Skip to content
2000
image of Ligand-based in silico Approach for Identifying Potent Antidotes Against Botulinum Neurotoxin Serotype A, B, E, and F

Abstract

Introduction

Botulinum neurotoxins are the most poisonous substances reported and listed in category ‘A’ of biowarfare agents. As serotype identification is a time-consuming process and there is no antidote commercially available, the development of inhibitors against serotypes causing human botulism would be beneficial. In the present study, a ligand-based method was applied to identify the “hits” that could have the potential to act as countermeasures against human-intoxicating BoNTs.

Methods

For this purpose, a computational approach using Molegro Virtual Docker and AutoDock tools was performed, where around thirty-five derivatives were designed and docked into the catalytic domain of BoNT/A, B, E, and F. The designed compounds were also studied for their ADME properties using an online web tool.

Results

Analysis of the molecular docking data of the complex by Molegro Virtual Docker revealed a high binding affinity between the target and designed ligands, with the MolDock score between -139.85 and -88.24 kcal/mol, whereas the AutoDock score ranged between -11.65 and -5.30 kcal/mol. Three SMNPIs, A11, A18, and A20, exhibited better binding affinities with the target proteins BoNT/A, /B, E, and /F and could be potential pan-active inhibitors. The ADME/T study showed that the designed ligands were less toxic and possessed drug-resemblance properties by considering the Lipinski, Ghose, Veber, and Egan rules, with a bioavailability score of 0.56.

Conclusion

Our study provides insight into ‘hits’, which can lead to further progress in experimental studies and the development of new antidotes for botulism.

Loading

Article metrics loading...

/content/journals/jctv/10.2174/0126661217332545241028065445
2024-12-10
2025-01-31
Loading full text...

Full text loading...

References

  1. Arnon S.S. Schechter R. Inglesby T.V. Henderson D.A. Bartlett J.G. Ascher M.S. Eitzen E. Fine A.D. Hauer J. Layton M. Lillibridge S. Osterholm M.T. O’Toole T. Parker G. Perl T.M. Russell P.K. Swerdlow D.L. Tonat K. Botulinum toxin as a biological weapon: medical and public health management. JAMA 2001 285 8 1059 1070 10.1001/jama.285.8.1059 11209178
    [Google Scholar]
  2. Hill K.K. Smith T.J. Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. Curr. Top. Microbiol. Immunol. 2013 364 1 20 23239346
    [Google Scholar]
  3. Black J.D. Dolly J.O. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves. J. Cell Biol. 1986 103 2 521 534 10.1083/jcb.103.2.521 3733877
    [Google Scholar]
  4. Black J.D. Dolly J.O. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J. Cell Biol. 1986 103 2 535 544 10.1083/jcb.103.2.535 3015983
    [Google Scholar]
  5. Montecucco C. Schiavo G. Structure and function of tetanus and botulinum neurotoxins. Q. Rev. Biophys. 1995 28 4 423 472 10.1017/S0033583500003292 8771234
    [Google Scholar]
  6. Pirazzini M. Azarnia Tehran D. Zanetti G. Megighian A. Scorzeto M. Fillo S. Shone C.C. Binz T. Rossetto O. Lista F. Montecucco C. Thioredoxin and its reductase are present on synaptic vesicles, and their inhibition prevents the paralysis induced by botulinum neurotoxins. Cell Rep. 2014 8 6 1870 1878 10.1016/j.celrep.2014.08.017 25220457
    [Google Scholar]
  7. Sathyamoorthy V. DasGupta B.R. Separation, purification, partial characterization and comparison of the heavy and light chains of botulinum neurotoxin types A, B, and E. J. Biol. Chem. 1985 260 19 10461 10466 10.1016/S0021‑9258(19)85105‑0 4030755
    [Google Scholar]
  8. Schiavo G. Rossetto O. Catsicas S. Polverino de Laureto P. DasGupta B.R. Benfenati F. Montecucco C. Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J. Biol. Chem. 1993 268 32 23784 23787 10.1016/S0021‑9258(20)80452‑9 8226912
    [Google Scholar]
  9. Schiavo G. Shone C.C. Rossetto O. Alexander F.C. Montecucco C. Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J. Biol. Chem. 1993 268 16 11516 11519 10.1016/S0021‑9258(19)50230‑7 8505288
    [Google Scholar]
  10. Ahmed S.A. Olson M.A. Ludivico M.L. Gilsdorf J. Smith L.A. Identification of residues surrounding the active site of type A botulinum neurotoxin important for substrate recognition and catalytic activity. Protein J. 2008 27 3 151 162 10.1007/s10930‑007‑9118‑8 18213512
    [Google Scholar]
  11. Schiavo G.G. Benfenati F. Poulain B. Rossetto O. de Laureto P.P. DasGupta B.R. Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 1992 359 6398 832 835 10.1038/359832a0 1331807
    [Google Scholar]
  12. McNutt P.M. Vazquez-Cintron E.J. Tenezaca L. Ondeck C.A. Kelly K.E. Mangkhalakhili M. Machamer J.B. Angeles C.A. Glotfelty E.J. Cika J. Benjumea C.H. Whitfield J.T. Band P.A. Shoemaker C.B. Ichtchenko K. Neuronal delivery of antibodies has therapeutic effects in animal models of botulism. Sci. Transl. Med. 2021 13 575 eabd7789 10.1126/scitranslmed.abd7789 33408188
    [Google Scholar]
  13. Miyashita S.I. Zhang J. Zhang S. Shoemaker C.B. Dong M. Delivery of single-domain antibodies into neurons using a chimeric toxin–based platform is therapeutic in mouse models of botulism. Sci. Transl. Med. 2021 13 575 eaaz4197 10.1126/scitranslmed.aaz4197 33408184
    [Google Scholar]
  14. Kitchen D.B. Decornez H. Furr J.R. Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 2004 3 11 935 949 10.1038/nrd1549 15520816
    [Google Scholar]
  15. Muegge I. Rarey M. Small molecule docking and scoring. Rev. Comput. Chem. 2001 17 1 60
    [Google Scholar]
  16. Sousa S.F. Fernandes P.A. Ramos M.J. Protein–ligand docking: Current status and future challenges. Proteins 2006 65 1 15 26 10.1002/prot.21082 16862531
    [Google Scholar]
  17. Kaapro A. Ojanen J. Protein docking. 2002 Available from: http://www.lce.hut.fi/teaching/S-114.500/k2002/Protdock.pdf
  18. Morris G.M. Goodsell D.S. Halliday R.S. Huey R. Hart W.E. Belew R.K. Olson A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998 19 14 1639 1662 10.1002/(SICI)1096‑987X(19981115)19:14<1639::AID‑JCC10>3.0.CO;2‑B
    [Google Scholar]
  19. Morris G.M. Goodsell D.S. Huey R. Olson A.J. Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4. J. Comput. Aided Mol. Des. 1996 10 4 293 304 10.1007/BF00124499 8877701
    [Google Scholar]
  20. Goodsell D.S. Olson A.J. Automated docking of substrates to proteins by simulated annealing. Proteins 1990 8 3 195 202 10.1002/prot.340080302 2281083
    [Google Scholar]
  21. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  22. Halgren T.A. Murphy R.B. Friesner R.A. Beard H.S. Frye L.L. Pollard W.T. Banks J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 2004 47 7 1750 1759 10.1021/jm030644s 15027866
    [Google Scholar]
  23. Friesner R.A. Murphy R.B. Repasky M.P. Frye L.L. Greenwood J.R. Halgren T.A. Sanschagrin P.C. Mainz D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006 49 21 6177 6196 10.1021/jm051256o 17034125
    [Google Scholar]
  24. Repasky M.P. Murphy R.B. Banks J.L. Greenwood J.R. Tubert-Brohman I. Bhat S. Friesner R.A. Docking performance of the glide program as evaluated on the Astex and DUD datasets: A complete set of glide SP results and selected results for a new scoring function integrating WaterMap and glide. J. Comput. Aided Mol. Des. 2012 26 6 787 799 10.1007/s10822‑012‑9575‑9 22576241
    [Google Scholar]
  25. Ewing T.J.A. Kuntz I.D. Critical evaluation of search algorithms for automated molecular docking and database screening. J. Comput. Chem. 1997 18 9 1175 1189 10.1002/(SICI)1096‑987X(19970715)18:9<1175::AID‑JCC6>3.0.CO;2‑O
    [Google Scholar]
  26. Thomsen R. Christensen M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem. 2006 49 11 3315 3321 10.1021/jm051197e 16722650
    [Google Scholar]
  27. Chauhan R. Chauhan V. Sonkar P. Vimal M. Dhaked R.K. Targeted 8-hydroxyquinoline fragment based small molecule drug discovery against neglected botulinum neurotoxin type F. Bioorg. Chem. 2019 92 103297 10.1016/j.bioorg.2019.103297 31557621
    [Google Scholar]
  28. Silvaggi N.R. Allen K.N. 3BON X-ray structure of the C. botulinum neurotoxin type A catalytic domain at 1.20 Å. 2008 Available from: https://www.rcsb.org/structure/3BON(2008)
  29. Hanson M.A. Stevens R.C. 1F82 X-ray structure of the C. botulinum neurotoxin type B catalytic domain at 2.20 Å. 2000 Available from: https://www.rcsb.org/structure/1F82
  30. Agarwal R. Eswaramoorthy S. Kumaran D. Binz T. Swaminathan S. 1T3A X-ray structure of the C. botulinum neurotoxin type E catalytic domain at 2.16 Å. 2004 Available from: https://www.rcsb.org/structure/1T3A
  31. Agarwal R. Binz T. Swaminathan S. 2A8A X-ray structure of the C. botulinum neurotoxin type F catalytic domain at 2.00 Å. 2005 Available from: https://www.rcsb.org/structure/2A8A
  32. Gehlhaar D.K. Verkhivker G. Rejto P.A. Fogel D.B. Fogel L.J. Freer S.T. Docking conformationally flexible small molecules into a protein binding site through evolutionary programming. The MIT Press 1995 10.7551/mitpress/2887.003.0053
    [Google Scholar]
  33. Gehlhaar D.K. Bouzida D. Rejto P.A. Fully automated and rapid flexible docking of inhibitors covalently bound to serine proteases. Lect. Notes Comput. Sci. 1998 1447 449 461 10.1007/BFb0040797
    [Google Scholar]
  34. Yang J.M. Chen C.C. GEMDOCK: A generic evolutionary method for molecular docking. Proteins 2004 55 2 288 304 10.1002/prot.20035 15048822
    [Google Scholar]
  35. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  36. Lacy D.B. Stevens R.C. Sequence homology and structural analysis of the clostridial neurotoxins. J. Mol. Biol. 1999 291 5 1091 1104 10.1006/jmbi.1999.2945 10518945
    [Google Scholar]
  37. Kumaran D. Eswaramoorthy S. Furey W. Navaza J. Sax M. Swaminathan S. Domain organization in Clostridium botulinum neurotoxin type E is unique: Its implication in faster translocation. J. Mol. Biol. 2009 386 1 233 245 10.1016/j.jmb.2008.12.027 19118561
    [Google Scholar]
  38. Boldt G.E. Kennedy J.P. Janda K.D. Identification of a potent botulinum neurotoxin a protease inhibitor using in situ lead identification chemistry. Org. Lett. 2006 8 8 1729 1732 10.1021/ol0603211 16597152
    [Google Scholar]
  39. Bremer P.T. Adler M. Phung C.H. Singh A.K. Janda K.D. Newly designed quinolinol inhibitors mitigate the effects of botulinum neurotoxin A in enzymatic, cell-based, and ex vivo assays. J. Med. Chem. 2017 60 1 338 348 10.1021/acs.jmedchem.6b01393 27966961
    [Google Scholar]
  40. Caglič D. Krutein M.C. Bompiani K.M. Barlow D.J. Benoni G. Pelletier J.C. Reitz A.B. Lairson L.L. Houseknecht K.L. Smith G.R. Dickerson T.J. Identification of clinically viable quinolinol inhibitors of botulinum neurotoxin A light chain. J. Med. Chem. 2014 57 3 669 676 10.1021/jm4012164 24387280
    [Google Scholar]
  41. Roxas-Duncan V. Enyedy I. Montgomery V.A. Eccard V.S. Carrington M.A. Lai H. Gul N. Yang D.C.H. Smith L.A. Identification and biochemical characterization of small-molecule inhibitors of Clostridium botulinum neurotoxin serotype A. Antimicrob. Agents Chemother. 2009 53 8 3478 3486 10.1128/AAC.00141‑09 19528275
    [Google Scholar]
  42. Pang Y.P. Davis J. Wang S. Park J.G. Nambiar M.P. Schmidt J.J. Millard C.B. Small molecules showing significant protection of mice against botulinum neurotoxin serotype A. PLoS One 2010 5 4 e10129 10.1371/journal.pone.0010129 20405003
    [Google Scholar]
  43. Seki H. Xue S. Hixon M.S. Pellett S. Remes̆ M. Johnson E.A. Janda K.D. Toward the discovery of dual inhibitors for botulinum neurotoxin A: Concomitant targeting of endocytosis and light chain protease activity. Chem. Commun. (Camb.) 2015 51 28 6226 6229 10.1039/C5CC00677E 25759983
    [Google Scholar]
  44. Adler M. Nicholson J.D. Hackley B.E. Hackley B.E. Jr Efficacy of a novel metalloprotease inhibitor on botulinum neurotoxin B activity. FEBS Lett. 1998 429 3 234 238 10.1016/S0014‑5793(98)00492‑X 9662424
    [Google Scholar]
  45. Anne C. Turcaud S. Quancard J. Teffo F. Meudal H. Fournié-Zaluski M.C. Roques B.P. Development of potent inhibitors of botulinum neurotoxin type B. J. Med. Chem. 2003 46 22 4648 4656 10.1021/jm0300680 14561084
    [Google Scholar]
  46. Blommaert A. Turcaud S. Anne C. Roques B.P. Small tripeptide surrogates with low nanomolar affinity as potent inhibitors of the botulinum neurotoxin B metallo-proteolytic activity. Bioorg. Med. Chem. 2004 12 11 3055 3062 10.1016/j.bmc.2004.03.006 15142564
    [Google Scholar]
  47. Eswaramoorthy S. Kumaran D. Swaminathan S. Crystallographic evidence for doxorubicin binding to the receptor-binding site in Clostridium botulinum neurotoxin B. Acta Crystallogr. D Biol. Crystallogr. 2001 57 11 1743 1746 10.1107/S0907444901013531 11679763
    [Google Scholar]
  48. Montgomery V.A. Ahmed S.A. Olson M.A. Mizanur R.M. Stafford R.G. Roxas-Duncan V.I. Smith L.A. Ex vivo inhibition of Clostridium botulinum neurotoxin types B, C, E, and F by small molecular weight inhibitors. Toxicon 2015 98 12 19 10.1016/j.toxicon.2015.02.012 25707753
    [Google Scholar]
  49. Kumar G. Agarwal R. Swaminathan S. Discovery of a fluorene class of compounds as inhibitors of botulinum neurotoxin serotype E by virtual screening. Chem. Commun. (Camb.) 2012 48 18 2412 2414 10.1039/c2cc17158a 22274537
    [Google Scholar]
  50. Zhou Y. McGillick B.E. Teng Y.H.G. Haranahalli K. Ojima I. Swaminathan S. Rizzo R.C. Identification of small molecule inhibitors of botulinum neurotoxin serotype E via footprint similarity. Bioorg. Med. Chem. 2016 24 20 4875 4889 10.1016/j.bmc.2016.07.031 27543389
    [Google Scholar]
  51. Chauhan R. Chauhan Kushwah V. Agnihotri S. Vimal M. Saxena N. Dhaked R.K. Designing, synthesis and evaluation of derived analogues of selected small molecule non-peptidic inhibitors against serotype BoNT/ F. Toxicon 2023 222 106981 10.1016/j.toxicon.2022.106981 36503896
    [Google Scholar]
  52. Thomas L. Rarey M. Computational methods for biomolecular docking. Curr. Opinion in Struct. Bio. 1996 6 402 406
    [Google Scholar]
  53. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
/content/journals/jctv/10.2174/0126661217332545241028065445
Loading
/content/journals/jctv/10.2174/0126661217332545241028065445
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test