Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2950-5704
  • E-ISSN: 2950-5712

Abstract

A potential source of multiple enzymatic and nonenzymatic molecules that protect the host is snake venom. In these venoms, several kinds of peptides that have significant beneficial effects were discovered and characterized. Disintegrins act by blocking integrins on transmembrane cell surfaces, inhibiting tumor cells from adhering, migrating, forming new blood vessels, and spreading. This has an important effect on delaying the development, neovascularization, and growth of tumors. These cells are ideal candidates for novel therapies for the management of malignancies due to their tumor selectivity and decreased size. As research findings in various & , disintegrin proteins are low-molecular-weight polypeptides that are found in the venom of vipers and rattle snakes. They act by blocking the β1 and β3 integrin receptors. Angiogenesis and metastatic processes in cancer are mediated through β1 and β3 integrins. Hence, blocking β1 and β3 integrin receptors plays a prominent role in blocking the progression of cancer, and disintegrins seem to be promising candidates for antineoplastic therapies. The disintegrins with anticancer properties include Crotatroxin 2, Alternagin-C, Rubistatin, Leucurogin, Mojastin-1, Contortrostatin, Acostatin, Vicrostatin, Tzabcan, Eristostatin, Purpureomaculatus, Saxatilin, Lebein, Salmosin, and Rhodostomin. The above mentioned disintegrins were considered in this study. This review is based on the origins of these disintegrins, their modes of targeting, their categorization, and their inherent anticancer potential.

Loading

Article metrics loading...

/content/journals/jctv/10.2174/0129505704316054240801071448
2024-09-03
2025-01-19
Loading full text...

Full text loading...

References

  1. AkefH.M. Snake venom: kill and cure.Toxin Rev.2019381214010.1080/15569543.2017.1399278
    [Google Scholar]
  2. DutertreS. JinA-H. VetterI. HamiltonB. SunagarK. LavergneV. DutertreV. FryB.G. AntunesA. VenterD.J. AlewoodP.F. LewisR.J. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails.Nat. Commun.201451352110.1038/ncomms4521
    [Google Scholar]
  3. PenningtonM.W. CzerwinskiA. NortonR.S. Peptide therapeutics from venom: Current status and potential.Bioorg. Med. Chem.201826102738275810.1016/j.bmc.2017.09.029 28988749
    [Google Scholar]
  4. RuderT. AliS.A. OrmerodK. BrustA. RoymanchadiM.L. VenturaS. UndheimE.A.B. JacksonT.N.W. MercierA.J. KingG.F. AlewoodP.F. FryB.G. Functional characterization on invertebrate and vertebrate tissues of tachykinin peptides from octopus venoms.Peptides201347717610.1016/j.peptides.2013.07.002 23850991
    [Google Scholar]
  5. UtkinY.N. Animal venom studies: Current benefits and future developments.World J. Biol. Chem.201562283310.4331/wjbc.v6.i2.28 26009701
    [Google Scholar]
  6. WaheedH. MoinS.F. ChoudharyM.I. Snake venom: from deadly toxins to life-saving therapeutics.Curr. Med. Chem.2017241718741891 28578650
    [Google Scholar]
  7. Otvos,R.A. Analytical workflow for rapid screening and purification of bioactives from venom proteomes. Toxicon 76, 270–281.Med.20132137179
    [Google Scholar]
  8. Simoes-SilvaR. AlfonsoJ. GomezA. HolandaR.J. SobrinhoJ.C. ZaqueoK.D. Moreira-DillL.S. KayanoA.M. GrabnerF.P. da SilvaS.L. AlmeidaJ.R. StabeliR.G. ZulianiJ.P. SoaresA.M. Snake venom, a natural library of new potential therapeutic molecules: challenges and current perspectives.Curr. Pharm. Biotechnol.201819430833510.2174/1389201019666180620111025 29929461
    [Google Scholar]
  9. ThangamR. GunasekaranP. KaveriK. SrideviG. SundarrajS. PaulpandiM. KannanS. A novel disintegrin protein from Naja naja venom induces cytotoxicity and apoptosis in human cancer cell lines in vitro.Process Biochem.20124781243124910.1016/j.procbio.2012.04.020
    [Google Scholar]
  10. Del BruttoO.H. Del BruttoV.J. Neurological complications of venomous snake bites: a review.Acta Neurol. Scand.2012125636337210.1111/j.1600‑0404.2011.01593.x 21999367
    [Google Scholar]
  11. GeorgievaD. ArniR.K. BetzelC. Proteome analysis of snake venom toxins: pharmacological insights.Expert Rev. Proteomics20085678779710.1586/14789450.5.6.787 19086859
    [Google Scholar]
  12. MunawarA. Analysis of the low molecular weight peptides of selected snake venoms. Dissertation, University of Hamburg,2012
    [Google Scholar]
  13. Arruda MacêdoJ. FoxJ. Souza CastroM. Disintegrins from snake venoms and their applications in cancer research and therapy.Curr. Protein Pept. Sci.201516653254810.2174/1389203716666150515125002 26031306
    [Google Scholar]
  14. KongY. WangY. YangW. XieZ. LiZ. LX0702, a novel snake venom peptide derivative, inhibits thrombus formation via affecting the binding of fibrinogen with GPIIb/IIIa.J. Pharmacol. Sci.2015127446246610.1016/j.jphs.2015.03.010 25913760
    [Google Scholar]
  15. VyasV.K. BrahmbhattK. BhattH. ParmarU. Therapeutic potential of snake venom in cancer therapy: current perspectives.Asian Pac. J. Trop. Biomed.20133215616210.1016/S2221‑1691(13)60042‑8 23593597
    [Google Scholar]
  16. KohC.Y. KiniR.M. From snake venom toxins to therapeutics – Cardiovascular examples.Toxicon201259449750610.1016/j.toxicon.2011.03.017 21447352
    [Google Scholar]
  17. SamyR.P. GopalakrishnakoneP. StilesB.G. GirishK.S. SwamyS.N. HemshekharM. TanK.S. RowanE.G. SethiG. ChowV.T. Snake venom phospholipases A(2): a novel tool against bacterial diseases.Curr. Med. Chem.201219366150616210.2174/0929867311209066150 22963667
    [Google Scholar]
  18. WenY.L. WuB.J. KaoP.H. FuY.S. ChangL.S. Antibacterial and membrane‐damaging activities of β ‐bungarotoxin B chain.J. Pept. Sci.20131911810.1002/psc.2463 23136049
    [Google Scholar]
  19. Mohamed Abd El-AzizT. SoaresA.G. StockandJ.D. Snake venoms in drug discovery: valuable therapeutic tools for life saving.Toxins (Basel)2019111056410.3390/toxins11100564 31557973
    [Google Scholar]
  20. MarklandF.S. ShiehK. ZhouQ. GolubkovV. SherwinR.P. RichtersV. SpostoR. A novel snake venom disintegrin that inhibits human ovarian cancer dissemination and angiogenesis in an orthotopic nude mouse model.Haemostasis2001313-6183191 11910184
    [Google Scholar]
  21. LiL. HuangJ. LinY. Snake Venoms in Cancer Therapy: Past, Present and Future.Toxins (Basel)201810934610.3390/toxins10090346 30158426
    [Google Scholar]
  22. Shanbhag, Applications of snake venoms in treatment of cancer.Asian Pac. J. Trop. Biomed.20155427527610.1016/S2221‑1691(15)30344‑0
    [Google Scholar]
  23. ChaisakulJ. HodgsonW.C. KuruppuS. PrasongsookN. Effects of Animal Venoms and Toxins on Hallmarks of Cancer.J. Cancer20167111571157810.7150/jca.15309 27471574
    [Google Scholar]
  24. Da SilvaS.L. RowanE.G. AlbericioF. StábeliR.G. CalderonL.A. SoaresA.M. Animal toxins and their advantages in biotechnology and pharmacology.BioMed Res. Int.201420141210.1155/2014/951561 24977166
    [Google Scholar]
  25. LippsB.V. Novel Snake Venom Proteins Cytolytic To Cancer Cells in vitro and in vivo Systems.J. Venom. Anim. Toxins19995217218310.1590/S0104‑79301999000200005
    [Google Scholar]
  26. KhusroA. AartiC. Barbabosa-PliegoA. Rivas-CáceresR.R. Cipriano-SalazarM. Venom as therapeutic weapon to combat dreadful diseases of 21st century: A systematic review on cancer, TB, and HIV/AIDS.Microb. Pathog.20181259610710.1016/j.micpath.2018.09.003 30195644
    [Google Scholar]
  27. HuangT.F. HoltJ.C. LukasiewiczH. NiewiarowskiS. Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex.J. Biol. Chem.198726233161571616310.1016/S0021‑9258(18)47710‑1 3680247
    [Google Scholar]
  28. McLaneM.A. MarcinkiewiczC. Vijay-KumarS. Wierzbicka-PatynowskiI. NiewiarowskiS. Viper venom disintegrins and related molecules.Exp. Biol. Med. (Maywood)1998219210911910.3181/00379727‑219‑44322 9790167
    [Google Scholar]
  29. Trachootham, Targeting Cancer Cells by ROS-Mediated Mechanisms: A Radical Therapeutic Approach?Nat. Rev. Drug Discov.20098757959110.1038/nrd2803
    [Google Scholar]
  30. HuangT.F. HsuC.C. KuoY.J. Anti-thrombotic agents derived from snake venom proteins.Thromb. J.201614S1Suppl. 11810.1186/s12959‑016‑0113‑1 27766044
    [Google Scholar]
  31. JiangJ. We Are IntechOpen, the World ’ s Leading Publisher of Open Access Books Built by Scientists, for Scientists TOP 1%.Intech2010348576710.1007/s12559‑021‑09926‑6https://www.intechopen.com/books/advanced-biometrictechnologies/ liveness-detection-in-biometrics%0A10.1016/j.compmedimag. 2010.07.003
    [Google Scholar]
  32. YamaneE.S. BizerraF.C. OliveiraE.B. MoreiraJ.T. RajabiM. NunesG.L.C. de SouzaA.O. da SilvaI.D.C.G. YamaneT. KarpelR.L. SilvaP.I.Jr HayashiM.A.F. Unraveling the antifungal activity of a South American rattlesnake toxin crotamine.Biochimie201395223124010.1016/j.biochi.2012.09.019 23022146
    [Google Scholar]
  33. CalveteJ.J. The continuing saga of snake venom disintegrins.Toxicon201362404910.1016/j.toxicon.2012.09.005 23010163
    [Google Scholar]
  34. TopolE.J. ByzovaT.V. PlowE.F. Platelet GPIIb-IIIa blockers.Lancet1999353914822723110.1016/S0140‑6736(98)11086‑3 9923894
    [Google Scholar]
  35. ChanY.S. CheungR.C.F. XiaL. WongJ.H. NgT.B. ChanW.Y. Snake venom toxins: toxicity and medicinal applications.Appl. Microbiol. Biotechnol.2016100146165618110.1007/s00253‑016‑7610‑9 27245678
    [Google Scholar]
  36. HanahanD. WeinbergR.A. The hallmarks of cancer.Cell20001001577010.1016/S0092‑8674(00)81683‑9 10647931
    [Google Scholar]
  37. HanahanD. WeinbergR.A. Hallmarks of cancer: the next generation.Cell2011144564667410.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  38. UrraF.A. Putting the Brakes on Tumorigenesis with Snake Venom Toxins: New Molecular Insights for Cancer Drug Discovery. Seminars in Cancer Biology.Elsevier2020
    [Google Scholar]
  39. KuoY.J. ChungC.H. HuangT.F. From discovery of snake venom disintegrins to a safer therapeutic antithrombotic agent.Toxins (Basel)201911737210.3390/toxins11070372 31247995
    [Google Scholar]
  40. SwensonS. CostaF. ErnstW. FujiiG. MarklandF.S. Contortrostatin, a snake venom disintegrin with anti-angiogenic and anti-tumor activity.Pathophysiol. Haemost. Thromb.2005344-516917610.1159/000092418 16707922
    [Google Scholar]
  41. Swenson, Cell migration inhibition activity of a non-rgd disintegrin from crotalus durissus collilineatus venom.J. Venom. Anim. Toxins Incl. Trop. Dis.2018241110
    [Google Scholar]
  42. AkhtarB. MuhammadF. SharifA. AnwarM.I. Mechanistic insights of snake venom disintegrins in cancer treatment.Eur. J. Pharmacol.202189917402210.1016/j.ejphar.2021.174022 33727054
    [Google Scholar]
  43. JainD. KumarS. Snake venom: a potent anticancer agent.Cancer2012131048554860 23244070
    [Google Scholar]
  44. AlvesP. RodriguesS. GuedesI.F. Innovare Academic Sciences.Int. J. Pharm. Pharm. Sci.20146101922
    [Google Scholar]
  45. JuhaszI. MurphyG.F. YanH.C. HerlynM. AlbeldaS.M. Regulation of extracellular matrix proteins and integrin cell substratum adhesion receptors on epithelium during cutaneous human wound healing in vivo.Am. J. Pathol.1993143514581469 7694470
    [Google Scholar]
  46. AartiC. KhusroA. Snake venom as anticancer agent-current perspective.Int. J. Pure App. Biosci.2013162429
    [Google Scholar]
  47. CalderonL.A. SobrinhoJ.C. ZaqueoK.D. de MouraA.A. GrabnerA.N. MazziM.V. MarcussiS. NomizoA. FernandesC.F.C. ZulianiJ.P. CarvalhoB.M.A. da SilvaS.L. StábeliR.G. SoaresA.M. Antitumoral activity of snake venom proteins: new trends in cancer therapy.BioMed Res. Int.2014201411910.1155/2014/203639 24683541
    [Google Scholar]
  48. RobertG. Disintegrins : A Family of Lntegrin Inhibitory.Exp. Biol. Med.199019536
    [Google Scholar]
  49. McDowallA. InwaldD. LeitingerB. JonesA. LiesnerR. KleinN. HoggN. A novel form of integrin dysfunction involving β1, β2, and β3 integrins.J. Clin. Invest.20031111516010.1172/JCI200314076 12511588
    [Google Scholar]
  50. Mezu-NdubuisiO.J. MaheshwariA. The role of integrins in inflammation and angiogenesis.Pediatr. Res.20218971619162610.1038/s41390‑020‑01177‑9 33027803
    [Google Scholar]
  51. TakadaY. YeX. SimonS. The integrins.Genome Biol.20078521510.1186/gb‑2007‑8‑5‑215 17543136
    [Google Scholar]
  52. HamidiH. PietiläM. IvaskaJ. The complexity of integrins in cancer and new scopes for therapeutic targeting.Br. J. Cancer201611591017102310.1038/bjc.2016.312 27685444
    [Google Scholar]
  53. HynesR. Integrins: A family of cell surface receptors.Cell198748454955410.1016/0092‑8674(87)90233‑9 3028640
    [Google Scholar]
  54. CalveteJ. MarcinkiewiczC. SanzL. KTS and RTS-Disintegrins: Anti-Angiogenic Viper Venom Peptides Specifically Targeting the α1β1; 1 Integrin.Curr. Pharm. Des.200713282853285910.2174/138161207782023766 17979730
    [Google Scholar]
  55. FénichelP. Durand-ClémentM. Role of integrins during fertilization in mammals.Hum. Reprod.199813Suppl. 4314610.1093/humrep/13.suppl_4.31 10091056
    [Google Scholar]
  56. StreuliC.H. Integrins as architects of cell behavior.Mol. Biol. Cell201627192885288810.1091/mbc.E15‑06‑0369 27687254
    [Google Scholar]
  57. Rádis-BaptistaG. Integrins, cancer and snake toxins (mini-review).J. Venom. Anim. Toxins Incl. Trop. Dis.200511321724110.1590/S1678‑91992005000300002
    [Google Scholar]
  58. TianJ. Paquette-StraubC. SageE.H. FunkS.E. PatelV. GalileoD. McLaneM.A. Inhibition of melanoma cell motility by the snake venom disintegrin eristostatin.Toxicon200749789990810.1016/j.toxicon.2006.12.013 17316731
    [Google Scholar]
  59. Rivas-MercadoE.A. Garza-OcañasL. Disintegrins obtained from snake venom and their pharmacological potential.Med. Univ.20171974323710.1016/j.rmu.2017.02.004
    [Google Scholar]
  60. XiongJ.P. StehleT. ZhangR. JoachimiakA. FrechM. GoodmanS.L. ArnaoutM.A. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand.Science2002296556515115510.1126/science.1069040 11884718
    [Google Scholar]
  61. GanZ.R. GouldR.J. JacobsJ.W. FriedmanP.A. PolokoffM.A. Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus.J. Biol. Chem.198826336198271983210.1016/S0021‑9258(19)77710‑2 3198653
    [Google Scholar]
  62. MonleónD. EsteveV. KovacsH. CalveteJ.J. CeldaB. Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR.Biochem. J.20053871576610.1042/BJ20041343 15535803
    [Google Scholar]
  63. JuárezP. ComasI. González-CandelasF. CalveteJ.J. Evolution of snake venom disintegrins by positive Darwinian selection.Mol. Biol. Evol.200825112391240710.1093/molbev/msn179 18701431
    [Google Scholar]
  64. SaviolaA.J. BurnsP.D. MukherjeeA.K. MackessyS.P. The disintegrin tzabcanin inhibits adhesion and migration in melanoma and lung cancer cells.Int. J. Biol. Macromol.20168845746410.1016/j.ijbiomac.2016.04.008 27060015
    [Google Scholar]
  65. AssumpcaoT.C.F. RibeiroJ.M.C. FrancischettiI.M.B. Disintegrins from hematophagous sources.Toxins (Basel)20124529632210.3390/toxins4050296 22778902
    [Google Scholar]
  66. WalshE.M. MarcinkiewiczC. Non-RGD-containing snake venom disintegrins, functional and structural relations.Toxicon201158435536210.1016/j.toxicon.2011.07.004 21801741
    [Google Scholar]
  67. MarcinkiewiczC. CalveteJ.J. MarcinkiewiczM.M. RaidaM. Vijay-KumarS. HuangZ. LobbR.R. NiewiarowskiS. EC3, a novel heterodimeric disintegrin from Echis carinatus venom, inhibits alpha4 and alpha5 integrins in an RGD-independent manner.J. Biol. Chem.199927418124681247310.1074/jbc.274.18.12468 10212222
    [Google Scholar]
  68. SwensonS.D. Methods for Evaluation of a Snake Venom-Derived Disintegrin in Animal Models of Human Cancer, Snake and Spider Toxins.Springer2020185204
    [Google Scholar]
  69. SwensonS. RamuS. MarklandF. Anti-angiogenesis and RGD-containing snake venom disintegrins.Curr. Pharm. Des.200713282860287110.2174/138161207782023793 17979731
    [Google Scholar]
  70. RuoslahtiE. RGD and other recognition sequences for integrins.Annu. Rev. Cell Dev. Biol.199612169771510.1146/annurev.cellbio.12.1.697 8970741
    [Google Scholar]
  71. SheuJ.R. LinC.H. PengH.C. HuangT.F. Triflavin, an Arg-Gly-Asp-containing peptide, inhibits the adhesion of tumor cells to matrix proteins via binding to multiple integrin receptors expressed on human hepatoma cells.Exp. Biol. Med. (Maywood)19962131717910.3181/00379727‑213‑44038 8820826
    [Google Scholar]
  72. HartmannM. HerrlichA. HerrlichP. Who decides when to cleave an ectodomain?Trends Biochem. Sci.201338311112010.1016/j.tibs.2012.12.002 23298902
    [Google Scholar]
  73. LichtenthalerS.F. LembergM.K. FluhrerR. Proteolytic ectodomain shedding of membrane proteins in mammals—hardware, concepts, and recent developments.EMBO J.20183715e9945610.15252/embj.201899456 29976761
    [Google Scholar]
  74. ScharfenbergF. HelbigA. SammelM. BenzelJ. SchlomannU. PetersF. WichertR. BettendorffM. Schmidt-ArrasD. Rose-JohnS. MoaliC. LichtenthalerS.F. PietrzikC.U. BartschJ.W. TholeyA. Becker-PaulyC. Degradome of soluble ADAM10 and ADAM17 metalloproteases.Cell. Mol. Life Sci.202077233135010.1007/s00018‑019‑03184‑4 31209506
    [Google Scholar]
  75. WeberS. Ectodomain shedding and ADAMs in development.Development2012139203693370910.1242/dev.076398
    [Google Scholar]
  76. AnthonyJ. Disintegrins of crotalus simus tzabcan venom: Isolation, characterization and evaluation of the cytotoxic and anti-adhesion activities of tzabcanin, a new rgd disintegrin.Biochimie20151169210210.1016/j.biochi.2015.07.005
    [Google Scholar]
  77. Rivas MercadoE. Neri CastroE. Bénard ValleM. Rucavado-RomeroA. Olvera RodríguezA. Zamudio ZuñigaF. Alagón CanoA. Garza OcañasL. Disintegrins extracted from totonacan rattlesnake (Crotalus totonacus) venom and their anti-adhesive and anti-migration effects on MDA-MB-231 and HMEC-1 cells.Toxicol. In Vitro20206510480910.1016/j.tiv.2020.104809 32087267
    [Google Scholar]
  78. RabeloL.F.G. FerreiraB.A. DeconteS.R. TomiossoT.C. dos SantosP.K. AndradeS.P. Selistre de AraújoH.S. AraújoF.A. Alternagin-C, a disintegrin-like protein from Bothrops alternatus venom, attenuates inflammation and angiogenesis and stimulates collagen deposition of sponge-induced fibrovascular tissue in mice.Int. J. Biol. Macromol.201914065366010.1016/j.ijbiomac.2019.08.171 31442506
    [Google Scholar]
  79. CominettiM.R. TerruggiC.H.B. RamosO.H.P. FoxJ.W. Mariano-OliveiraA. De FreitasM.S. FigueiredoC.C. MorandiV. Selistre-de-AraujoH.S. Alternagin-C, a disintegrin-like protein, induces vascular endothelial cell growth factor (VEGF) expression and endothelial cell proliferation in vitro.J. Biol. Chem.200427918182471825510.1074/jbc.M311771200 14766757
    [Google Scholar]
  80. dos SantosP.K. AlteiW.F. DanilucciT.M. LinoR.L.B. PachaneB.C. NunesA.C.C. Selistre-de-AraujoH.S. Alternagin-C (ALT-C), a disintegrin-like protein, attenuates alpha2beta1 integrin and VEGF receptor 2 signaling resulting in angiogenesis inhibition.Biochimie202017414415810.1016/j.biochi.2020.04.023 32360415
    [Google Scholar]
  81. CareyC.M. BuenoR. GutierrezD.A. PetroC. LucenaS.E. SanchezE.E. SotoJ.G. Recombinant rubistatin (r-Rub), an MVD disintegrin, inhibits cell migration and proliferation, and is a strong apoptotic inducer of the human melanoma cell line SK-Mel-28.Toxicon201259224124810.1016/j.toxicon.2011.12.002 22192732
    [Google Scholar]
  82. HiguchiD.A. AlmeidaM.C. BarrosC.C. SanchezE.F. PesqueroP.R. LangE.A.S. SamaanM. AraujoR.C. PesqueroJ.B. PesqueroJ.L. Leucurogin, a new recombinant disintegrin cloned from Bothrops leucurus (white-tailed-jararaca) with potent activity upon platelet aggregation and tumor growth.Toxicon201158112312910.1016/j.toxicon.2011.05.013 21641921
    [Google Scholar]
  83. AlmeidaM.C. SantosI.C. PaschoalinT. TravassosL.R. MauchC. ZigrinoP. PesqueroJ.B. PesqueroJ.L. HiguchiD.A. Leucurogin and melanoma therapy.Toxicon2019159223110.1016/j.toxicon.2018.12.005 30611825
    [Google Scholar]
  84. AnguloY. Isolation and characterization of four medium-size disintegrins from the venoms of central American viperid snakes of the genera atropoides, bothrops, cerrophidion and crotalus.Biochimie201410737638410.1016/j.biochi.2014.10.010
    [Google Scholar]
  85. LucenaS. CastroR. LundinC. HofstetterA. AlanizA. SuntravatM. SánchezE.E. Inhibition of pancreatic tumoral cells by snake venom disintegrins.Toxicon20159313614310.1016/j.toxicon.2014.11.228 25450798
    [Google Scholar]
  86. SwensonS. CostaF. MineaR. SherwinR.P. ErnstW. FujiiG. YangD. MarklandF.S.Jr Intravenous liposomal delivery of the snake venom disintegrin contortrostatin limits breast cancer progression.Mol. Cancer Ther.20043449951110.1158/1535‑7163.499.3.4 15078994
    [Google Scholar]
  87. GhazaryanN. MovsisyanN. MacedoJ.C. VazS. AyvazyanN. PardoL. LogarinhoE. The antitumor efficacy of monomeric disintegrin obtustatin in S-180 sarcoma mouse model.Invest. New Drugs20193751044105110.1007/s10637‑019‑00734‑2 30680583
    [Google Scholar]
  88. MoiseevaN. BauR. SwensonS.D. MarklandF.S.Jr ChoeJ.Y. LiuZ.J. AllaireM. Structure of acostatin, a dimeric disintegrin from Southern copperhead (Agkistrodon contortrix contortrix), at 1.7 Å resolution.Acta Crystallogr. D Biol. Crystallogr.200864446647010.1107/S0907444908002370 18391413
    [Google Scholar]
  89. MineaR.O. HelchowskiC.M. ZidovetzkiS.J. CostaF.K. SwensonS.D. MarklandF.S. Jr Vicrostatin - an anti-invasive multi-integrin targeting chimeric disintegrin with tumor anti-angiogenic and pro-apoptotic activities.PLoS One201056e1092910.1371/journal.pone.0010929 20532165
    [Google Scholar]
  90. TanC.H. LiewJ.L. NavanesanS. SimK.S. TanN.H. TanK.Y. Cytotoxic and anticancer properties of the Malaysian mangrove pit viper (Trimeresurus purpureomaculatus) venom and its disintegrin (purpureomaculin).J. Venom. Anim. Toxins Incl. Trop. Dis.202026e2020001310.1590/1678‑9199‑jvatitd‑2020‑0013 32742279
    [Google Scholar]
  91. JangY.J. JeonO.H. KimD.S. Saxatilin, a snake venom disintegrin, regulates platelet activation associated with human vascular endothelial cell migration and invasion.J. Vasc. Res.200744212913710.1159/000098519 17215584
    [Google Scholar]
  92. HongS.Y. KohY.S. ChungK.H. KimD.S. Snake venom disintegrin, saxatilin, inhibits platelet aggregation, human umbilical vein endothelial cell proliferation, and smooth muscle cell migration.Thromb. Res.20021051798610.1016/S0049‑3848(01)00416‑9 11864711
    [Google Scholar]
  93. ChoiH.J. KimN.E. KwonI. ChoiD. KimJ. HeoJ.H. Fc-saxatilin inhibits VEGF-induced permeability by regulating claudin-5 expression in human brain microvascular endothelial cells.Microvasc. Res.202012810395310.1016/j.mvr.2019.103953 31715125
    [Google Scholar]
  94. ZakraouiO. MarcinkiewiczC. AlouiZ. OthmanH. GrépinR. HaouesM. EssafiM. Srairi-AbidN. GasmiA. KarouiH. PagèsG. Essafi-BenkhadirK. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression.Mol. Carcinog.2017561183510.1002/mc.22470 26824338
    [Google Scholar]
  95. ShinJ. HongS.Y. ChungK. KangI. JangY. KimD. LeeW. Solution structure of a novel disintegrin, salmosin, from Agkistrondon halys venom.Biochemistry20034249144081441510.1021/bi0300276 14661951
    [Google Scholar]
  96. KangI.C. LeeY.D. KimD.S. A novel disintegrin salmosin inhibits tumor angiogenesis.Cancer Res.1999591537543760 10446992
    [Google Scholar]
  97. YehC.H. PengH.C. YangR.S. HuangT.F. Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v)beta(3) blockade of endothelial cells.Mol. Pharmacol.20015951333134210.1124/mol.59.5.1333 11306719
    [Google Scholar]
  98. DanilucciT.M. SantosP.K. PachaneB.C. PisaniG.F.D. LinoR.L.B. CasaliB.C. AlteiW.F. Selistre-de-AraujoH.S. Recombinant RGD-disintegrin DisBa-01 blocks integrin αvβ3 and impairs VEGF signaling in endothelial cells.Cell Commun. Signal.20191712710.1186/s12964‑019‑0339‑1 30894182
    [Google Scholar]
  99. SuntravatM. HelmkeT.J. AtphaisitC. CuevasE. LucenaS.E. UzcáteguiN.L. SánchezE.E. Rodriguez-AcostaA. Expression, purification, and analysis of three recombinant ECD disintegrins (r-colombistatins) from P-III class snake venom metalloproteinases affecting platelet aggregation and SK-MEL-28 cell adhesion.Toxicon2016122434910.1016/j.toxicon.2016.09.007 27641750
    [Google Scholar]
  100. SiqueiraR.A.G.B. CalabriaP.A.L. CaporrinoM.C. TavoraB.C.L.F. BarbaroK.C. Faquim-MauroE.L. Della-CasaM.S. MagalhãesG.S. When spider and snake get along: Fusion of a snake disintegrin with a spider phospholipase D to explore their synergistic effects on a tumor cell.Toxicon2019168404810.1016/j.toxicon.2019.06.225 31251993
    [Google Scholar]
  101. FerrazC.R. ArrahmanA. XieC. CasewellN.R. LewisR.J. KoolJ. CardosoF.C. Multifunctional Toxins in Snake Venoms and Therapeutic Implications: From Pain to Hemorrhage and Necrosis.Front. Ecol. Evol.20197JUN21810.3389/fevo.2019.00218
    [Google Scholar]
  102. BordonK.C.F. ColognaC.T. Fornari-BaldoE.C. Pinheiro-JúniorE.L. CerniF.A. AmorimF.G. AnjoletteF.A.P. CordeiroF.A. WiezelG.A. CardosoI.A. FerreiraI.G. OliveiraI.S. Boldrini-FrançaJ. PuccaM.B. BaldoM.A. ArantesE.C. From animal poisons and venoms to medicines: achievements, challenges and perspectives in drug discovery.Front. Pharmacol.202011113210.3389/fphar.2020.01132 32848750
    [Google Scholar]
/content/journals/jctv/10.2174/0129505704316054240801071448
Loading
/content/journals/jctv/10.2174/0129505704316054240801071448
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test