Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

Introduction: In this investigation, we employed a continuous flow reactor to synthesize nickel (Ni) nanoparticles exhibiting uniform size distribution and excellent stability. Our focus centered on exploring the impact of reactant dilution and flow rate on the synthesis process. Result: It was observed that the optimization of these parameters played a pivotal role in obtaining small-sized Ni nanoparticles. Specifically, we achieved successful synthesis using a solution of 0.00025 M NiCl·6HO and 0.002 M NaBH, with a flow rate of 25 mL/h. The resulting Ni nanoparticles were effectively coated with the CTAB surfactant, as confirmed through thorough analysis using TEM and PSD techniques. Additionally, the interaction between the surfactant and nanoparticles was verified via FTIR analysis. We subjected them to high-pressure alkene hydrogenation to assess the catalytic activity of the synthesized Ni nanoparticles. Method: Encouragingly, the Ni nanoparticles exhibited excellent performance, producing hydrogenated products with high yields. Moreover, we capitalized on Ni nanoparticles' catalytic effect for synthesizing two natural compounds, brittonin A and dehydrobrittonin A. Remarkably, both compounds were successfully isolated in quantifiable yields. This synthesis protocol boasted several advantages, including low catalyst loading, omission of additives, broad substrate scope, straightforward product separation, and the ability to recover the catalyst up to eight times. In summary, this study effectively showcased the potential of continuous flow reactor technology in synthesizing stable and uniformly distributed nanoparticles. Conclusion: Additionally, it highlighted the effectiveness of Ni nanoparticles as catalysts in various chemical reactions. The findings from this study hold significant implications for developing more efficient and sustainable chemical synthesis protocols.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786268828240119105533
2024-09-01
2025-02-25
Loading full text...

Full text loading...

/content/journals/loc/10.2174/0115701786268828240119105533
Loading

  • Article Type:
    Research Article
Keyword(s): Brittonin A; CATB; chemical synthesis; continuous flow reactor; dehydrobrittonin A; Ni NPs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test