Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

This research work has explored the application of a magnetic catalyst composed of core shell nanoparticles [FeO@SiO@CS@EDTA/Co(II)], known as NCM@EDTA/Co(II), in the conversion of various alcohols containing electron-donating or electron-withdrawing groups into their respective secondary or primary amine derivatives. The investigation has focused on optimizing reaction conditions by considering factors, such as the inclusion of a base, duration of reaction time, reaction temperature, catalyst quantity, and choice of transition metal, in order to determine the optimal parameters. The most favorable outcomes have been achieved by using 0.2 mmol of catalyst per 1 mmol of substrate under reflux conditions for a duration ranging from 3 to 24 hours. The reaction has demonstrated high efficiency, with the catalyst's easy separation an external magnetic field, stability, and recyclability, highlighting its potential applications in chemistry and industrial environments.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786308650240705072830
2024-07-09
2025-01-28
Loading full text...

Full text loading...

References

  1. (a PratleyC. FennerS. MurphyJ.A. Chem. Rev.202212298181826010.1021/acs.chemrev.1c0083135285636
    [Google Scholar]
  2. (b KaboudinB. BehrooziM. SadighiS. RSC Adv.20221247304663047910.1039/D2RA04087E36337953
    [Google Scholar]
  3. (c KerruN. GummidiL. MaddilaS. GanguK.K. JonnalagaddaS.B. Molecules2020258190910.3390/molecules2508190932326131
    [Google Scholar]
  4. KumarA. SinghA.K. SinghH. VijayanV. KumarD. NaikJ. TharejaS. YadavJ.P. PathakP. GrishinaM. VermaA. KhalilullahH. JaremkoM. EmwasA.H. KumarP. Pharmaceuticals202316229910.3390/ph1602029937259442
    [Google Scholar]
  5. (a ShenX. ChenX. ChenJ. SunY. ChengZ. Lu.Z. Nat. Commun.202011178310.1038/s41467‑020‑14459‑x32034130
    [Google Scholar]
  6. (b StreiffS. JérômeF. Chem. Soc. Rev.20215031512152110.1039/C9CS00873J33350410
    [Google Scholar]
  7. (c PalluccioT. Undergraduate Rev.200733235
    [Google Scholar]
  8. (a HeraviM.M. KheilkordiZ. ZadsirjanV. HeydariM. MalmirM. J. Organomet. Chem.20188611710410.1016/j.jorganchem.2018.02.023
    [Google Scholar]
  9. (b DorelR. GrugelC.P. HaydlA.M. Angew. Chem. Int. Ed.20195848171181712910.1002/anie.20190479531166642
    [Google Scholar]
  10. (a XuQ. XieH. ZhangE.L. MaX. ChenJ. YuX.C. LiH. Green Chem.201618143940394410.1039/C6GC00938G
    [Google Scholar]
  11. (b PearsonC.M. FyfeJ.W.B. SnaddonT.N. Angew. Chem. Int. Ed.20195831105211052710.1002/anie.20190542631132203
    [Google Scholar]
  12. CaiQ. ZhouW. W. Chinese J. Chem202038887989310.1002/cjoc.202000075
    [Google Scholar]
  13. (a YueC. GuL. ZhangZ. WeiX. YangH. Arab. J. Chem.202215610386510.1016/j.arabjc.2022.103865
    [Google Scholar]
  14. (b WangT. IbañezJ. WangK. FangL. SabbeM. MichelC. PaulS. Pera-TitusM. SautetP. Nat. Catal.20192977377910.1038/s41929‑019‑0327‑2
    [Google Scholar]
  15. TafeshA.M. Weiguny.J. Chem. Rev.19969662035205210.1021/cr950083f11848820
    [Google Scholar]
  16. NugentT.C. Chiral amine synthesis: methods, developments and applications.John Wiley and Sons201010.1002/9783527629541
    [Google Scholar]
  17. (a XieC. SongJ. HuaM. HuY. HuangX. WuH. YangG. HanB. ACS Catal.202010147763777210.1021/acscatal.0c01872
    [Google Scholar]
  18. (b LuoD. HeY. YuX. WangF. ZhaoJ. ZhengW. JiaoH. YangY. LiY. WenX. J. Catal.202139529330110.1016/j.jcat.2021.01.016
    [Google Scholar]
  19. (a MaS. HartwigJ.F. Acc. Chem. Res.202356121565157710.1021/acs.accounts.3c0014137272995
    [Google Scholar]
  20. (b TrowbridgeA. WaltonS.M. GauntM. J. Chem. Rev.202012052613269210.1021/acs.chemrev.9b0046232064858
    [Google Scholar]
  21. (c YangQ. WangQ. Yu.Z. Chem. Soc. Rev.20154482305232910.1039/C4CS00496E25661436
    [Google Scholar]
  22. ChenB. LiJ. DaiW. WangL. GaoS. Green Chem.20141663328333410.1039/c4gc00336e
    [Google Scholar]
  23. HummelJ.R. BoerthJ.A. EllmanJ.A. Chem. Rev.2017117139163922710.1021/acs.chemrev.6b0066127936637
    [Google Scholar]
  24. (a QinT. LvG. MengQ. ZhangG. XiongT. ZhangQ. Angew. Chem. Int. Ed.20216049259492595710.1002/anie.20211017834562047
    [Google Scholar]
  25. (b RöslerS. ErtlM. IrrgangT. KempeR. Angew. Chem. Int. Ed.20155450150461505010.1002/anie.20150795526474443
    [Google Scholar]
  26. (a YamunaP. PhilipR.M. AnilkumarG. Tetrahedron202212213293610.1016/j.tet.2022.132936
    [Google Scholar]
  27. (b LeeC. KangH.J. SeoH. HongS. J. Am. Chem. Soc.2022144209091910010.1021/jacs.2c0234335538676
    [Google Scholar]
  28. (c ShimizuK. ImaiidaN. KonK. Hakim SiddikiS.M.A. SatsumaA. ACS Catal.201335998100510.1021/cs4001267
    [Google Scholar]
  29. ImmS. BähnS. NeubertL. NeumannH. BellerM. Angew. Chem. Int. Ed.201049448126812910.1002/anie.20100257620677295
    [Google Scholar]
  30. JaiswalG. LandgeV.G. JagadeesanD. BalaramanE. Green Chem.201618113232323810.1039/C6GC00565A
    [Google Scholar]
  31. SunL.B. LiuX.Q. ZhouH.C. Chem. Soc. Rev.201544155092514710.1039/C5CS00090D26051787
    [Google Scholar]
  32. (a LiuR.Y. BuchwaldS.L. Acc. Chem. Res.20205361229124310.1021/acs.accounts.0c0016432401530
    [Google Scholar]
  33. (b EbrahimzadehF. BaramakehL. ChemistrySelect2024910e20230252410.1002/slct.202302524
    [Google Scholar]
  34. ShimaT. ZhuoQ. ZhouX. WuP. OwadaR. LuoG. HouZ. Nature202310.21203/rs.3.rs‑3485391/v1
    [Google Scholar]
  35. LiuY. FuR. SunY. ZhouX. BaigS.A. XuX. Appl. Surf. Sci.201636926727610.1016/j.apsusc.2016.02.043
    [Google Scholar]
  36. ShiH. YangJ. ZhuL. YangY. YuanH. YangY. LiuX. J. Nanosci. Nanotechnol.20161621871188210.1166/jnn.2016.1071227433691
    [Google Scholar]
  37. YuanD. LiuW. WangJ. CuiJ. HeL. YanC. KouY. Li.J. Environ. Technol.20214291313132510.1080/09593330.2019.166511231543028
    [Google Scholar]
  38. (a EbrahimzadehF. Int. Res. J. Modern.Engin. Technol. Sci.2023510710.56726/IRJMETS45483
    [Google Scholar]
  39. (b EbrahimzadehF. Lett. Org. Chem.20242110.2174/0115701786307956240522081438
    [Google Scholar]
  40. (a EbrahimzadehF. JamalainA. ZareeS. Phosphorus Sulfur Silicon Relat. Elem.2024199216917710.1080/10426507.2023.2279614
    [Google Scholar]
  41. (b EbrahimzadehF. Organic Chemistry Research20228899410.22036/ORG.CHEM.2024.429891.1303
    [Google Scholar]
  42. (c EbrahimzadehF. J. Chem. React. Synth.2023133240254
    [Google Scholar]
  43. DingH.L. ZhangY.X. WangS. XuJ.M. XuS.C. LiG.H. Chem. Mater.201224234572458010.1021/cm302828d
    [Google Scholar]
/content/journals/loc/10.2174/0115701786308650240705072830
Loading
/content/journals/loc/10.2174/0115701786308650240705072830
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test