SunJ. IkushimaY. AraiM. Chem. Commun.2004202326232710.1039/b408434a 15490003
    [Google Scholar]
  5. LiuP.N. GuP.M. WangF. TuY.Q. Org. Lett.20046216917210.1021/ol036065z 14723520
    [Google Scholar]
  6. MiloneC. IngogliaR. PistoneA. NeriG. FrusteriF. GalvagnoS. J. Catal.2004222234835610.1016/j.jcat.2003.11.003
    [Google Scholar]
  7. SelvamP. SonavaneS.U. MohapatraS.K. JayaramR.V. Adv. Synth. Catal.2004346554254410.1002/adsc.200303175
    [Google Scholar]
  8. LarockR.C. Comprehensive organic transformations: A guide to functional group preparations.1st edWiley201810.1002/9781118662083
    [Google Scholar]
  9. KumarA. KuangY. LiangZ. SunX. Mat.Today Nano20201110007610.1016/j.mtnano.2020.100076
    [Google Scholar]
  10. SharmaN. SharmaU.K. EyckenV.D.E.V. In: Green Techniques for Organic Synthesis and Medicinal Chemistry, 1st ed.; Zhang, W.; Cue, B.W., Eds.; Wiley,201844146810.1002/9781119288152.ch17
    [Google Scholar]
  11. YadavA.R. MohiteS.K. Res. J. Pharm. Dos. Forms Technol.202012319110.5958/0975‑4377.2020.00033.6
    [Google Scholar]
  12. KumarK. J. Heterocycl. Chem.202259220523810.1002/jhet.4376
    [Google Scholar]
  13. JhaA. Nanofibers - Synthesis. KumarB. Properties and Applications, IntechOpen202111710.5772/intechopen.98224
    [Google Scholar]
  14. HenaryM. KanandaC. RotoloL. SavinoB. OwensE.A. CravottoG. RSC Advances20201024141701419710.1039/D0RA01378A 35498463
    [Google Scholar]
  15. JavahershenasR. MakaremA. KlikaK.D. RSC Advances20241485547556510.1039/D4RA00056K 38357035
    [Google Scholar]
  16. GawandeM.B. ShelkeS.N. ZborilR. VarmaR.S. Acc. Chem. Res.20144741338134810.1021/ar400309b 24666323
    [Google Scholar]
  17. LiY. TixierF.A.S. VianM.A. ChematF. Trends Analyt. Chem.20134711110.1016/j.trac.2013.02.007
    [Google Scholar]
  18. Nain, S.; Singh, R.; Ravichandran, S. Adv. J. Chem. A2019229410410.29088/SAMI/AJCA.2019.2.94104
    [Google Scholar]
  19. BudarinV.L. ShuttleworthP.S. BruynD.M. FarmerT.J. GronnowM.J. PfaltzgraffL. MacquarrieD.J. ClarkJ.H. Catal. Today2015239808910.1016/j.cattod.2013.11.058
    [Google Scholar]
  20. WangN. ZouW. LiX. LiangY. WangP. RSC Advances20221227171581718110.1039/D2RA00381C 35755588
    [Google Scholar]
  21. WangJ. WuW. KondoH. FanT. ZhouH. Nanotechnology2022333434200210.1088/1361‑6528/ac6c97 35508114
    [Google Scholar]
  22. PaniaguaB.D.K. CruzD.E.B. CalderónB.A. AngelmoG.A.R. PérezR.E. TorresD.P.R.M. AlonsoM.C. J. Mater. Sci. Mater. Electron.20223329226312266710.1007/s10854‑022‑09024‑9
    [Google Scholar]
  23. NandihalliN. GregoryD.H. MoriT. Adv. Sci.2022925210605210.1002/advs.202106052 35843868
    [Google Scholar]
  24. DeviN. SahooS. KumarR. SinghR.K. Nanoscale20211327116791171110.1039/D1NR01134K 34190274
    [Google Scholar]
  25. AdeolaA.O. DuarteM.P. NaccacheR. Front.Carb20232122002110.3389/frcrb.2023.1220021
    [Google Scholar]
  26. NizamuddinS. AbbasiS.A. JatoiA.S. SiddiquiM.T.H. BalochH.A. MubarakN.M. GriffinG.J. AbdullahE.C. QureshiK. KarriR.R. Nanomaterials Synthesis.Elsevier201912114710.1016/B978‑0‑12‑815751‑0.00005‑5
    [Google Scholar]
  27. AndradeF.K.J. AndradeF.A.A. IntriagoZ.L.Á. PerezA.L.E. MartinA.S. CrespoB.R.J. LuqueR. DíazR.J.M. AssistedM.M.O.F. Chemosphere202331413766410.1016/j.chemosphere.2022.137664 36587919
    [Google Scholar]
  28. VigneshN.S. SoosaiM.R. ChiaW.Y. WahidS.N. VaralakshmiP. MoorthyI.M.G. AshokkumarB. ArumugasamyS.K. SelvarajooA. ChewK.W. Fuel202231312302310.1016/j.fuel.2021.123023
    [Google Scholar]
  29. AmparoS.Z.S. VasconcelosC.K.B. AlmeidaA.I.A.R. SenaL.E.B. LimaM.C.F.S. MedeirosF.S. CalimanV. SilvaG.G. VianaM.M. Fuel202233012565010.1016/j.fuel.2022.125650
    [Google Scholar]
  30. GreñuD.D.B. PinaM.S. ReyesD.L.R. BenitezM. HaskouriE.J. AmorósP. LisR.J.V. ChemSusChem20231612e20230012310.1002/cssc.202300123 36883559
    [Google Scholar]
  31. GreñuD.D.B. ReyesD.L.R. CosteroA.M. AmorósP. LisR.J.V. Nanomaterials2020106109210.3390/nano10061092 32492889
    [Google Scholar]
  32. JanusŁ. PiątkowskiM. PragłowskaR. J. Mater.20191223382510.3390/ma12233825 31766363
    [Google Scholar]
  33. GarinoN. LimongiT. DumontelB. CantaM. RaccaL. LaurentiM. CastellinoM. CasuA. FalquiA. CaudaV. Nanomaterials20199221210.3390/nano9020212 30736299
    [Google Scholar]
  34. WangY. WangR. LinN. WangY. ZhangX.J. Col. Int. Sci.202159444645910.1016/j.jcis.2021.03.046 33774400
    [Google Scholar]
  35. YinZ. LiS. LiX. ShiW. LiuW. GaoZ. TaoM. MaC. LiuY. RSC Advances20231353265327710.1039/D2RA07936D 36756450
    [Google Scholar]
  36. SinhamahapatraA. SutradharN. RoyB. PalP. BajajH.C. PandaA.B. Appl. Catal. B20111033-437838710.1016/j.apcatb.2011.01.045
    [Google Scholar]
  37. BenaskarF. AbdelmoumenB.A. PatilN.G. RebrovE.V. MeuldijkJ. HulshofL.A. HesselV. KrtschilU. SchoutenJ.C. J. Flow Chem.201112748910.1556/jfchem.2011.00015
    [Google Scholar]
  38. PatilN.G. BenaskarF. RebrovE.V. MeuldijkJ. HulshofL.A. HesselV. SchoutenJ.C. Ind. Eng. Chem. Res.20125144143441435410.1021/ie300754z
    [Google Scholar]
  39. YunpuW.A.N.G. LeileiD.A.I. LiangliangF.A.N. ShaoqiS.H.A.N. YuhuanL.I.U. RogerR.U.A.N. J. Anal. Appl. Pyrolysis201611910411310.1016/j.jaap.2016.03.011
    [Google Scholar]
  40. GaudinoC.E. CravottoG. ManzoliM. TabassoS. Green Chem.20192161202123510.1039/C8GC03908A
    [Google Scholar]
  41. AsomaningJ. HauptS. ChaeM. BresslerD.C. Renew. Sustain. Energy Rev.20189264265710.1016/j.rser.2018.04.084
    [Google Scholar]
  42. LlompartM. CeleiroM. DagnacT. Trends Analyt. Chem.201911613615010.1016/j.trac.2019.04.029
    [Google Scholar]
  43. TobonS.C. PanžićI. BaftiA. MatijašićG. LjubasD. ĆurkovićL. Nanomaterials20221222397510.3390/nano12223975 36432262
    [Google Scholar]
  44. MarzouqiA.F. FarsiA.B. KuvaregaA.T. LawatiA.H.A.J. KindyA.S.M.Z. KimY. SelvarajR. ACS Omega2019434671467810.1021/acsomega.8b03665 31459654
    [Google Scholar]
  45. AnfarZ. ZbairM. AhsianeA.H. JadaA. AlemE.N. RSC Advances20201019113711138010.1039/D0RA00617C 35495320
    [Google Scholar]
  46. LalemanF. MathotF. BourlèsE. ScutellàB. HansenL. BeerD.T. Int. J. Pharm.202466412464010.1016/j.ijpharm.2024.124640 39191335
    [Google Scholar]
  47. AdhikariA. BhaktaS. GhoshT. Tetrahedron202212613308510.1016/j.tet.2022.133085
    [Google Scholar]
  48. KasperJ.S. LuchtC.M. HarkerD. Acta Crystallogr.19503643645510.1107/S0365110X50001270
    [Google Scholar]
  49. ZahkarkinL.I. StankoV.I. ChapovskiiY.A. Bull. Acad. Sci. USSR, Div. Chem. Sci.19621161048104910.1007/BF00905234
    [Google Scholar]
  50. ParkE.S. LeeJ.H. KimS.J. YoonC.M. Synth. Commun.200333193387339610.1081/SCC‑120023997
    [Google Scholar]
  51. LeeS.H. ParkY.J. YoonC.M. Tetrahedron Lett.199940336049605010.1016/S0040‑4039(99)01229‑0
    [Google Scholar]
  52. FunkeU. JiaH. FischerS. ScheunemannM. SteinbachJ. J. Labelled Comp. Radiopharm.200649974575510.1002/jlcr.1087
    [Google Scholar]
  53. BellottB.J. NohW. NuzzoR.G. GirolamiG.S. Chem. Commun.20093214-3215223214321510.1039/b902371b 19587917
    [Google Scholar]
  54. EkimovE.A. ZibrovI.P. ZoteevA.V. Inorg. Mater.201147111194119810.1134/S0020168511110069
    [Google Scholar]
  55. EkimovE.A. LebedJ.B. SidorovV.A. LyapinS.G. Phys. Status Solidi, B Basic Res.2013250472172510.1002/pssb.201200493
    [Google Scholar]
  56. GuélouG. MartirossyanM. OgataK. OhkuboI. KakefudaY. KawamotoN. KitagawaY. UedaJ. TanabeS. MaedaK. NakamuraK. AizawaT. MoriT. Materialia2018124424810.1016/j.mtla.2018.06.003
    [Google Scholar]
  57. SunL. YuanG. GaoL. YangJ. ChhowallaM. GharahcheshmehM.H. GleasonK.K. ChoiY.S. HongB.H. Liu.Z. Nat. Rev. Meth. Pri.202111510.1038/s43586‑020‑00005‑y 35009151
    [Google Scholar]
  58. SaeedM. AlshammariY. MajeedS.A. NasrallahA.E. Molecules20202517385610.3390/molecules25173856 32854226
    [Google Scholar]
  59. KherS.S. SpencerJ.T. Chemical vapor deposition precursor chemistry. 3. Formation and characterization of crystalline nickel boride thin films from the cluster-assisted deposition of polyhedral borane compounds.ACS Publications200210.1021/cm00021a011
    [Google Scholar]
  60. TynellT. AizawaT. OhkuboI. NakamuraK. MoriT. J. Cryst. Growth2016449101410.1016/j.jcrysgro.2016.05.030
    [Google Scholar]
  61. KherS.S. RomeroJ.V. CarusoJ.D. SpencerJ.T. Appl. Organomet. Chem.200822630030710.1002/aoc.1383
    [Google Scholar]
  62. OhkuboI. AizawaT. NakamuraK. MoriT. Front Chem.2021964238810.3389/fchem.2021.642388 34386477
    [Google Scholar]
  63. LeeS.H. JungY.J. ChoY.J. YoonC.O.M. HwangH.J. YoonC.M. Synth. Commun.200131152251225410.1081/SCC‑100104823
    [Google Scholar]
  64. LeeS.H. ParkY.J. YoonC.M. Tetrahedron Lett.200041688788910.1016/S0040‑4039(99)02137‑1
    [Google Scholar]
  65. LeeS.H. NamM.H. ChoM.Y. YooB.W. RheeH.J. YoonC.M. Synth. Commun.200636172469247410.1080/00397910600781224
    [Google Scholar]
  66. BaeJ.W. LeeS.H. JungY.J. YoonM.C.O. YoonC.M. Tetrahedron Lett.200142112137213910.1016/S0040‑4039(01)00005‑3
    [Google Scholar]
  67. YuJ. HuangF. FangW. YinC. ShiC. LangQ. ChenG.Q. ZhangX. Green Synth. Catal.20223217517810.1016/j.gresc.2022.03.004
    [Google Scholar]
  68. KangM.S. KhooX.J.Y. JiaZ. LohT.P. Green Synth. Catal.20223430931610.1016/j.gresc.2022.09.002
    [Google Scholar]
  69. BaiJ. XuX. ZhengY. SongW. ZhengN. Green Synth. Catal.20245318619010.1016/j.gresc.2023.03.001
    [Google Scholar]
  70. WeiD. RoisnelT. DarcelC. ClotE. SortaisJ.B. ChemCatChem201791808310.1002/cctc.201601141
    [Google Scholar]
  71. GaykarR.N. BhuniaA. BijuA.T. J. Org. Chem.20188318113331134010.1021/acs.joc.8b01549 29989411
    [Google Scholar]
  72. YadavJ. ReddyB. SreelakshmiC. RaoA. Synthesis2009111881188510.1055/s‑0028‑1088047
    [Google Scholar]
  73. VoisineB.A. WangD. DorcetV. RoisnelT. DarcelC. SortaisJ.B. Org. Lett.201719133656365910.1021/acs.orglett.7b01657 28632391
    [Google Scholar]
  74. SwainB.R. JenaS.R. BerihaS.K. MahantaC.S. JenaB.B. PrasanthT. SamantaL. SatapathyR. DashB.P. New J. Chem.20234721102961030810.1039/D3NJ00182B
    [Google Scholar]
  75. DashB.P. SatapathyR. GaillardE.R. NortonK.M. MaguireJ.A. ChugN. HosmaneN.S. Inorg. Chem.201150125485549310.1021/ic200010q 21612206
    [Google Scholar]
/content/journals/loc/10.2174/0115701786350307241114101405
Loading
/content/journals/loc/10.2174/0115701786350307241114101405
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test