Skip to content
2000
image of A Comprehensive Examination of Common Poisoning and Snakebite Envenoming: Clinical Characteristics, Therapeutic Approaches, and Implications

Abstract

Human toxin poisoning from a variety of sources, including plants, animals, and chemical compounds, is a major concern for global health. Snake envenomation is a common and possibly fatal kind of poisoning among these. In addition to covering other well-known toxin exposures, this page offers a thorough study of human poisoning episodes with a special focus on snake envenomation. The study begins by outlining the geographic distribution of venomous snake species and their effects on various populations. It next discusses the occurrence of snakebite incidents worldwide. It explores the complex structure of snake venom and clarifies the many impacts of its constituent parts on human physiology.

The article investigates the corresponding clinical signs and medical care strategies by classifying venoms into hemotoxic, neurotoxic, and cytotoxic forms. The essay also looks into the socioeconomic effects of snakebite envenomation, highlighting how rural and low-income groups suffer disproportionately in areas with limited access to antivenom and medical care. It also emphasizes the efforts made by local programs and international health organizations to lessen the burden of morbidity and mortality associated with snakebite injuries. The article extends its focus beyond snake envenomation to include additional causes of human poisoning, such as plant toxins, chemical pollutants, and animal venoms. It provides prominent examples of poisoning occurrences produced by various compounds as well as an explanation of the mechanics of toxicity. The difficulties in diagnosing and treating such situations are also discussed, emphasizing the value of prompt and precise medical interventions.

Loading

Article metrics loading...

/content/journals/jctv/10.2174/0126661217322059240917183927
2024-10-30
2024-11-26
Loading full text...

Full text loading...

References

  1. Weaver L.K. Clinical practice. Carbon monoxide poisoning. N. Engl. J. Med. 2009 360 12 1217 1225 10.1056/NEJMcp0808891 19297574
    [Google Scholar]
  2. Uges D. What is the definition of a poisoning? Elsevier 2001 30 33
    [Google Scholar]
  3. Nepovimova E. Kuca K. The history of poisoning: from ancient times until modern ERA. Arch. Toxicol. 2019 93 1 11 24 10.1007/s00204‑018‑2290‑0 30132046
    [Google Scholar]
  4. Setubal R.B. Frasier C.L. Molina J. Torke B.M. Forzza R.C. Struwe L. A toxic story: Phylogeny and classification of Strychnos L.(Loganiaceae). Syst. Bot. 2021 46 3 639 655 10.1600/036364421X16312067913444
    [Google Scholar]
  5. Charitos I.A. Gagliano-Candela R. Santacroce L. Venoms and poisonings during the centuries: A narrative review. Endoc. Metabol. Immune Disord. Drug Targ. 2022 22 6 558 657 10.2174/1871530320666200904105816
    [Google Scholar]
  6. Burney I. Poison, detection, and the Victorian imagination. Poison, detection, and the Victorian imagination. Manchester University Press 2021 10.7765/9781526158628
    [Google Scholar]
  7. Grabska K. Pilarska I. Acute poisoning among children and adolescents: a narrative review. Medical Science Pulse 2022 16 2 1 7 10.5604/01.3001.0015.9656
    [Google Scholar]
  8. Patel P. Komorowski A.S. Mack D.P. An allergist's approach to food poisoning. Ann. Allergy Asthma Immunol. 2022 130 4 444 451
    [Google Scholar]
  9. Sombatsawat E. Barr D.B. Panuwet P. Robson M.G. Siriwong W. Pesticide-induced changes in cholinesterase activity and chronic kidney disease of unknown etiology among farmers in Nakhon Ratchasima, Thailand. Hum. Ecol. Risk Assess. 2021 27 8 2038 2050 10.1080/10807039.2021.1944050
    [Google Scholar]
  10. Katrak S.M. Coma in the ICU: A Clinical Approach. Essentials of Critical Care Medicine for the Physician. jaypee digital 2022
    [Google Scholar]
  11. AL-Musawi M. Histopathological and biochemical comparative study of copper oxide nanoparticles and copper sulphate toxicity in male albino mice reproductive system. Int. J. Biomater. 2022 2022 4877637
    [Google Scholar]
  12. Liontos A. Samanidou V. Athanasiou L. Filippas-Ntekouan S. Milionis C. Acute Ethanol Intoxication: Αn Overlooked Cause of High Anion Gap Metabolic Acidosis With a Marked Increase in Serum Osmolal Gap. Cureus 2023 15 4 e37292 10.7759/cureus.37292 37168210
    [Google Scholar]
  13. Napagoda M. 9 Poisonous plants and their toxic metabolites. Chemistry of Natural Products: Phytochemistry and Pharmacognosy of Medicinal Plants. 2022 12 173 188 10.1515/9783110595949‑009
    [Google Scholar]
  14. Khalil M. Iqbal M. Turan V. Household chemicals and their impact. Environmental micropollutants. Elsevier 2022 201 232 10.1016/B978‑0‑323‑90555‑8.00022‑2
    [Google Scholar]
  15. Small E. In defence of the world’s most reviled vertebrate animals: part 1: ‘lower’ species (sharks, snakes, vultures, frogs & toads). Biodiversity (Nepean) 2021 22 3-4 159 193 10.1080/14888386.2021.1978108
    [Google Scholar]
  16. Kumar S. Kavitha T.K. Angurana S.K. Kerosene, camphor, and naphthalene poisoning in children. Indian J. Crit. Care Med. 2019 23 Suppl. 4 S278 S281 32021004
    [Google Scholar]
  17. Gupta P. Concepts and applications in veterinary toxicology. Cham, Switzerland Springer International Publishing 2019 242 244 10.1007/978‑3‑030‑22250‑5
    [Google Scholar]
  18. Senji Laxme R.R. Suranse V. Sunagar K. Arthropod venoms: Biochemistry, ecology and evolution. Toxicon 2019 158 84 103 10.1016/j.toxicon.2018.11.433 30529476
    [Google Scholar]
  19. Thanacoody R. Anderson M. Epidemiology of poisoning. Medicine (Abingdon) 2020 48 3 153 155 10.1016/j.mpmed.2019.12.001
    [Google Scholar]
  20. Titidezh V. Arefi M. Taghaddosinejad F. Behnoush B. Akbar pour S. Mahboobi M. Epidemiologic profile of deaths due to drug and chemical poisoning in patients referred to Baharloo Hospital of Tehran, 2011 to 2014. J. Forensic Leg. Med. 2019 64 31 33 10.1016/j.jflm.2019.02.009 30927562
    [Google Scholar]
  21. Amir A. Haleem F. Mahesar G. Abdul Sattar R. Qureshi T. Syed J.G. Ali Khan M. Epidemiological, poisoning characteristics and treatment outcomes of patients admitted to the National Poisoning Control Centre at Karachi, Pakistan: a six month analysis. Cureus 2019 11 11 e6229 10.7759/cureus.6229 31890428
    [Google Scholar]
  22. Abbes M. Montana M. Curti C. Vanelle P. Ricin poisoning: A review on contamination source, diagnosis, treatment, prevention and reporting of ricin poisoning. Toxicon 2021 195 86 92 10.1016/j.toxicon.2021.03.004 33711365
    [Google Scholar]
  23. Mégarbane B. Oberlin M. Alvarez J.C. Balen F. Beaune S. Bédry R. Chauvin A. Claudet I. Danel V. Debaty G. Delahaye A. Deye N. Gaulier J.M. Grossenbacher F. Hantson P. Jacobs F. Jaffal K. Labadie M. Labat L. Langrand J. Lapostolle F. Le Conte P. Maignan M. Nisse P. Sauder P. Tournoud C. Vodovar D. Voicu S. Claret P.G. Cerf C. Management of pharmaceutical and recreational drug poisoning. Ann. Intensive Care 2020 10 1 157 10.1186/s13613‑020‑00762‑9 33226502
    [Google Scholar]
  24. Ramtel R. Adhikari B. Shrestha M. Hirachan N. Poddar E. Shrestha S. Diagnosis and management of nitrobenzene poisoning in a low-resource setting: A case report. Ann. Med. Surg. (Lond.) 2022 81 104553 10.1016/j.amsu.2022.104553 36147189
    [Google Scholar]
  25. Cappelletti S. Piacentino D. Fineschi V. Frati P. D’Errico S. Aromatario M. Mercuric chloride poisoning: symptoms, analysis, therapies, and autoptic findings. A review of the literature. Crit. Rev. Toxicol. 2019 49 4 329 341 10.1080/10408444.2019.1621262 31433682
    [Google Scholar]
  26. Zavaliy L.B. Petrikov S.S. Simonova A.Y. Potskhveriya M.M. Zaker F. Ostapenko Y.N. Ilyashenko K.K. Dikaya T.I. Shakhova O.B. Evseev A.K. Rezaee R. Goroncharovskaya I.V. Diagnosis and treatment of persons with acute thallium poisoning. Toxicol. Rep. 2021 8 277 281 10.1016/j.toxrep.2021.01.013 33552926
    [Google Scholar]
  27. Meng W. Sun M. Xu Q. Cen J. Cao Y. Li Z. Xiao K. Development of a series of fluorescent probes for the early diagnostic imaging of sulfur mustard poisoning. ACS Sens. 2019 4 10 2794 2801 10.1021/acssensors.9b01424 31549501
    [Google Scholar]
  28. Gallagher N. Edwards F.J. The diagnosis and management of toxic alcohol poisoning in the emergency department: a review article. Adv. J. Emerg. Med. 2019 3 3 e28 31410405
    [Google Scholar]
  29. Thanacoody R. Principles of assessment and diagnosis of the poisoned patient. Medicine (Abingdon) 2020 48 3 156 159 10.1016/j.mpmed.2019.12.002
    [Google Scholar]
  30. Chiba T. Otaka S. Igeta R. Burns M.M. Ikeda S. Shiga T. Epidemiology and clinical outcomes of poisoning-induced cardiac arrest in Japan: Retrospective analysis of a nationwide registry. Resuscitation 2022 180 52 58 10.1016/j.resuscitation.2022.09.009 36185034
    [Google Scholar]
  31. Farkas A. Kostic M. Huang C.C. Gummin D. Poison center consultation reduces hospital length of stay. Clin. Toxicol. (Phila.) 2022 60 7 863 868 10.1080/15563650.2022.2039686 35261300
    [Google Scholar]
  32. Farnham A. Fuhrimann S. Staudacher P. Quirós-Lépiz M. Hyland C. Winkler M.S. Mora A.M. Long-term neurological and psychological distress symptoms among smallholder farmers in Costa Rica with a history of acute pesticide poisoning. Int. J. Environ. Res. Public Health 2021 18 17 9021 10.3390/ijerph18179021 34501611
    [Google Scholar]
  33. Farzaei M.H. Bayrami Z. Farzaei F. Aneva I. Das S.K. Patra J.K. Das G. Abdollahi M. Poisoning by medical plants. Arch. Iran Med. 2020 23 2 117 127 32061075
    [Google Scholar]
  34. Liu J. Si Z. Liu J. Clinical and imaging prognosis in patients with delayed encephalopathy after acute carbon monoxide poisoning. Behav. Neurol. 2020 2020 1719360 10.1155/2020/1719360
    [Google Scholar]
  35. Pascale A. Laborde A. Impact of pesticide exposure in childhood. Rev. Environ. Health 2020 35 3 221 227 10.1515/reveh‑2020‑0011 32598326
    [Google Scholar]
  36. Whitehead L.S. Buchanan S.D. Childhood lead poisoning: a perpetual environmental justice issue? J. Public Health Manag. Pract. 2019 25 1 Suppl 1, Lead Poisoning Prevention S115 S120 10.1097/PHH.0000000000000891 30507780
    [Google Scholar]
  37. Gamze G. Evaluation of poisoning cases admitted to pediatric emergency department. Int. J. Pediatr. Adolesc. Med. 2019 6 3 109 114 10.1016/j.ijpam.2019.07.004 31700969
    [Google Scholar]
  38. Tay E.Y. Tan G.F. Yeo A.W.C. Tham E.H. Intentional poisoning in pediatric patients: examining the risk factors. Pediatr. Emerg. Care 2021 37 12 e1510 e1514 10.1097/PEC.0000000000002101 32304525
    [Google Scholar]
  39. Saha M. Mahamud S. Rahul A.K. Current Scenario of Poisoning and Snake Bite Patients Admitted in Sylhet MAG Osmani Medical College Hospital. Bangladesh Journal of Medicine. 2023 34 2 133 136
    [Google Scholar]
  40. Hillmeister P. Persson A.B. Bradykinin-from snake poison to therapeutic options. Acta Physicologica 2020 228 3 e13445
    [Google Scholar]
  41. Saini R. Jain S.K. An epidemiological profile of fatal snake bite cases in south-east region of Rajasthan. Journal of Forensic Medicine and Toxicology 2023 40 1 12 15 10.5958/0974‑4568.2023.00004.2
    [Google Scholar]
  42. Moos B. Williams D. Bolon I. Mupfasoni D. Abela-Ridder B. Ruiz de Castaneda R. A scoping review of current practices on community engagement in rural East Africa: Recommendations for snakebite envenoming. Toxicon X 2021 11 100073 10.1016/j.toxcx.2021.100073 34381992
    [Google Scholar]
  43. Potet J. Beran D. Ray N. Alcoba G. Habib A.G. Iliyasu G. Waldmann B. Ralph R. Faiz M.A. Monteiro W.M. de Almeida Gonçalves Sachett J. di Fabio J.L. Cortés M.Á. Brown N.I. Williams D.J. Access to antivenoms in the developing world: A multidisciplinary analysis. Toxicon X 2021 12 100086 10.1016/j.toxcx.2021.100086 34786555
    [Google Scholar]
  44. Abdurrazaq I.S. Suyanto S. Utama D.Q. Image-Based Classification of Snake Species Using Convolutional Neural Network. 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) 05-06 December 2019, Yogyakarta, Indonesia, 2019, pp. 97-102.
    [Google Scholar]
  45. Silva A.M. Mendes V.K.G. Monteiro W.M. Bernarde P.S. Non-venomous snakebites in the Western Brazilian Amazon. Rev. Soc. Bras. Med. Trop. 2019 52 e20190120 10.1590/0037‑8682‑0120‑2019 31166491
    [Google Scholar]
  46. Paolino G. Di Nicola M.R. Avella I. Mercuri S.R. Venomous Bites, Stings and Poisoning by European Vertebrates as an Overlooked and Emerging Medical Problem: Recognition, Clinical Aspects and Therapeutic Management. Life (Basel) 2023 13 6 1228 10.3390/life13061228 37374011
    [Google Scholar]
  47. Liu Q. Xie X. Wu Y. Shu G. Guo K. Guo P. Cui L. High genetic divergence but low morphological differences in a keelback snake Rhabdophis subminiatus (Reptilia, Colubridae). J. Zool. Syst. Evol. Res. 2021 59 6 1371 1381 10.1111/jzs.12484
    [Google Scholar]
  48. Engelbrecht H.M. Branch W.R. Tolley K.A. Snakes on an African plain: the radiation of Crotaphopeltis and Philothamnus into open habitat (Serpentes: Colubridae). PeerJ 2021 9 e11728 10.7717/peerj.11728 34434643
    [Google Scholar]
  49. Das S. Brecko J. Pauwels O.S.G. Merilä J. Cranial osteology of Hypoptophis (Aparallactinae: Atractaspididae: Caenophidia), with a discussion on the evolution of its fossorial adaptations. J. Morphol. 2022 283 4 510 538 10.1002/jmor.21457 35094424
    [Google Scholar]
  50. Xu J. Guo S. Yin X. Li M. Su H. Liao X. Li Q. Le L. Chen S. Liao B. Hu H. Lei J. Zhu Y. Qiu X. Luo L. Chen J. Cheng R. Chang Z. Zhang H. Wu N.C. Guo Y. Hou D. Pei J. Gao J. Hua Y. Huang Z. Chen S. Genomic, transcriptomic, and epigenomic analysis of a medicinal snake, Bungarus multicinctus, to provides insights into the origin of Elapidae neurotoxins. Acta Pharm. Sin. B 2023 13 5 2234 2249 10.1016/j.apsb.2022.11.015 37250171
    [Google Scholar]
  51. Offor B.C. Muller B. Piater L.A. A review of the proteomic profiling of african viperidae and elapidae snake venoms and their antivenom neutralisation. Toxins (Basel) 2022 14 11 723 10.3390/toxins14110723 36355973
    [Google Scholar]
  52. Trevisan-Silva D. de Alcantara Ferreira J. Menezes M.C. The puzzle of proteolytic effects in hemorrhage induced by Viperidae snake venom metalloproteinases. Proteolytic Signaling in Health and Disease. Elsevier 2022 251 283
    [Google Scholar]
  53. Alam M.J. Maruf M.M.H. Iqbal M.A. Hasan M. Sohan M.S.R. Shariar M.R. Haidar I.K.A. Chowdhury M.A.W. Ghose A. Hoque K.M.F. Reza M.A. Evaluation of the properties of Bungarus caeruleus venom and checking the efficacy of antivenom used in Bangladesh for its bite treatment. Toxicon X 2023 17 100149 10.1016/j.toxcx.2023.100149 36654657
    [Google Scholar]
  54. Venkatesan K. Sivadasan D. Alghazwani Y. Asiri Y.I. Prabahar K. Al-Qahtani A. Mohamed J.M.M. Khan N.A. Krishnaraju K. Paulsamy P. Vasudevan R. Venkatesan K. Potential of seaweed biomass: snake venom detoxifying action of brown seaweed Padina boergesenii against Naja naja venom. Biomass Convers. Biorefin. 2023 1 14 10.1007/s13399‑023‑03922‑6
    [Google Scholar]
  55. Nasri Nasrabadi N. Mohammadpour Dounighi N. Ahmadinejad M. Rabiei H. Tabarzad M. Najafi M. Vatanpour H. Isolation of the anticoagulant and procoagulant fractions of the venom of Iranian endemic Echis carinatus. Iran. J. Pharm. Res. 2022 21 1 e127240 10.5812/ijpr‑127240 36942067
    [Google Scholar]
  56. Yee K.T. Macrander J. Vasieva O. Rojnuckarin P. Exploring Toxin Genes of Myanmar Russell’s Viper, Daboia siamensis, through De Novo Venom Gland Transcriptomics. Toxins (Basel) 2023 15 5 309 10.3390/toxins15050309 37235344
    [Google Scholar]
  57. Adisakwattana P. Chanhome L. Chaiyabutr N. Phuphisut O. Reamtong O. Thawornkuno C. Venom-gland transcriptomics of the Malayan pit viper (Calloselasma rhodostoma) for identification, classification, and characterization of venom proteins. Heliyon 2023 9 5 e15476 10.1016/j.heliyon.2023.e15476 37153433
    [Google Scholar]
  58. Bhosale H. Gowande G. Patel H. Systematics of Trimeresurus popeiorum Smith, 1937 with a revised molecular phylogeny of Asian pitvipers of the genus Trimeresurus Lacépède, 1804 sensu lato. Evol. Syst. 2023 7 91 104 10.3897/evolsyst.7.97026
    [Google Scholar]
  59. Anita S. Sadjuri A.R. Rahmah L. Nugroho H.A. Mulyadi Trilaksono W. Ridhani W. Safira N. Bahtiar H. Maharani Hamidy A. Azhari A. Venom composition of Trimeresurus albolabris, T. insularis, T. puniceus and T. purpureomaculatus from Indonesia. J. Venom. Anim. Toxins Incl. Trop. Dis. 2022 28 e20210103 10.1590/1678‑9199‑jvatitd‑2021‑0103 35875602
    [Google Scholar]
  60. Milton N. The secret life of the adder: The vanishing viper. Herpetol. Bull. 2022 162 47 48
    [Google Scholar]
  61. Huynh T.M. Silva A. Isbister G.K. Hodgson W.C. Isolation and pharmacological characterization of α-elapitoxin-Oh3a, a long-chain post-synaptic neurotoxin from King Cobra (Ophiophagus hannah) venom. Front. Pharmacol. 2022 13 815069 10.3389/fphar.2022.815069 35341214
    [Google Scholar]
  62. Mallik A.K. Achyuthan N.S. Ganesh S.R. Pal S.P. Vijayakumar S.P. Shanker K. Discovery of a deeply divergent new lineage of vine snake (Colubridae: Ahaetuliinae: Proahaetulla gen. nov.) from the southern Western Ghats of Peninsular India with a revised key for Ahaetuliinae. PLoS One 2019 14 7 e0218851 10.1371/journal.pone.0218851 31314800
    [Google Scholar]
  63. Dashevsky D. Rokyta D. Frank N. Nouwens A. Fry B.G. Electric blue: molecular evolution of three-finger toxins in the long-glanded coral snake species Calliophis bivirgatus. Toxins (Basel) 2021 13 2 124 10.3390/toxins13020124 33567660
    [Google Scholar]
  64. Salunkhe R.V. Snakes of Indapur: Diversity and Awareness. Bhumi Publishing: Bhumi Publishing 2023
    [Google Scholar]
  65. Smart U. Ingrasci M.J. Sarker G.C. Lalremsanga H. Murphy R.W. Ota H. Tu M.C. Shouche Y. Orlov N.L. Smith E.N. A comprehensive appraisal of evolutionary diversity in venomous Asian coralsnakes of the genus Sinomicrurus (Serpentes: Elapidae) using Bayesian coalescent inference and supervised machine learning. J. Zool. Syst. Evol. Res. 2021 59 8 2212 2277 10.1111/jzs.12547
    [Google Scholar]
  66. Zhong J. Guo K. Liao Z.L. Du Y. Lin C-X. Ji X. Comparative analysis of the skin microbiota between two sea snakes, Hydrophis cyanocinctus and Hydrophis curtus, with versus without skin ulcer. Coral Reefs 2023 42 3 743 753 10.1007/s00338‑023‑02386‑4
    [Google Scholar]
  67. Bessesen B.L. Garrido-Cayul C. González-Suárez M. Habitat suitability and area of occupancy defined for rare New World sea snake. Conserv. Sci. Pract. 2023 5 1 e12865 10.1111/csp2.12865
    [Google Scholar]
  68. Rezaei Orimi J. Eskandarzadeh N. Amrollahi-Sharifabadi M. Miri V. Aghabeiglooei Z. Rezghi M. Analyzing the biological traits of snakes in Avicenna’s Canon of medicine and making a comparison with contemporary serpentology. Toxicon 2023 231 107198 10.1016/j.toxicon.2023.107198 37331525
    [Google Scholar]
  69. Hu F. Wang P. Li Y. Watch out Venomous Snake Species: A solution to snake CLEF2023. arXiv:2307.09748 2023
    [Google Scholar]
  70. Tadokoro T. Modahl C.M. Maenaka K. Aoki-Shioi N. Cysteine-rich secretory proteins (CRISPs) from venomous snakes: An overview of the functional diversity in a large and underappreciated superfamily. Toxins 2020 12 3 175 10.3390/toxins12030175 32178374
    [Google Scholar]
  71. Jagpal P.S. Williams H.A. Eddleston M. Lalloo D. Warrell D. Sandilands E.A. Thanacoody R. Gray L. Bradberry S.M. Bites by exotic snakes reported to the UK National Poisons Information Service 2009–2020. Clin. Toxicol. 2022 60 9 1044 1050 10.1080/15563650.2022.2077748 35853475
    [Google Scholar]
  72. Mohalik R. Samal A. Sahu B. Rescue and Documentation of an Albino juvenile Common Cobra,Naja naja (Linnaeus 1758) from Bhawanipatna, Kalahandi, Odisha. Entomol. Ornithol. Herpetol. 1758 12 301
    [Google Scholar]
  73. Mahapatra A.D. Santra V. Jana S. Ghorai S.K. Cobras in peril: Reporting the death of two monocled cobra (Naja kaouthia) (Squamata: Elapidae) due to consumption of anthropogenic plastic debris. J. Asia-Pac. Biodivers. 2023 16 2 255 260 10.1016/j.japb.2023.01.008
    [Google Scholar]
  74. Chong H.P. Tan K.Y. Liu B.S. Sung W.C. Tan C.H. Cytotoxicity of venoms and cytotoxins from Asiatic cobras (Naja kaouthia, Naja sumatrana, Naja atra) and neutralization by antivenoms from Thailand, Vietnam, and Taiwan. Toxins (Basel) 2022 14 5 334 10.3390/toxins14050334 35622581
    [Google Scholar]
  75. Tansuwannarat P. Tongpoo A. Phongsawad S. Sriapha C. Wananukul W. Trakulsrichai S. A retrospective cohort study of cobra envenomation: clinical characteristics, treatments, and outcomes. Toxins (Basel) 2023 15 7 468 10.3390/toxins15070468 37505737
    [Google Scholar]
  76. Hiu J.J. Yap M.K.K. The myth of cobra venom cytotoxin: More than just direct cytolytic actions. Toxicon X 2022 14 100123 10.1016/j.toxcx.2022.100123 35434602
    [Google Scholar]
  77. Ong H.L. Tan C.H. Lee L.P. Khor S.M. Tan K.Y. An immunodetection assay developed using cobra cytotoxin-specific antibodies: Potential diagnostics for cobra envenoming. Toxicon 2022 216 157 168 10.1016/j.toxicon.2022.07.010 35868411
    [Google Scholar]
  78. Abu Baker M.A. Al-Saraireh M. Amr Z. Amr S.S. Warrell D.A. Snakebites in Jordan: A clinical and epidemiological study. Toxicon 2022 208 18 30 10.1016/j.toxicon.2022.01.005 35026216
    [Google Scholar]
  79. Tan C.H. Bourges A. Tan K.Y. King Cobra and snakebite envenomation: on the natural history, human-snake relationship and medical importance of Ophiophagus hannah. J. Venom. Anim. Toxins Incl. Trop. Dis. 2021 27 e20210051 10.1590/1678‑9199‑jvatitd‑2021‑0051 35069710
    [Google Scholar]
  80. Singkham-In U. Thaveekarn W. Noiphrom J. Khow O. Ponwaranon S. Issara-Amphorn J. Sitprija V. Leelahavanichkul A. Hydrogen peroxide from l-amino acid oxidase of king cobra (Ophiophagus hannah) venom attenuates Pseudomonas biofilms. Sci. Rep. 2023 13 1 11304 10.1038/s41598‑023‑37914‑3 37438396
    [Google Scholar]
  81. Huynh T.M. Hodgson W.C. Isbister G.K. Silva A. The Effect of Australian and Asian Commercial Antivenoms in Reversing the Post-Synaptic Neurotoxicity of O. hannah, N. naja and N. kaouthia Venoms In Vitro. Toxins (Basel) 2022 14 4 277 10.3390/toxins14040277 35448886
    [Google Scholar]
  82. Chandrasekara U. Harris R.J. Fry B.G. The Target Selects the Toxin: Specific Amino Acids in Snake-Prey Nicotinic Acetylcholine Receptors That Are Selectively Bound by King Cobra Venoms. Toxins (Basel) 2022 14 8 528 10.3390/toxins14080528 36006190
    [Google Scholar]
  83. Khourcha S. Hilal I. Elbejjaj I. Karkouri M. Safi A. Hmyene A. Oukkache N. Insight into the Toxicological and Pathophysiological Effects of Moroccan Vipers’ Venom: Assessing the Efficacy of Commercial Antivenom for Neutralization. Trop. Med. Infect. Dis. 2023 8 6 302 10.3390/tropicalmed8060302 37368720
    [Google Scholar]
  84. Bhola K. Mashele S. Moodley Y. Ultrasound features of Cytotoxic venomous snake bite and implications for surgical management–A systematic review. Student’s Journal of Health Research Africa. 2022 3 12 8 8
    [Google Scholar]
  85. Costa M.T. da Silva Goulart A. Salgueiro A.C.F. da Rosa H.S. Perazzo G.X. Folmer V. Cytotoxicity and inflammation induced by Philodryas patagoniensis venom. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2022 257 109356 10.1016/j.cbpc.2022.109356 35490925
    [Google Scholar]
  86. Op den Brouw B. Fernandez-Rojo M.A. Charlton T. Fry B.G. Ikonomopoulou M.P. Malaysian and Chinese King Cobra Venom Cytotoxicity in Melanoma and Neonatal Foreskin Fibroblasts Is Mediated by Age and Geography. Toxins (Basel) 2023 15 9 549 10.3390/toxins15090549 37755975
    [Google Scholar]
  87. Si H. Yin C. Wang W. Davies P. Sanchez E. Suntravat M. Zawieja D. Cromer W. Effect of the snake venom component crotamine on lymphatic endothelial cell responses and lymph transport. Microcirculation 2023 30 2-3 e12775 10.1111/micc.12775 35689804
    [Google Scholar]
  88. Pathania M. Rijal P. Singh A.P. Panwar P. Kant R. Prolonged asymptomatic venom induced consumption coagulopathy: Caused by hemotoxic snake bite. J. Family Med. Prim. Care 2022 11 11 7448 7451 10.4103/jfmpc.jfmpc_1126_22 36993133
    [Google Scholar]
  89. Wedasingha S. Silva A. Siribaddana S. Seneviratne K. Isbister G.K. Comparison of bedside clotting tests for detecting venom-induced consumption coagulopathy following Sri Lankan viper envenoming. Clin. Toxicol. (Phila.) 2022 60 12 1328 1335 10.1080/15563650.2022.2128816 36322690
    [Google Scholar]
  90. Yousaf M. Khan Q.A. Anthony M.R. Badshah A. Abdi P. Farkouh C. Hadi F.A. Jan R. Khan A. Iram S. Snakebite Induced Cerebral Venous Sinus Thrombosis: A Case Report. Clin. Med. Insights Case Rep. 2023 16 10.1177/11795476231165750 37033678
    [Google Scholar]
  91. Ghosh R. León-Ruiz M. Roy D. Naga D. Sardar S.S. Benito-León J. Cerebral venous sinus thrombosis following Russell’s viper (Daboia russelii) envenomation: A case report and review of the literature. Toxicon 2022 218 8 12 10.1016/j.toxicon.2022.08.014 36041514
    [Google Scholar]
  92. Dobaja Borak M. Grenc D. Reberšek K. Podgornik H. Leonardi A. Kurtović T. Halassy B. Križaj I. Brvar M. Reversible and transient thrombocytopenia of functional platelets induced by nose-horned viper venom. Thromb. Res. 2023 229 152 154 10.1016/j.thromres.2023.07.005 37454466
    [Google Scholar]
  93. Zhang C. Zhang Z. Liang E. Gao Y. Li H. Xu F. Chen W. Liu M. Huang X. Platelet Desialylation Is a Novel Mechanism and Therapeutic Target in Daboia siamensis and Agkistrodon halys Envenomation-Induced Thrombocytopenia. Molecules 2022 27 22 7779 10.3390/molecules27227779 36431880
    [Google Scholar]
  94. Trautman W. Pizon A. Severe, persistent thrombocytopenia in Crotalus horridus envenomation despite antivenom: A retrospective review. Toxicon 2023 224 107029 10.1016/j.toxicon.2023.107029 36682501
    [Google Scholar]
  95. Lohakare T. Kurian B. Maurya A. Wanjari M.B. Meshram K.M. A Life-Threatening Incidence of Neurotoxic Indian Krait Snake Bite: A Case Report. Cureus 2022 14 8 e27719 10.7759/cureus.27719 36081963
    [Google Scholar]
  96. Tan C.H. Lingam T.M.C. Tan K.Y. Varespladib (LY315920) rescued mice from fatal neurotoxicity caused by venoms of five major Asiatic kraits (Bungarus spp.) in an experimental envenoming and rescue model. Acta Trop. 2022 227 106289 10.1016/j.actatropica.2021.106289 34929179
    [Google Scholar]
  97. Suhita R. Begum I. Rashid M. Chandran V.P. Shastri S.A. Kantamneni R. Rajan A.K. Thunga G. Systematic review and meta-analysis of global prevalence of neurotoxic and hemotoxic snakebite envenomation. East. Mediterr. Health J. 2022 28 12 909 916 10.26719/emhj.22.090 36573572
    [Google Scholar]
  98. Abouhatab H. kandeel Evaluation of Snake Bite Poisoned Cases “Clinical and Biochemical Predictors”. Egyptian Journal of Forensic Sciences and Applied Toxicology 2023 23 3 55 66 10.21608/ejfsat.2023.218081.1292
    [Google Scholar]
  99. Pangam D. Jaiswal V. Dongre P. Inhibition of Russell’s Viper Venom using Silver Nanoparticle-Bovine Serum Albumin-Curcumin Conjugates. Indian J. Pharm. Sci. 2022 84 4
    [Google Scholar]
  100. Ajisebiola B.S. Fawole A.B. Adeyi O.E. Adeyi A.O. An in vivo assessment of inflammatory and oxidative stress responses in Echis ocellatus-venom induced cardiotoxicity. Medicine in Omics 2022 5-6 100017 10.1016/j.meomic.2022.100017
    [Google Scholar]
  101. Chaisakul J. Khimmaktong W. Nuanyaem N. Determination of Nephrotoxicity, Hepatotoxicity and Cardiovascular Disturbances following Malayan Pit Viper (Calloselasma rhodostoma) Envenoming: Histopathological study and The Protective Effect of Hemato Polyvalent Snake Antivenom from Thailand. 2022 Preprint 11 Mar, 2022.
    [Google Scholar]
  102. Das K. Das S. Mohakud N.K. Pradhan S.K. Sahu S.K. Risk factors and outcome of acute kidney injury in children with snake envenomation. Trop. Doct. 2023 53 4 441 443 10.1177/00494755231192684 37545383
    [Google Scholar]
  103. Koshy P. Chavan G. Gadkari C. Dubey S. When Venom Meets the Heart: A Rare Case of Scorpion Sting-Induced Acute Myocardial Infarction. Cureus 2023 15 9 e44886 10.7759/cureus.44886 37814749
    [Google Scholar]
  104. Shenoy S. Bockenhauer D. Challenges in using fractional excretion of sodium in the assessment of salt poisoning. Acta Paediatr. 2023 36853022
    [Google Scholar]
  105. Wendt S. Lübbert C. Begemann K. Prasa D. Franke H. Poisoning by Plants. Dtsch. Arztebl. Int. 2022 119 Forthcoming 317 324 35140011
    [Google Scholar]
  106. Li Y. Jin Q. Li Z. Chen M. Xie L. Misdiagnosed centipede and scorpion poisoning characterized by delayed hypersensitivity reaction: A case report. Medicine (Baltimore) 2022 101 51 e32288 10.1097/MD.0000000000032288 36595768
    [Google Scholar]
  107. Safaee M. Malekzadeh M. Motamedi N. Sayadishahraki M. Eizadi-Mood N. Gastrointestinal Manifestations of Lead Poisoning: A Brief Report. Iran. J. Med. Sci. 2023 48 6 600 605 38094284
    [Google Scholar]
  108. Seifert S.A. Armitage J.O. Sanchez E.E. Snake Envenomation. N. Engl. J. Med. 2022 386 1 68 78 10.1056/NEJMra2105228 34986287
    [Google Scholar]
  109. Dehghani R. Monzavi S.M. Mehrpour O. Shirazi F.M. Hassanian-Moghaddam H. Keyler D.E. Wüster W. Westerström A. Warrell D.A. Medically important snakes and snakebite envenoming in Iran. Toxicon 2023 230 107149 10.1016/j.toxicon.2023.107149 37187227
    [Google Scholar]
  110. Zdenek C.N. Chowdhury A. Haw G.Y.H. Violette A. Fourmy R. Christ T. Vonk F.J. Fry B.G. Taxon-selective venom variation in adult and neonate Daboia russelii (Russell’s Viper), and antivenom efficacy. Toxicon 2022 205 11 19 10.1016/j.toxicon.2021.11.004 34752826
    [Google Scholar]
  111. The role of the nurse in the face of snakebite victims in pre-hospital and intra-hospital accidents. 2023 Available from: https://sevenpublicacoes.com.br/editora/article/view/2279(accessed on 20-8-2024)
  112. Pandey D.P. Thapa N.B. Analysis of News Media-Reported Snakebite Envenoming in Nepal during 2010–2022. PLoS Negl. Trop. Dis. 2023 17 8 e0011572 10.1371/journal.pntd.0011572 37639403
    [Google Scholar]
  113. Organization W.H. Regional Action Plan for prevention and control of snakebite envenoming in the South-. East Asia (Piscataway) 2022 2022 2030
    [Google Scholar]
  114. Margono F. Outwater A.H. Lowery Wilson M. Howell K.M. Bärnighausen T. Snakebite treatment in Tanzania: identifying gaps in community practices and hospital resources. Int. J. Environ. Res. Public Health 2022 19 8 4701 10.3390/ijerph19084701 35457571
    [Google Scholar]
  115. Farooq H. Bero C. Guilengue Y. Elias C. Massingue Y. Mucopote I. Nanvonamuquitxo C. Marais J. Faurby S. Antonelli A. Snakebite incidence in rural sub-Saharan Africa might be severely underestimated. Toxicon 2022 219 106932 10.1016/j.toxicon.2022.106932 36181779
    [Google Scholar]
  116. Murta F. Strand E. de Farias A.S. Rocha F. Santos A.C. Rondon E.A.T. de Oliveira A.P.S. da Gama H.S.S. Vieira Rocha Y. Rocha G.S. Ferreira M. Azevedo Machado V. Lacerda M. Pucca M. Cerni F. Nickenig Vissoci J.R. Tupetz A. Gerardo C.J. Moura-da-Silva A.M. Hui Wen F. Sachett J. Monteiro W. “Two Cultures in Favor of a Dying Patient”: Experiences of Health Care Professionals Providing Snakebite Care to Indigenous Peoples in the Brazilian Amazon. Toxins (Basel) 2023 15 3 194 10.3390/toxins15030194 36977085
    [Google Scholar]
  117. Zeng Z.Y. Huang P.Y. Du J.Y. Liu Y.X. Guo S.G. Zeng L.S. Zhang C.C. Li Y. Effect of Agkistrodon halys antivenom in patients bit by green pit viper and the prognostic role of the disease – a retrospective cohort study. Clin. Toxicol. (Phila.) 2022 60 7 808 817 10.1080/15563650.2022.2041200 35225104
    [Google Scholar]
  118. Wilson B.Z. Bahadir A. Andrews M. Karpen J. Winkler G. Smelski G. Dudley S. Walter F.G. Shirazi F.M. Initial Experience with F(ab’)2 Antivenom Compared with Fab Antivenom for Rattlesnake Envenomations Reported to a single poison center during 2019. Toxicon 2022 209 10 17 10.1016/j.toxicon.2022.01.007 35085602
    [Google Scholar]
  119. WHO. Target product profiles for animal plasma-derived antivenoms: antivenoms for treatment of snakebite envenoming in sub-Saharan Africa. 2023 Available from: https://www.who.int/teams/control-of-neglected-tropical-diseases/snakebite-envenoming/target-product-profiles(accessed on 20-8-2024)
  120. Brandehoff N. Dalton A. Daugherty C. Dart R.C. Monte A.A. Total CroFab and Anavip Antivenom Vial Administration in US Rattlesnake Envenomations: 2019–2021. J. Med. Toxicol. 2023 19 3 248 254 10.1007/s13181‑023‑00941‑7 37115482
    [Google Scholar]
  121. Neumann N.R. du Plessis A. van Hoving D.J. Hoyte C.O. Lermer A. Wittels S. Marks C. Antivenom supply and demand: An analysis of antivenom availability and utilization in South Africa. Afr. J. Emerg. Med. 2023 13 4 245 249 10.1016/j.afjem.2023.08.002 37745277
    [Google Scholar]
  122. Nascimento T.P. Vilhena Silva-Neto A. Baia-da-Silva D.C. da Silva Balieiro P.C. Baleiro A.A.S. Sachett J. Brasileiro L. Sartim M.A. Martinez-Espinosa F.E. Wen F.H. Pucca M.B. Gerardo C.J. Sampaio V.S. Ferreira de Aquino P. Monteiro W.M. Pregnancy outcomes after snakebite envenomations: A retrospective cohort in the Brazilian Amazonia. PLoS Negl. Trop. Dis. 2022 16 12 e0010963 10.1371/journal.pntd.0010963 36469516
    [Google Scholar]
  123. Ramirez-Cruz M.P. Rayburn W.F. Seifert S.A. Envenomations and antivenom during pregnancy. Clinical Pharmacology During Pregnancy. Elsevier 2022 389 408 10.1016/B978‑0‑12‑818902‑3.00011‑7
    [Google Scholar]
  124. Weinstein S.A. Warrell D.A. Keyler D.E. Venomous” Bites from” Non-Venomous. Snakes Elsevier Inc 2022
    [Google Scholar]
  125. Potet J. Singh S. Ritmeijer K. Sisay K. Alcoba G. Jouberton F. Henko Kinding Y.W. Kruse A. Bengaly A. Sabino M. Komas N.P. Coldiron M. Snakebite envenoming at MSF: A decade of clinical challenges and antivenom access issues. Toxicon X 2023 17 100146 10.1016/j.toxcx.2022.100146 36619819
    [Google Scholar]
  126. Gopal G. Muralidar S. Prakash D. Kamalakkannan A. Indhuprakash S.T. Thirumalai D. Ambi S.V. The concept of Big Four: Road map from snakebite epidemiology to antivenom efficacy. Int. J. Biol. Macromol. 2023 242 Pt 1 124771 10.1016/j.ijbiomac.2023.124771 37169043
    [Google Scholar]
  127. Dalhat M.M. Potet J. Mohammed A. Chotun N. Tesfahunei H.A. Habib A.G. Availability, accessibility and use of antivenom for snakebite envenomation in Africa with proposed strategies to overcome the limitations. Toxicon X 2023 18 100152 10.1016/j.toxcx.2023.100152 36936749
    [Google Scholar]
  128. Bassier I. The diet and feeding ecology of the brown house snake, Boaedon capensis. Master's thesis, University of the Western Cape, 2022.
    [Google Scholar]
  129. Trautman W.J. Ahmed F. Barton D.J. Safe administration of Crotalidae equine immune F (ab’) 2 antivenom in a patient who suffered anaphylaxis from Crotalidae polyvalent immune Fab antivenom. Am. J. Emerg. Med. 2023 72 221
    [Google Scholar]
  130. Norouznejad N. Zolfagharian H. Babaie M. Ghobeh M. Purification of Therapeutic Serums of Snake Anti-Venom with Caprylic Acid. J. Pharmacopuncture 2022 25 2 114 120 10.3831/KPI.2022.25.2.114 35837146
    [Google Scholar]
  131. Carrasco-Harris M.F. Bowman D. Reichling S. Cole J.A. Spatial ecology of copperhead snakes (Agkistrodon contortrix) in response to urban park trails. J. Urban Econ. 2020 6 1 juaa007 10.1093/jue/juaa007
    [Google Scholar]
  132. Sánchez A. Segura Á. Pla D. Munuera J. Villalta M. Quesada-Bernat S. Chavarría D. Herrera M. Gutiérrez J.M. León G. Calvete J.J. Vargas M. Comparative venomics and preclinical efficacy evaluation of a monospecific Hemachatus antivenom towards sub-Saharan Africa cobra venoms. J. Proteomics 2021 240 104196 10.1016/j.jprot.2021.104196 33775842
    [Google Scholar]
  133. Yeh H. Gao S.Y. Lin C.C. Wound infections from Taiwan Cobra (Naja atra) bites: determining bacteriology, antibiotic susceptibility, and the use of antibiotics-a cobra BITE study. Toxins (Basel) 2021 13 3 183 10.3390/toxins13030183 33801318
    [Google Scholar]
  134. Development of in vitro assays for hematotoxic activity of the Russell’s viper Daboia siamensis venom. Sittishevapark P. Kitana J. Sukrong S. AIP Conference Proceedings AIP Publishing 2019
    [Google Scholar]
  135. Larréché S. Chippaux J.P. Chevillard L. Mathé S. Résière D. Siguret V. Mégarbane B. Bleeding and thrombosis: Insights into pathophysiology of Bothrops venom-related hemostasis disorders. Int. J. Mol. Sci. 2021 22 17 9643 10.3390/ijms22179643 34502548
    [Google Scholar]
  136. Ghezellou P. Pharmacological characterisation of Pseudocerastes and Eristicophis viper venoms reveal anticancer (Melanoma) properties and a potentially novel mode of fibrinogenolysis. Int. J. Mole. Sci. 2021 22 13 6869
    [Google Scholar]
  137. Calderon B.H. Coronel Y.V.O. Rey C.O.A. Alave C.E.G. Duran L.W.J. Rojas P.C. Arevalo M.H. Neyra G.D. Pérez G.M. Bonilla C. Tintaya B. Ricciardi G. Smiejkowska N. Romão E. Vincke C. Lévano J. Celys M. Lomonte B. Muyldermans S. Development of nanobodies against hemorrhagic and myotoxic components of Bothrops atrox snake venom. Front. Immunol. 2020 11 655 10.3389/fimmu.2020.00655 32457735
    [Google Scholar]
  138. Sitprija V. Sitprija S. Marine toxins and nephrotoxicity:Mechanism of injury. Toxicon 2019 161 44 49 10.1016/j.toxicon.2019.02.012 30826470
    [Google Scholar]
  139. Osipov A. Utkin Y. What Are the Neurotoxins in Hemotoxic Snake Venoms? Int. J. Mol. Sci. 2023 24 3 2919 10.3390/ijms24032919 36769242
    [Google Scholar]
  140. Choraria A. Somasundaram R. Janani S. Rajendran S. Oukkache N. Michael A. Chicken egg yolk antibodies (IgY)-based antivenom for neutralization of snake venoms: a review. Toxin Rev. 2022 41 3 1018 1029 10.1080/15569543.2021.1942063
    [Google Scholar]
  141. Kaul S. Sai Keerthana L. Kumar P. Birader K. Tammineni Y. Rawat D. Suman P. Cytotoxin antibody-based colourimetric sensor for field-level differential detection of elapid among big four snake venom. PLoS Negl. Trop. Dis. 2021 15 10 e0009841 10.1371/journal.pntd.0009841 34634067
    [Google Scholar]
  142. Aoki-Shioi N. Koh C.Y. Kini R.M. Natural inhibitors of snake venom metalloproteinases. Aust. J. Chem. 2020 73 4 277 286 10.1071/CH19414
    [Google Scholar]
  143. Gutiérrez J.M. Albulescu L.O. Clare R.H. Casewell N.R. Abd El-Aziz T.M. Escalante T. Rucavado A. The search for natural and synthetic inhibitors that would complement antivenoms as therapeutics for snakebite envenoming. Toxins (Basel) 2021 13 7 451 10.3390/toxins13070451 34209691
    [Google Scholar]
  144. Babenko V.V. Ziganshin R.H. Weise C. Dyachenko I. Shaykhutdinova E. Murashev A.N. Zhmak M. Starkov V. Hoang A.N. Tsetlin V. Utkin Y. Novel bradykinin-potentiating peptides and three-finger toxins from viper venom: Combined NGS venom gland transcriptomics and quantitative venom proteomics of the Azemiops feae viper. Biomedicines 2020 8 8 249 10.3390/biomedicines8080249 32731454
    [Google Scholar]
  145. Liu C.C. Wu C.J. Hsiao Y.C. Yang Y.H. Liu K.L. Huang G.J. Hsieh C.H. Chen C.K. Liaw G.W. Snake venom proteome of Protobothrops mucrosquamatus in Taiwan: Delaying venom-induced lethality in a rodent model by inhibition of phospholipase A2 activity with varespladib. J. Proteomics 2021 234 104084 10.1016/j.jprot.2020.104084 33359941
    [Google Scholar]
  146. Tanjoni I. Butera D. Bento L. Della-Casa M.S. Marques-Porto R. Takehara H.A. Gutiérrez J.M. Fernandes I. Moura-da-Silva A.M. Snake venom metalloproteinases: structure/function relationships studies using monoclonal antibodies. Toxicon 2003 42 7 801 808 10.1016/j.toxicon.2003.10.010 14757212
    [Google Scholar]
  147. O’Brien J. Lee S.H. Gutiérrez J.M. Shea K.J. Engineered nanoparticles bind elapid snake venom toxins and inhibit venom-induced dermonecrosis. PLoS Negl. Trop. Dis. 2018 12 10 e0006736 10.1371/journal.pntd.0006736 30286075
    [Google Scholar]
  148. Gomes A. Ghosh S. Sengupta J. Nanotechnology in Venom Research: Recent Trends and Its Application Nanotechnology for Biomedical Applications Springer 2018
    [Google Scholar]
  149. Joglekar A.V. Dehari D. Anjum M.M. Dulla N. Chaudhuri A. Singh S. Agrawal A.K. Therapeutic potential of venom peptides: insights in the nanoparticle-mediated venom formulations. Fut. J. Pharmaceut. Sci. 2022 8 1 34 10.1186/s43094‑022‑00415‑7
    [Google Scholar]
  150. Kini R.M. Sidhu S.S. Laustsen A.H. Biosynthetic oligoclonal antivenom (BOA) for snakebite and next-generation treatments for snakebite victims. Toxins (Basel) 2018 10 12 534 10.3390/toxins10120534 30551565
    [Google Scholar]
/content/journals/jctv/10.2174/0126661217322059240917183927
Loading
/content/journals/jctv/10.2174/0126661217322059240917183927
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: prehospital care ; snake bite poisoning ; hospital care ; Poisoning ; antivenoms
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test