Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

The initial fundamental aspect examined in this study pertained to the chemical treatment of a silicon electrode in an acidic environment. The objective was to facilitate the deposition of organic or inorganic substances using electrochemical methods. Moreover, this study focused on investigating the nucleation process of poly(azacyclopenta-2,4-diene) on semiconductor substrates and exploring the incorporation of copper particles within the resulting film. The deposition of the polymer film onto the silicon electrode surface occurred through electrochemical oxidation of the monomer in a NaSO/HO solution. The introduction of copper particles into the polymer film was achieved through electrochemical reduction in aqueous solutions, leading to the dispersion of metallic particles within the polymer matrix. Notably, the surface morphology of the poly(azacyclopenta-2,4-diene)-metal composite films exhibited a coarser and more compact structural appearance compared to pure poly(azacyclopenta-2,4-diene) films. To gain further insights into the surface characteristics of the poly(azacyclopenta-2,4-diene) films, EDX analysis confirmed the successful incorporation of copper into the composite films.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786328491241215180213
2025-06-01
2025-10-20
Loading full text...

Full text loading...

References

  1. HienN.T.L. GarciaB. PailleretA. DeslouisC. Electrochim. Acta2005507-81747175510.1016/j.electacta.2004.10.072
    [Google Scholar]
  2. HerrastiP. del RioA.I. RecioJ. Electrochim. Acta200752236496650110.1016/j.electacta.2007.04.074
    [Google Scholar]
  3. BazzaouiM. MartinsJ.I. BazzaouiE.A. MartinsL. MachnikovaE. Electrochim. Acta200752113568358110.1016/j.electacta.2006.10.017
    [Google Scholar]
  4. AtesM. KarazehirT. Sezai SaracA.J.C.P.C. Curr. Phys. Chem.20122322424010.2174/1877946811202030224
    [Google Scholar]
  5. RetamaJ.R. CabarcosE.L. MecerreyesD. Lopez-RuizB. Biosens. Bioelectron.20042061111111710.1016/j.bios.2004.05.018 15556356
    [Google Scholar]
  6. LohD.M. NavaM. NoceraD.G. Nano Lett.202222136637110.1021/acs.nanolett.1c04033 34965139
    [Google Scholar]
  7. VidalJuan C. GarcEsperanza J. Analytica Chimica Acta19993851-321322210.1016/S0003‑2670(98)00838‑1
    [Google Scholar]
  8. CampbellT.E. HodgsonA.J. WallaceG.G.J. Electroanalysis1999114215222
    [Google Scholar]
  9. KincalD.J. Synth. Met.1998921535610.1016/S0379‑6779(98)80022‑2
    [Google Scholar]
  10. KempN.T.J. Synthetic Metals19991011-343443510.1016/S0379‑6779(98)01118‑7
    [Google Scholar]
  11. ChristineJ.J. Synthetic Metals19991011-33410.1016/S0379‑6779(98)00524‑4
    [Google Scholar]
  12. RamasamyR.P. VeeraraghavanB. HaranB. PopovB.N. J. Power Sources2003124119720310.1016/S0378‑7753(03)00738‑9
    [Google Scholar]
  13. WangJ. NgS.H. WangG.X. ChenJ. ZhaoL. ChenY. LiuH.K. J. Power Sources2006159128729010.1016/j.jpowsour.2006.04.092
    [Google Scholar]
  14. ChewS.Y. GuoZ.P. WangJ.Z. ChenJ. MunroeP. NgS.H. ZhaoL. LiuH.K. Electrochem. Commun.20079594194610.1016/j.elecom.2006.11.028
    [Google Scholar]
  15. BengoecheaM. BoyanoI. MiguelO. CanteroI. OchotecoE. PomposoJ. GrandeH. J. Power Sources2006160158559110.1016/j.jpowsour.2006.01.051
    [Google Scholar]
  16. SkotheimT.A. Handbook of Conducting Polymers.New YorkMarcel Dekker1986
    [Google Scholar]
  17. SkotheimT.A. ElsenbaumerR. ReynoldsJ. Hand-Book of Conducting Polymers.New YorkMarcel Dekker1998
    [Google Scholar]
  18. WallaceG.G. SpinksG. TeasdaleP.R. Conductive Electroactive Polymers.New YorkTechnomic1997
    [Google Scholar]
  19. HwangB.J. SanthanamR. LinY.L. Electrochim. Acta200146182843285310.1016/S0013‑4686(01)00495‑9
    [Google Scholar]
  20. WangY. NorthwoodD.O. Thin Solid Films2008516217427743210.1016/j.tsf.2008.02.049
    [Google Scholar]
  21. ChenW. LiC.M. YuL. LuZ. ZhouQ. Electrochem. Commun.20081091340134310.1016/j.elecom.2008.07.001
    [Google Scholar]
  22. MakhloufiL. HammacheH. SaidaniB. Electrochem. Commun.20002855255610.1016/S1388‑2481(00)00081‑3
    [Google Scholar]
  23. HammacheH. MakhloufiL. SaidaniB. Synth. Met.2001123351552210.1016/S0379‑6779(01)00345‑9
    [Google Scholar]
  24. OukilD. MakhloufiL. SaidaniB. Sens. Actuators B Chem.200712321083108910.1016/j.snb.2006.11.014
    [Google Scholar]
  25. ZhangJ. KongL.B. LiH. LuoY.C. KangL. J. Mater. Sci.20104571947195410.1007/s10853‑009‑4186‑0
    [Google Scholar]
  26. MadaniA. NessarkB. BoukherroubR. ChehimiM.M. J. Electroanal. Chem.2011650217618110.1016/j.jelechem.2010.10.017
    [Google Scholar]
  27. LongoG. PompeoG. Serra MorenoJ. PaneroS. GirasoleM. RonciF. CricentiA. Surf. Coat. Tech.201220728629210.1016/j.surfcoat.2012.07.029
    [Google Scholar]
  28. RatautaiteV. RamanavicieneA. OztekinY. VoronovicJ. BaleviciusZ. MikoliunaiteL. RamanaviciusA. Colloids Surf. A Physicochem. Eng. Asp.2013418162110.1016/j.colsurfa.2012.10.052
    [Google Scholar]
  29. JanßenW. BeckF. Polymer198930235335910.1016/0032‑3861(89)90129‑8
    [Google Scholar]
  30. SchirmeisenM. BeckF. J. Appl. Electrochem.198919340140910.1007/BF01015243
    [Google Scholar]
  31. FerreiraC.A. AeiyachS. DelamarM. LacazeP.C. J. Electroanal. Chem. Interfacial Electrochem.1990284235136910.1016/0022‑0728(90)85044‑6
    [Google Scholar]
  32. HülserP. BeckF. J. Appl. Electrochem.199020459660510.1007/BF01008869
    [Google Scholar]
  33. BeckF. MichaelisR. J. Surf. Coat. Technol.199264808596710.1016/0257‑8972(92)90215‑V
    [Google Scholar]
  34. FerreiraC.A. AeiyachS. DelamarM. LacazeP.C. Surf. Interface Anal.199320974975410.1002/sia.740200902
    [Google Scholar]
  35. ZaidB. AeiyachS. LacazeP.C. Synth. Met.1994651273410.1016/0379‑6779(94)90289‑5
    [Google Scholar]
  36. BeckF. HülserP. J. Electroanal. Chem. Interfacial Electrochem.1990280115916610.1016/0022‑0728(90)87091‑W
    [Google Scholar]
  37. FerreiraC.A. AeiyachS. AaronJ.J. LacazeP.C. Electrochim. Acta19964111-121801180910.1016/0013‑4686(95)00498‑X
    [Google Scholar]
  38. ZaidB. AeiyachS. LacazeP.C. TakenoutiH. Electrochim. Acta19984316-172331233910.1016/S0013‑4686(97)10161‑X
    [Google Scholar]
  39. YangX. LiL. Synth. Met.201016011-121365136710.1016/j.synthmet.2010.04.015
    [Google Scholar]
  40. JiangX. DaiT. LuY. Iran. Polym. J.200817645
    [Google Scholar]
  41. HarrazF.A. SalemM.S. SakkaT. OgataY.H. Electrochim. Acta200853103734374010.1016/j.electacta.2007.09.019
    [Google Scholar]
  42. ZhangX. Langmuir20031926107031070910.1021/la034893v
    [Google Scholar]
  43. Vu QuocT. DuongL.T. QuocV.D. Tran QuocT. Nguyen TrongD. TaluS. Des. Monomers Polym.2021241536210.1080/15685551.2021.1877431 33658884
    [Google Scholar]
  44. OmastováM. J. Synth. Met.2013166576210.1016/j.synthmet.2013.01.015&#8207
    [Google Scholar]
  45. Stejskal,J. Chem. Pap.201367810.2478/s11696‑012‑0304‑6
    [Google Scholar]
  46. DallasP. Polymer200748710.1016/j.polymer.2007.01
    [Google Scholar]
  47. KateK.H. DamkaleS.R. KhannaP.K. JainG.H. J. Nanosci. Nanotechnol.20111197863786910.1166/jnn.2011.4708 22097498
    [Google Scholar]
  48. WeiY. LiL. YangX. PanG. YanG. YuX. Nanoscale Res. Lett.20105243343710.1007/s11671‑009‑9501‑9 20672043
    [Google Scholar]
  49. Mu˜noz-RojasD. Oro-SoleJ. AyyadO. Small20084130110.1002/smll.200701199
    [Google Scholar]
  50. FengX. HuangH. XuL. ZhuJ.J. HouW. J. Nanosci. Nanotechnol.20088144344710.1166/jnn.2008.18148 18468100
    [Google Scholar]
  51. AttiaMohamed F. J. Colloid Interface Sci.201339313013710.1016/j.jcis.2012.11.008
    [Google Scholar]
  52. BabuK. Carbohyd. Polymers20129041557156310.1016/j.carbpol.2012.07.030
    [Google Scholar]
  53. XingS. ZhaoG. Mater. Lett.200761102040204410.1016/j.matlet.2006.08.011
    [Google Scholar]
  54. ChatterjeeS. GaraiA. NandiA.K. Synth. Met.20111611-2627110.1016/j.synthmet.2010.10.035
    [Google Scholar]
  55. HeinigN.F. KharbandaN. PynenburgM.R. ZhouX.J. SchultzG.A. LeungK.T. Mater. Lett.200862152285228810.1016/j.matlet.2007.11.094
    [Google Scholar]
  56. AlqudamiA. AnnapoorniS. SenP. RawatR.S. Synth. Met.20071571535910.1016/j.synthmet.2006.12.006
    [Google Scholar]
  57. KhanicheB. BenamraniH. ZouaouiA. ZegadiA. Mater. Sci. Semicond. Process.20142768969410.1016/j.mssp.2014.07.027
    [Google Scholar]
  58. CullisA.G. CanhamL.T. CalcottP.D.J. J. Appl. Phys.199782390996510.1063/1.366536
    [Google Scholar]
  59. FrankF.C. Discuss. Faraday Soc.19495485410.1039/df9490500048
    [Google Scholar]
  60. ScharifkerB. HillsG. Electrochim. Acta198328787988910.1016/0013‑4686(83)85163‑9
    [Google Scholar]
  61. BertazzoliR. PletcherD. Electrochim. Acta199338567167610.1016/0013‑4686(93)80237‑T
    [Google Scholar]
  62. Andres,Castro-Beltran Polymers20231510235410.3390/polym15102354
    [Google Scholar]
  63. CossementDamien Synthetic Metals2003138352953610.1016/S0379‑6779(02)01260‑2
    [Google Scholar]
  64. WeisDaniel Georg. Synthetic Metals202127111665310.1016/j.synthmet.2020.116653
    [Google Scholar]
  65. AttarEl. Int. J. Hydrogen Energy202045158887889810.1016/j.ijhydene.2020.01.008
    [Google Scholar]
  66. BealeM.I.J. J. Cryst. Growth198675340841410.1016/0022‑0248(86)90082‑5
    [Google Scholar]
  67. TouriFarida KhanicheBrahim YahiaouiKhemissi J. Korean Phys. Soc.202484971672210.1007/s40042‑024‑01041‑7
    [Google Scholar]
  68. Gonzalez-DiazB. Sens. Actuators A Phys.200915019710110.1016/j.sna.2008.12.006
    [Google Scholar]
  69. KhanicheBrahim ZouaouiAhmed ZegadiAmeur Emerg. Mater. Res.20209239640110.1680/jemmr.19.00051
    [Google Scholar]
  70. KhashanKhawla S. AwaadAmany A. MohamedMaysaa A. Eng. Tech. J.20092766367410.30684/etj.27.4.4
    [Google Scholar]
  71. MogodaA.S. AhmadY.H. BadawyW.A. Mater. Chem. Phys.2011126367668410.1016/j.matchemphys.2010.12.063
    [Google Scholar]
  72. LiuS. Phys. Rev. B199449151031810.1103/PhysRevB.49.10318
    [Google Scholar]
  73. KhanicheBrahim Adv. Mater. Res.20191152657210.4028/www.scientific.net/AMR.1152.65
    [Google Scholar]
  74. LehmannV. GöseleU. Appl. Phys. Lett.199158885685810.1063/1.104512
    [Google Scholar]
  75. AnglinE. ChengL. FreemanW. SailorM. Adv. Drug Deliv. Rev.200860111266127710.1016/j.addr.2008.03.017 18508154
    [Google Scholar]
  76. ZhangX.G. J. Electrochem. Soc.20041511C69C8010.1149/1.1632477
    [Google Scholar]
  77. HammacheH. MakhloufiL. SaidaniB. Corros. Sci.20034592031204210.1016/S0010‑938X(03)00043‑X
    [Google Scholar]
  78. SharifiradM. OmraniA. RostamiA.A. KhoshrooM. J. Electroanal. Chem.2010645214915810.1016/j.jelechem.2010.05.005
    [Google Scholar]
  79. BeckF. MichaelisR. SchlotenF. ZingerB. Electrochim. Acta199439222923410.1016/0013‑4686(94)80058‑8
    [Google Scholar]
  80. KanazawaK.K. DiazA.F. GillW.D. GrantP.M. StreetG.B. GardiniG.P. KwakJ.F. Synth. Met.19801332933610.1016/0379‑6779(80)90022‑3
    [Google Scholar]
  81. CorreiaA.N. MachadoS.A.S. AvacaL.A. J. Electroanal. Chem.2000488211011610.1016/S0022‑0728(00)00192‑3
    [Google Scholar]
/content/journals/loc/10.2174/0115701786328491241215180213
Loading
/content/journals/loc/10.2174/0115701786328491241215180213
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): metals; Polymers; SEM; semiconductors; silicon; surface characterization
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test