Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2950-5704
  • E-ISSN: 2950-5712

Abstract

Background

The detection of microcystins in blood, respiratory mucosa, and urine samples to diagnose acute or chronic microcystin intoxication is difficult and requires sophisticated analysis techniques. Finding simple and quick methods to assess the exposure of individuals to microcystins is crucial.

Objective

This study aims to assess the presence of specific antibodies (IgG, IgE, IgA, and IgM) against microcystin-LR in individuals exposed to cyanobacterial blooms as a non-complex biomarker.

Methods

Blood samples were taken to reveal the presence of specific antibodies as well as to measure a standard set of biochemical parameters. All volunteers were administered a questionnaire regarding their water usage, health status, and habits. Significant differences in the antibody content were studied between exposed and non-exposed people to cyanobacterial blooms.

Results

We found that out of 73 studied individuals, 87.7% of them showed positive results for at least one of the four types of antibodies tested. The prevalent isotype was IgE, and significant differences were detected for all isotypes between the exposed and non-exposed groups. The biochemical profile was altered in some cases.

Conclusion

The presence of specific antibodies in serum could be used as exposure biomarkers to complement epidemiological studies and medical diagnosis of microcystin intoxications. The in-house ELISA method, developed by our group for the detection of antibodies, should now be improved in terms of specificity and accuracy. These findings also indicate that more research should be conducted on the protective role and duration of antibodies.

Loading

Article metrics loading...

/content/journals/jctv/10.2174/0126661217305048240902060516
2024-10-09
2025-01-19
Loading full text...

Full text loading...

References

  1. BonillaS. AguileraA. AubriotL. Nutrients and not temperature are the key drivers for cyanobacterial biomass in the Americas.Harmful Algae202312110236710236710.1016/j.hal.2022.102367 36639186
    [Google Scholar]
  2. AguileraA. AlmanzaV. HaakonssonS. Cyanobacterial bloom monitoring and assessment in Latin America.Harmful Algae202312510242910242910.1016/j.hal.2023.102429 37220982
    [Google Scholar]
  3. HarkeM.J. SteffenM.M. GoblerC.J. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp.Harmful Algae201654420
    [Google Scholar]
  4. O’FarrellI. MottaC. ForastierM. Ecological meta-analysis of bloom-forming planktonic Cyanobacteria in Argentina.Harmful Algae20198311310.1016/j.hal.2019.01.004 31097251
    [Google Scholar]
  5. AguileraA. HaakonssonS. MartinM.V. SalernoG.L. EcheniqueR.O. Bloom-forming cyanobacteria and cyanotoxins in Argentina: A growing health and environmental concern.Limnologica20186910311410.1016/j.limno.2017.10.006
    [Google Scholar]
  6. BouaïchaN. MilesC. BeachD. Structural Diversity, Characterization and Toxicology of Microcystins.Toxins (Basel)2019111271410.3390/toxins11120714 31817927
    [Google Scholar]
  7. FalconerI.R. Potential impact on human health of toxic cyanobacteria.Phycologia199635S661110.2216/i0031‑8884‑35‑6S‑6.1
    [Google Scholar]
  8. Cyanobacterial toxins: microcystins. Background document for development of WHO Guidelines for drinking-water quality and Guidelines for safe recreational water environments. World Health Organization2020
    [Google Scholar]
  9. CoddG.A. TestaiE. FunariE. SvirčevZ. Cyanobacteria, cyanotoxins, and human health.In: Water Treatment for Purification from Cyanobacteria and Cyanotoxins.Wiley2020376810.1002/9781118928677.ch2
    [Google Scholar]
  10. MelaramR. NewtonA.R. LeeA. HerberS. El-KhouriA. ChafinJ. A review of microcystin and nodularin toxins derived from freshwater cyanobacterial harmful algal blooms and their impact on human health.Toxicol. Environ. Health Sci.202410.1007/s13530‑024‑00220‑0
    [Google Scholar]
  11. BackerL. LandsbergJ. MillerM. KeelK. TaylorT. Canine cyanotoxin poisonings in the United States (1920s-2012): review of suspected and confirmed cases from three data sources.Toxins (Basel)2013591597162810.3390/toxins5091597 24064718
    [Google Scholar]
  12. FossA.J. MilesC.O. SamdalI.A. Analysis of free and metabolized microcystins in samples following a bird mortality event.Harmful Algae20188011712910.1016/j.hal.2018.10.006
    [Google Scholar]
  13. LoneY. BhideM. KoiriR.K. Microcystin-LR induced immunotoxicity in mammals.J. Toxicol.201620161510.1155/2016/8048125
    [Google Scholar]
  14. CoddG. BellS. KayaK. WardC. BeattieK. MetcalfJ. Cyanobacterial toxins, exposure routes and human health.Eur. J. Phycol.199934440541510.1080/09670269910001736462
    [Google Scholar]
  15. MasseyI.Y. YangF. DingZ. Exposure routes and health effects of microcystins on animals and humans: A mini-review.Toxicon201815115616210.1016/j.toxicon.2018.07.010 30003917
    [Google Scholar]
  16. TestaiE. BurattiF.M. FunariE. Review and analysis of occurrence, exposure and toxicity of cyanobacteria toxins in food.EFSA Support. Publ.201613210.2903/sp.efsa.2016.EN‑998
    [Google Scholar]
  17. LedaG. DanielaS. RicardoE. DarioA. An acute case of intoxication with cyanobacteria and cyanotoxins in recreational water in Salto Grande Dam, Argentina.Mar. Drugs20119112164217510.3390/md9112164
    [Google Scholar]
  18. VidalF. SedanD. D’AgostinoD. Recreational Exposure during Algal Bloom in Carrasco Beach, Uruguay: A Liver Failure Case Report.Toxins (Basel)20179926710.3390/toxins9090267 28858213
    [Google Scholar]
  19. SchürmannQ.J.F. VisserP.M. SollieS. Risk assessment of toxic cyanobacterial blooms in recreational waters: A comparative study of monitoring methods.Harmful Algae202413810268310268310.1016/j.hal.2024.102683 26925102
    [Google Scholar]
  20. KubickovaB. BabicaP. HilscherováK. ŠindlerováL. Effects of cy-anobacterial toxins on the human gastrointestinal tract and the mu-cosal innate immune system.Environ. Sci. Eur.20193113110.1186/s12302‑019‑0212‑2
    [Google Scholar]
  21. JochimsenE.M. CarmichaelW.W. AnJ. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil.N. Engl. J. Med.19983381387387810.1056/NEJM199803263381304 9516222
    [Google Scholar]
  22. WoodR. Acute animal and human poisonings from cyanotoxin exposure — A review of the literature.Environ. Int.20169127628210.1016/j.envint.2016.02.026 26995270
    [Google Scholar]
  23. WeirichC.A. MillerT.R. Freshwater harmful algal blooms: toxins and children’s health.Curr. Probl. Pediatr. Adolesc. Health Care201444122410.1016/j.cppeds.2013.10.007 24439026
    [Google Scholar]
  24. MeneelyJ.P. ElliottC.T. Microcystins: measuring human exposure and the impact on human health.Biomarkers201318863964910.3109/1354750X.2013.841756 24102089
    [Google Scholar]
  25. Toxic cyanobacteria in water - Second edition.Available from: https://www.who.int/publications/m/item/toxic-cyanobacteria-in-water---second-edition
  26. HernandezB.Y. ZhuX. RischH.A. Oral Cyanobacteria and hepatocellular carcinoma.Cancer Epidemiol. Biomarkers Prev.202231122122910.1158/1055‑9965.EPI‑21‑0804 34697061
    [Google Scholar]
  27. SvirčevZ. KrstičS. Miladinov-MikovM. BaltičV. VidovičM. Freshwater cyanobacterial blooms and primary liver cancer epidemiological studies in Serbia.J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.2009271365510.1080/10590500802668016 19204863
    [Google Scholar]
  28. FerrariA. RuizM.A. Ruibal-ContiA.L. Antibodies as biomarkers: Effect of microcystin exposure.In: Biomarkers in Toxicology.ChamSpringer International Publishing202212210.1007/978‑3‑030‑87225‑0_6‑1
    [Google Scholar]
  29. BernsteinJ.A. GhoshD. LevinL.S. Cyanobacteria: An unrecognized ubiquitous sensitizing allergen?Allergy Asthma Proc.201132210611010.2500/aap.2011.32.3434 21439163
    [Google Scholar]
  30. Lang-YonaN. KunertA.T. VogelL. Fresh water, marine and terrestrial cyanobacteria display distinct allergen characteristics.Sci. Total Environ.201861276777410.1016/j.scitotenv.2017.08.069 28866404
    [Google Scholar]
  31. PilottoL.S. DouglasR.M. BurchM.D. Health effects of exposure to cyanobacteria (blue-green algae) during recreational water-related activities.Aust. N. Z. J. Public Health199721656256610.1111/j.1467‑842X.1997.tb01755.x 9470258
    [Google Scholar]
  32. CohenS.G. ReifC.B. Cutaneous sensitization to blue-green algae.J. Allergy195324545245710.1016/0021‑8707(53)90047‑1 13084359
    [Google Scholar]
  33. HeiseH.A. Symptoms of hay fever caused by algae.J. Allergy194920538338510.1016/0021‑8707(49)90029‑5
    [Google Scholar]
  34. MittalA. AgarwalM.K. ShivpuriD.N. Respiratory allergy to algae: clinical aspects.Ann. Allergy1979424253256 434586
    [Google Scholar]
  35. GehE.N. GhoshD. McKellM. de la CruzA.A. StelmaG. BernsteinJ.A. Identification of Microcystis aeruginosa peptides responsible for allergic sensitization and characterization of functional interactions between cyanobacterial toxins and immunogenic peptides.Environ. Health Perspect.2015123111159116610.1289/ehp.1409065 25902363
    [Google Scholar]
  36. GehE.N. de la CruzA.A. GhoshD. StelmaG. BernsteinJ.A. Sensitization of a child to Cyanobacteria after recreational swimming in a lake.J. Allergy Clin. Immunol.2016137619021904.e310.1016/j.jaci.2015.12.1340 27040373
    [Google Scholar]
  37. StewartI. SchluterP.J. ShawG.R. Cyanobacterial lipopolysaccharides and human health – a review.Environ. Health200651710.1186/1476‑069X‑5‑7 16563160
    [Google Scholar]
  38. VogiaziV. de la CruzA. MishraS. ShanovV. HeinemanW.R. DionysiouD.D. A Comprehensive Review: Development of Electro-chemical Biosensors for Detection of Cyanotoxins in Freshwater.ACS Sens.2019451151117310.1021/acssensors.9b00376 31056912
    [Google Scholar]
  39. NagataS. SoutomeH. TsutsumiT. Novel monoclonal antibod-ies against microcystin and their protective activity for hepatotoxi-city.Nat. Toxins199532788610.1002/nt.2620030204 7613739
    [Google Scholar]
  40. BaierW. LoleitM. FischerB. Generation of antibodies directed against the low-immunogenic peptide-toxins microcystin-LR/RR and nodularin.Int. J. Immunopharmacol.200022533935310.1016/S0192‑0561(99)00086‑7 10708882
    [Google Scholar]
  41. BackerL. Manassaram-BaptisteD. LePrellR. BoltonB. Cyanobacteria and algae blooms: Review of health and environmental data from the Harmful Algal Bloom-Related Illness Surveillance System (HABISS) 2007-2011.Toxins (Basel)2015741048106410.3390/toxins7041048 25826054
    [Google Scholar]
  42. Ruibal-ContiA.L. RuizM.A. RodriguezM.I. LerdaD. RomeroM.D. Assessment of specific antibodies as biological indicators of human chronic exposure to microcystins.Ecotoxicol. Environ. Saf.201917523624210.1016/j.ecoenv.2019.03.071 30903879
    [Google Scholar]
  43. AméM.V. del Pilar DíazM. WunderlinD.A. Occurrence of toxic cy-anobacterial blooms in San Roque Reservoir (Córdoba, Argentina): A field and chemometric study.Environ. Toxicol.200318319220110.1002/tox.10114 12740805
    [Google Scholar]
  44. ContiA.L.R. GuerreroJ.M. RegueiraJ.M. Levels of microcystins in two argentinean reservoirs used for water supply and recreation: Dif-ferences in the implementation of safe levels.Environ. Toxicol.200520326326910.1002/tox.20107 15892071
    [Google Scholar]
  45. RuizM. GalantiL. RuibalA.L. RodriguezM.I. WunderlinD.A. AméM.V. First Report of Microcystins and Anatoxin-a Co-occurrence in San Roque Reservoir (Córdoba, Argentina).Water Air Soil Pollut.20132246159310.1007/s11270‑013‑1593‑2
    [Google Scholar]
  46. GalantiL.N. AméM.V. WunderlinD.A. Accumulation and detoxification dynamic of cyanotoxins in the freshwater shrimp Palaemone-tes argentinus.Harmful Algae201327889710.1016/j.hal.2013.05.007
    [Google Scholar]
  47. FlorenciaU. AldanaC. CeciliaM. Estudio de Factores Ambientales Promotores de Floraciones de Cianobacterias a través de Ex-perimentos de Microcosmos.XXVII Congreso Nacional del AguaCórdoba. Argentina2017
    [Google Scholar]
  48. HalacS.R. Ruibal-ContiA.L. MengoL.V. Effect of Iron Availability on the Growth and Microcystin Content of Natural Populations of Microcystis spp. from Reservoirs in Central Argentina: A Microcosm Experiment Approach.Phycology20233116818510.3390/phycology3010011
    [Google Scholar]
  49. CazenaveJ. WunderlinD.A. BistoniM.Á. Uptake, tissue distri-bution and accumulation of microcystin-RR in Corydoras paleatus, Jenynsia multidentata and Odontesthes bonariensis.Aquat. Toxicol.200575217819010.1016/j.aquatox.2005.08.002 16157397
    [Google Scholar]
  50. Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum.2017Available from: https://www.who.int/publications/i/item/9789241549950
  51. HilbornE.D. SoaresR.M. ServaitesJ.C. Sublethal microcystin exposure and biochemical outcomes among hemodialysis patients.PLoS One201387e6951810.1371/journal.pone.0069518 23894497
    [Google Scholar]
  52. FastnerJ. HumpageA. Cyanobacterial toxins: Hepatotoxic cyclic peptides- Microcystins and Nodularins.In: Toxic Cyanobacteria in Water.2nd editionCRC Press, Boca Raton (FL)2021
    [Google Scholar]
  53. U.S. EPA (United States Environmental Protection Agency).2015Available from: http://water.epa.gov/drink/standards/hascience.cfm
    [Google Scholar]
  54. StewartI. WebbP.M. SchluterP.J. Epidemiology of recreational exposure to freshwater cyanobacteria – an international prospective cohort study.BMC Public Health2006619310.1186/1471‑2458‑6‑93 16606468
    [Google Scholar]
  55. JuanenaC. NegrinA. LabordeA. Cianobacterias en las playas: ries-gos toxicológicos y vulnerabilidad infantil.Rev. Med. Urug. (Montev.)2020363157182
    [Google Scholar]
  56. Guidelines on recreational water quality. Volume 1: coastal and fresh waters World Health Organization. 2021
    [Google Scholar]
  57. BackerL.C. CarmichaelW. KirkpatrickB. Recreational expo-sure to low concentrations of microcystins during an algal bloom in a small lake.Mar. Drugs20086238940610.3390/md6020389 18728733
    [Google Scholar]
  58. BackerL.C. McNeelS.V. BarberT. Recreational exposure to microcystins during algal blooms in two California lakes.Toxicon201055590992110.1016/j.toxicon.2009.07.006 19615396
    [Google Scholar]
  59. SchaeferA.M. YrastorzaL. StockleyN. Exposure to microcys-tin among coastal residents during a cyanobacteria bloom in Florida.Harmful Algae20209210176910.1016/j.hal.2020.101769 32113588
    [Google Scholar]
  60. WoodS.A. DietrichD.R. Quantitative assessment of aerosolized cyanobacterial toxins at two New Zealand lakes.J. Environ. Monit.20111361617162410.1039/c1em10102a 21491044
    [Google Scholar]
  61. ReifJ.S. StockleyN. HarveyK. McFarlandM. GordonS.C. SchaeferA.M. Symptom frequency and exposure to a cyanobacteria bloom in Florida.Harmful Algae202312910252610.1016/j.hal.2023.102526 37951612
    [Google Scholar]
  62. FischerW.J. GarthwaiteI. MilesC.O. Congener-independent immunoassay for microcystins and nodularins.Environ. Sci. Technol.200135244849485610.1021/es011182f 11775161
    [Google Scholar]
  63. MetcalfJ.S. BellS.G. CoddG.A. Production of novel polyclonal antibodies against the cyanobacterial toxin microcystin-LR and their application for the detection and quantification of microcystins and nodularin.Water Res.200034102761276910.1016/S0043‑1354(99)00429‑7
    [Google Scholar]
  64. MhadhbiH. Ben-RejebS. ClérouxC. MartelA. DelahautP. Generation and characterization of polyclonal antibodies against microcystins—Application to immunoassays and immunoaffinity sample preparation prior to analysis by liquid chromatography and UV detection.Talanta200670222523510.1016/j.talanta.2006.02.029 18970757
    [Google Scholar]
  65. YoungF.M. MetcalfJ.S. MeriluotoJ.A.O. SpoofL. MorrisonL.F. CoddG.A. Production of antibodies against microcystin-RR for the assessment of purified microcystins and cyanobacterial environmen-tal samples.Toxicon200648329530610.1016/j.toxicon.2006.05.015 16890974
    [Google Scholar]
  66. KordashtH. HassanpourS. BaradaranB. Biosensing of micro-cystins in water samples; recent advances.Biosens. Bioelectron.202016511240310.1016/j.bios.2020.112403 32729523
    [Google Scholar]
  67. ZhangH LiB LiuY ChuanH LiuY XieP. Immunoassay technology: Research progress in microcystin-LR detection in water samples.J Hazard Mater2022424Pt B12740610.1016/j.jhazmat.2021.127406 34689091
    [Google Scholar]
  68. WiśniewskaK. LewandowskaA.U. Śliwińska-WilczewskaS. The importance of cyanobacteria and microalgae present in aerosols to human health and the environment – Review study.Environ. Int.201913110496410.1016/j.envint.2019.104964 31351382
    [Google Scholar]
  69. GenitsarisS. KormasK.A. Moustaka-GouniM. Airborne algae and cyanobacteria: occurrence and related health effects.Front. Biosci. (Elite Ed.)201132772787 21196350
    [Google Scholar]
  70. LimC.C. YoonJ. ReynoldsK. Harmful algal bloom aerosols and human health.EBioMedicine20239310460410460410.1016/j.ebiom.2023.104604 37164781
    [Google Scholar]
  71. NCCOS (National Centers for Coastal Ocean Science)Exploring Airborne Health Risks from Cyanobacteria Blooms in Florida.2019Available from: https://coastalscience.noaa.gov/news/study-ex-plores-airborne-health-risks-from-cyanobacteria-blooms-in-florida/
    [Google Scholar]
  72. BreidenbachJ.D. FrenchB.W. GordonT.T. Microcystin-LR aer-osol induces inflammatory responses in healthy human primary air-way epithelium.Environ. Int.202216910753110.1016/j.envint.2022.107531 36137425
    [Google Scholar]
  73. ChenJ. XieP. LiL. XuJ. First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage.Toxicol. Sci.20091081818910.1093/toxsci/kfp009 19151163
    [Google Scholar]
  74. CunninghamB.R. WhartonR.E. LeeC. Measurement of Micro-cystin Activity in Human Plasma Using Immunocapture and Protein Phosphatase Inhibition Assay.Toxins (Basel)2022141181310.3390/toxins14110813 36422987
    [Google Scholar]
  75. Juaneda AllendeM. RodríguezM.I. MarasasM. FerreyraA. RomeroF.E. RodríguezA. Caracterización espacio-temporal y definición de umbrales para las floraciones algales nocivas (FAN) en el Embalse San RoqueCórdoba Argentina VI Congreso Iberoamericano de Limnología y X Congreso Argentino de Limnología
    [Google Scholar]
  76. Guidelines on recreational water quality. Volume 1: coastal and fresh waters World Health Organization. 2021
    [Google Scholar]
/content/journals/jctv/10.2174/0126661217305048240902060516
Loading
/content/journals/jctv/10.2174/0126661217305048240902060516
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test