Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

Herein, the influence of structural attributes, including the interactions of lipases with support systems, substrates, products/byproducts, and the media environment, on enzyme stability, selectivity and activity are discussed. Substrates/products, such as methanol, glycerol, phenolic acids and polyphenols, can inhibit lipase activity by influencing the mass flow of the reactants and products or by enzyme denaturation, which is also caused by extreme pH, high temperatures, and digestive action of most organic solvents. Immobilization techniques that involve chemical bonding between the functional groups of the support and the amino acids of the lipase maintain the enzyme’s active conformation the formation of stable secondary structures. Functionalized metal nanoparticles and metal and covalent organic frameworks (COFs and MOFs) covalently bond to lipases, reducing the reliance of the active site conformation on hydrogen bonding and disulfide bonds. The crystallinity of COF- and MOF-immobilized lipases allows them to be used in contrasting media environments and at high temperatures, which increases the reaction kinetics and improves the catalytic yield. On the other hand, inert support systems such as silica promote catalytic yields by minimizing protein leaching, which fairly maintains the amount of the preloaded lipase. The structure of substrates also plays a large role, whereas some lipases strictly prefer narrow substrates others such as species lipases are liberal and allow substrates of varying bulkiness/steric hindrances.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786330890240826053103
2024-09-09
2025-07-12
Loading full text...

Full text loading...

References

  1. DunlapF.L. SeymourW. J. Am. Chem. Soc.190527893594610.1021/ja01986a003
    [Google Scholar]
  2. OllisD.L. CheahE. CyglerM. DijkstraB. FrolowF. FrankenS.M. HarelM. RemingtonS.J. SilmanI. SchragJ. SussmanJ.L. VerschuerenK.H.G. GoldmanA. Protein Eng. Des. Sel.19925319721110.1093/protein/5.3.197 1409539
    [Google Scholar]
  3. PleissJ. FischerM. PeikerM. ThieleC. SchmidR.D. J. Mol. Catal., B Enzym.200010549150810.1016/S1381‑1177(00)00092‑8
    [Google Scholar]
  4. ZhongL. JiaoX. HuH. ShenX. ZhaoJ. FengY. LiC. DuY. CuiJ. JiaS. Renew. Energy202117182583210.1016/j.renene.2021.02.155
    [Google Scholar]
  5. ZhangZ. DuY. KuangG. ShenX. JiaX. WangZ. FengY. JiaS. LiuF. BilalM. CuiJ. Renew. Energy202219711012410.1016/j.renene.2022.07.092
    [Google Scholar]
  6. WancuraJ.H.C. BrondaniM. dos SantosM.S.N. OroC.E.D. WancuraG.C. TresM.V. OliveiraJ.V. Renew. Energy202321611908510.1016/j.renene.2023.119085
    [Google Scholar]
  7. CherifS. MnifS. HadrichF. AbdelkafiS. SayadiS. Lipids Health Dis.201110122110.1186/1476‑511X‑10‑221 22123072
    [Google Scholar]
  8. ChandelH. WangB. VermaM.L. KuddusM. AguilarC.N. In: Value-Addition in Food Products and Processing Through Enzyme Technology.Academic Press202238139410.1016/B978‑0‑323‑89929‑1.00029‑9
    [Google Scholar]
  9. NegiS. ParameswaranB. VarjaniS. RaveendranS. In: Green Bio-processes: Enzymes in Industrial Food Processing.SingaporeSpringer Singapore201918119810.1007/978‑981‑13‑3263‑0_10
    [Google Scholar]
  10. Reyes-ReyesA.L. Valero BarrancoF. SandovalG. Catalysts202212996010.3390/catal12090960
    [Google Scholar]
  11. DemunerB.J. PereiraN. Junior; Antunes, A. M. S.J. Technol. Manag. Innov.20116314815810.4067/S0718‑27242011000300011
    [Google Scholar]
  12. FischerK. MessnerK. Enzyme Microb. Technol.199214647047310.1016/0141‑0229(92)90139‑F
    [Google Scholar]
  13. SharmaR. ChistiY. BanerjeeU.C. Biotechnol. Adv.200119862766210.1016/S0734‑9750(01)00086‑6 14550014
    [Google Scholar]
  14. LiuW.L. YangN.S. ChenY.T. LirioS. WuC.Y. LinC.H. HuangH.Y. Chemistry201521111511910.1002/chem.201405252 25384625
    [Google Scholar]
  15. UmarK. UmarS. ParveenT. WeiO.C. RahatR. In: Enzymes in Oil Processing. BhawaniS.A. KhanA. Awang HusainiA.A.S. AsaruddinM.R. Elsevier20248310110.1016/B978‑0‑323‑91154‑2.00012‑2
    [Google Scholar]
  16. KarumeI. MusaM.M. BsharatO. TakahashiM. HamdanS.M. El AliB. RSC Advances2016699966169662210.1039/C6RA18895H
    [Google Scholar]
  17. JabbourR. FarahF. MallatF. SaadE. SemaanK. HaberR. HelouJ. Heliyon2024104e2575910.1016/j.heliyon.2024.e25759 38375282
    [Google Scholar]
  18. WangQ. ShengL. GuoX. ChenR. ZhouC. YangF. Appl. Catal. A Gen.202366611942610.1016/j.apcata.2023.119426
    [Google Scholar]
  19. ShuZ.Y. JiangH. LinR.F. JiangY.M. LinL. HuangJ.Z. J. Mol. Catal., B Enzym.20106211810.1016/j.molcatb.2009.09.003
    [Google Scholar]
  20. LottiM. PleissJ. ValeroF. FerrerP. Biotechnol. J.2015101223010.1002/biot.201400158 25046365
    [Google Scholar]
  21. StepankovaV. DamborskyJ. ChaloupkovaR. Biotechnol. J.20138671972910.1002/biot.201200378 23420811
    [Google Scholar]
  22. WangS. MoL. WuB. MaC. WangH. Int. J. Biol. Macromol.202425512826610.1016/j.ijbiomac.2023.128266 37984584
    [Google Scholar]
  23. EricssonD.J. KasrayanA. JohanssonP. BergforsT. SandströmA.G. BäckvallJ.E. MowbrayS.L. J. Mol. Biol.2008376110911910.1016/j.jmb.2007.10.079 18155238
    [Google Scholar]
  24. MagnussonA.O. TakwaM. HambergA. HultK. Angew. Chem. Int. Ed.200544294582458510.1002/anie.200500971 15973755
    [Google Scholar]
  25. WidmannM. JuhlP.B. PleissJ. BMC Genomics201011112310.1186/1471‑2164‑11‑123 20170513
    [Google Scholar]
  26. SvedendahlM. HultK. BerglundP. J. Am. Chem. Soc.200512751179881798910.1021/ja056660r 16366534
    [Google Scholar]
  27. XiaoY.Y. ZhangJ.T. DongY.H. LiS.L. ZhiG.Y. ZhangY.F. ZhangD.H. Bioconjug. Chem.20233461045105310.1021/acs.bioconjchem.3c00127 37097628
    [Google Scholar]
  28. KarumeI. Sustain. Chem. Enviro.2023410004810.1016/j.scenv.2023.100048
    [Google Scholar]
  29. BilalM. FernandesC.D. MehmoodT. NadeemF. TabassamQ. FerreiraL.F.R. Int. J. Biol. Macromol.202117510812210.1016/j.ijbiomac.2021.02.010 33548312
    [Google Scholar]
  30. RodriguesR.C. Virgen-OrtízJ.J. dos SantosJ.C.S. Berenguer-MurciaÁ. AlcantaraA.R. BarbosaO. OrtizC. Fernandez-LafuenteR. Biotechnol. Adv.201937574677010.1016/j.biotechadv.2019.04.003 30974154
    [Google Scholar]
  31. GihazS. BashY. RushI. ShaharA. PazyY. FishmanA. ChemCatChem202012118119210.1002/cctc.201901369
    [Google Scholar]
  32. QianZ. LutzS. J. Am. Chem. Soc.200512739134661346710.1021/ja053932h 16190688
    [Google Scholar]
  33. KoH. KimM.J. KimH.J. KangJ. LeeH.Y. LeeJ.H. BaeJ.H. SungB.H. SohnJ.H. J. Clean. Prod.202342813933610.1016/j.jclepro.2023.139336
    [Google Scholar]
  34. ZhongL. FengY. HuH. XuJ. WangZ. DuY. CuiJ. JiaS. J. Colloid Interface Sci.202160242643610.1016/j.jcis.2021.06.017 34144301
    [Google Scholar]
  35. YuX.W. ShaC. GuoY.L. XiaoR. XuY. Biotechnol. Biofuels2013612910.1186/1754‑6834‑6‑29 23432946
    [Google Scholar]
  36. MiaoC. LiH. ZhuangX. WangZ. YangL. LvP. LuoW. RSC Advances2019951296652967510.1039/C9RA04365A 35531534
    [Google Scholar]
  37. PalS. KhanA.H. ChowdhuryM. DasP.K. ChemBioChem20232418e20230025310.1002/cbic.202300253 37232377
    [Google Scholar]
  38. NaseriM. PitzalisF. CarucciC. MeddaL. FotouhiL. MagnerE. SalisA. ChemCatChem201810235425543310.1002/cctc.201801293
    [Google Scholar]
  39. FreitasD.S. QuesadoV. RochaD. NoroJ. MartinsM. Cavaco-PauloA. SilvaC. ChemSusChem20231611e20220237410.1002/cssc.202202374 36811321
    [Google Scholar]
  40. GaoJ. FengK. LiH. JiangY. ZhouL. RSC Advances2015584686016860910.1039/C5RA10570F
    [Google Scholar]
  41. GuoJ. WangY. FangZ. Bioresour. Technol.202439413023710.1016/j.biortech.2023.130237 38142913
    [Google Scholar]
  42. LuJ. ShaoL. LiF. LiX. JiangW. ZhangW. JiangY. XinF. JiangM. Biochem. Eng. J.202320010910210.1016/j.bej.2023.109102
    [Google Scholar]
  43. MatiasA.B. ReisW.S.M. Costa-SilvaT.A. BentoH.B.S. de CarvalhoA.K.F. PereiraE.B. Catal. Commun.202318410678710.1016/j.catcom.2023.106787
    [Google Scholar]
  44. ZhangJ. LiY. QianW. ZhangL. LiF. ChenP. WangL. Green Chem. Lett. Rev.201811322422910.1080/17518253.2018.1471164
    [Google Scholar]
  45. ZhangJ. QianW. WangC. CaoZ. ChenS. ZhangL. ZhangY. WangL. Green Chem. Lett. Rev.201811450851210.1080/17518253.2018.1543456
    [Google Scholar]
  46. Biotransformations in organic chemistry.Berlin, HeidelbergSpringer-Verlag2004
    [Google Scholar]
  47. KishiN. KojimaH. ChemistrySelect20194339570957210.1002/slct.201902423
    [Google Scholar]
  48. LiF. WangC. XuY. GaoX. XuY. XieH. ChenP. WangL. ChemistrySelect202275e20210451710.1002/slct.202104517
    [Google Scholar]
  49. LiJ. YuY. XuY. LiF. LiuY. SunY. WangC. ChenP. WangL. Green Chem. Lett. Rev.202215368969410.1080/17518253.2022.2127331
    [Google Scholar]
  50. AbubakarA. AbioyeO.P. AransiolaS.A. MaddelaN.R. PrasadR. Enviro.Chem. Ecotoxicol.20246263210.1016/j.enceco.2023.12.001
    [Google Scholar]
  51. AhrariF. MohammadiM. Int. J. Biol. Macromol.2024260Pt 212936210.1016/j.ijbiomac.2024.129362 38272408
    [Google Scholar]
  52. ChenH. MengX. XuX. LiuW. LiS. Appl. Microbiol. Biotechnol.201810283487349510.1007/s00253‑018‑8858‑z 29500755
    [Google Scholar]
  53. DettoriL. JelschC. Guiavarc’hY. DelaunayS. FramboisierX. ChevalotI. HumeauC. Process Biochem.201874506010.1016/j.procbio.2018.07.021
    [Google Scholar]
  54. ChenY. LiuR. LiJ. WangY. GuoC. LüX. Lebensm. Wiss. Technol.202318111475410.1016/j.lwt.2023.114754
    [Google Scholar]
  55. ChristensenG.M. RiedelB.L. Int. J. Environ. Anal. Chem.19808427728210.1080/03067318008071896 7451014
    [Google Scholar]
  56. EllerbyL.M. NishidaC.R. NishidaF. YamanakaS.A. DunnB. ValentineJ.S. ZinkJ.I. Science199225550481113111510.1126/science.1312257
    [Google Scholar]
  57. MayoralA. ArenalR. GascónV. Márquez-ÁlvarezC. BlancoR.M. DíazI. ChemCatChem20135490390910.1002/cctc.201200737
    [Google Scholar]
  58. SerraE. DíezE. DíazI. BlancoR.M. Micropo.Mesopo. Mater.2010132348749310.1016/j.micromeso.2010.03.031
    [Google Scholar]
  59. SicardC. Angew. Chem. Int. Ed.2023621e20221340510.1002/anie.202213405 36330829
    [Google Scholar]
  60. ShikhaS. ThakurK.G. BhattacharyyaM.S. RSC Advances2017768428454285510.1039/C7RA06075K
    [Google Scholar]
  61. FengT. ShiJ. YueK. XiaJ. YanL. SuoH. ZouB. Molecu. Cataly.202455211367110.1016/j.mcat.2023.113671
    [Google Scholar]
  62. RenY. RiveraJ.G. HeL. KulkarniH. LeeD.K. MessersmithP.B. BMC Biotechnol.20111116310.1186/1472‑6750‑11‑63 21649934
    [Google Scholar]
  63. AsciogluS. OzyilmazE. YildirimA. SayinS. YilmazM. Biochem. Eng. J.202420410924210.1016/j.bej.2024.109242
    [Google Scholar]
  64. DongZ. JinJ. WeiW. WuG. WangX. JinQ. Food Biosci.20245810370610.1016/j.fbio.2024.103706
    [Google Scholar]
  65. TangG. DengK. LiP. HuangJ. DaoF. JiangH. WangJ. Jiang.J. Compos. Sci. Technol.202323611000210.1016/j.compscitech.2023.110002
    [Google Scholar]
  66. HaryatiT. WidhiastutyM.P. WarganegaraF.M. Biocatal. Agric. Biotechnol.20235110279310.1016/j.bcab.2023.102793
    [Google Scholar]
  67. Behjati MoghaddamM. HemmatiR. HomaeiA. VianelloF. ShareghiB. J. Mol. Liq.202439712421010.1016/j.molliq.2024.124210
    [Google Scholar]
  68. AnbooS. LauS.Y. KansedoJ. YapP.S. HadibarataT. KamaruddinA.H. Heliyon2024106e2734810.1016/j.heliyon.2024.e27348 38500986
    [Google Scholar]
  69. LiJ. ShiX. QinX. LiuM. WangQ. ZhongJ. Colloids Surf. B Biointerfaces202423511376410.1016/j.colsurfb.2024.113764 38301428
    [Google Scholar]
  70. JiangL. TongX. AoQ. SongY. TangJ. Surf. Interfaces20244410378310.1016/j.surfin.2023.103783
    [Google Scholar]
  71. HuY. DaiL. LiuD. DuW. Biotechnol. Biofuels20201318610.1186/s13068‑020‑01724‑w 32435275
    [Google Scholar]
  72. Esmaeilnejad-AhranjaniP. KazemeiniM. SinghG. ArpanaeiA. Langmuir201632133242325210.1021/acs.langmuir.5b03614 26986897
    [Google Scholar]
  73. HanY. LeeS.S. YingJ.Y. Chem. Mater.200618364364910.1021/cm0520618
    [Google Scholar]
  74. LiW. SuP. LiZ. XuZ. WangF. OuH. ZhangJ. ZhangG. ZengE. Nat. Commun.20178140610.1038/s41467‑017‑00544‑1 28864827
    [Google Scholar]
  75. SingerS.J. Advances in Protein Chemistry.Academic Press1963
    [Google Scholar]
  76. ChinJ.T. WheelerS.L. KlibanovA.M. Biotechnol. Bioeng.199444114014510.1002/bit.260440120 18618457
    [Google Scholar]
  77. YangL. CaoS. XieM. ShiT. Heliyon2024102e2486810.1016/j.heliyon.2024.e24868 38312550
    [Google Scholar]
  78. CaoQ. MeiS. MehmoodA. SunY. ChenX. Food Chem.202444413851410.1016/j.foodchem.2024.138514 38310782
    [Google Scholar]
  79. D’CostaA.S. ChenA.A. HamannE. El IrakiR. VenugopalK. BordenaveN. Food Biosci.20245710341410.1016/j.fbio.2023.103414
    [Google Scholar]
  80. LiuY. PanF. WangO. ZhuZ. LiQ. YangZ. TianW. ZhaoL. ZhaoL. Journal of Agriculture and Food Research20231410078310.1016/j.jafr.2023.100783
    [Google Scholar]
/content/journals/loc/10.2174/0115701786330890240826053103
Loading
/content/journals/loc/10.2174/0115701786330890240826053103
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): catalytic yield; enzyme selectivity; immobilization; lipase; stability; Substrate effect
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test