Skip to content
2000
Volume 21, Issue 7
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

In the carbamate Schiff base compound, the molecule is stabilized by intramolecular hydrogen bonding interactions along with π···π stacking and C–H···π contacts that lead to the molecule generating diverse supramolecular architecture. The fingerprint plots associated with Hirshfeld surface analysis indicate that the most important contributions for the crystal packing are from HH/HH (81.8%), HO/OH (7.5%), and HN/NH (1.9%) interactions. Furthermore, a computational study is performed to find the interaction energy between molecular pairs, and a description of the active site of the compound has been included. The study inferred the role of various types of interaction energies in stabilizing the molecular pair. Additionally, the carbamate Schiff base compound was tested as a possible inhibitor for a group of the SARS-CoV-2 proteins employing a molecular docking approach. Papain-like protease (PLpro) was shown to have the highest binding affinities. The carbamate Schiff base compound with PLpro’s docking score falls within the acceptable levels for a hit compound.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786283444231128061732
2024-07-01
2025-04-24
Loading full text...

Full text loading...

/content/journals/loc/10.2174/0115701786283444231128061732
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test