Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2950-5704
  • E-ISSN: 2950-5712

Abstract

Background

is the most widely distributed snake in Venezuela, causing the majority of snakebite envenoming.

Objective

The purpose of this study was to produce IgY antibodies against a venom pool from different Venezuelan regions and evaluate their neutralization capacity on various venom toxic activities.

Methods

Anti- venom antibodies are purified from chicken egg yolks by precipitation with polyethylene glycol and further analyzed by Multiple Antigen Blot Assay, indirect ELISA, Western blot, and Inhibition assays. In addition, we evaluate the phospholipase, edematogenic, and hemorrhagic activities. In addition, a new envenoming simulation study using anti- venom IgY in mice is presented.

Results

In this study, we show that anti- venom IgY is capable of neutralizing 4 LD doses of the venom (., 1.76 mg of IgY neutralized 14 µg of venom) and effectively neutralizing the phospholipase, edematogenic and hemorrhagic activities. Additionally, the anti venom IgY specifically recognizes polypeptide bands with apparent molecular masses of ~ 54.55, 30.39, 24.1, 14.02, and 9.44 kDa by western blot. The IgY specificity is demonstrated by a dose-dependent inhibition, in which antibodies pre-adsorbed with the venom does not recognize the proteins contained in the venom. Furthermore, in the simulation study of envenoming, the mice inoculated with IgY showed no response.

Conclusion

Our results support the use of anti-venom IgY as an alternative to traditional equine therapy in animals and, eventually, in human patients bitten by snakes.

Loading

Article metrics loading...

/content/journals/jctv/10.2174/0126661217296708240506074324
2024-01-01
2024-11-26
Loading full text...

Full text loading...

References

  1. ParraL. PeñaJ. ParraA.R. EchezuriaL. Rodriguez-MoralesA. Trends in fatal snakebites in Venezuela, 2003–2007.Int. J. Infect. Dis.201014e13810.1016/j.ijid.2010.02.1789
    [Google Scholar]
  2. De SousaL. Bastouri-CarrascoJ. MatosM. Epidemiology of ophidism in Venezuela (1996-2004).Invest. Clin.2013542123137 23947002
    [Google Scholar]
  3. AguilarI. GuerreroB. Maria SalazarA. Individual venom variability in the South American rattlesnake Crotalus durissus cumanensis.Toxicon200750221422410.1016/j.toxicon.2007.03.012 17482229
    [Google Scholar]
  4. HernándezM. ScannoneH. FinolH.J. Alterations in the ultrastructure of cardiac autonomic nervous system triggered by crotoxin from rattlesnake (Crotalus durissus cumanensis) venom.Exp. Toxicol. Pathol.200759212913710.1016/j.etp.2007.04.002 17616380
    [Google Scholar]
  5. MontillaJ. Alvares de MontillaM. DiazE. Hiperinmunizacion de ovinos contra veneno de Crotalus durisus cumanensis del Estado Zulia, Venezuela.Revista Científica1999IX388394
    [Google Scholar]
  6. TheakstonR.D.G. WarrellD.A. GriffithsE. Report of a WHO workshop on the standardization and control of antivenoms.Toxicon200341554155710.1016/S0041‑0101(02)00393‑8 12676433
    [Google Scholar]
  7. Rodríguez-AcostaA. Los venenos y el síndrome de envenenamiento ofídico.Available From: https://dialnet.unirioja.es/servlet/articulo?codigo=1227970 2001
  8. ThalleyB.S. CarrollS.B. Rattlesnake and scorpion antivenoms from the egg yolks of immunized hens.Biotechnology (N. Y.)1990810934938 1366776
    [Google Scholar]
  9. Maya DeviC. Vasantha BaiM. Vijayan LalA. UmashankarP.R. KrishnanL.K. An improved method for isolation of anti-viper venom antibodies from chicken egg yolk.J. Biochem. Biophys. Methods200251212913810.1016/S0165‑022X(02)00002‑7 12062112
    [Google Scholar]
  10. Karlson-StiberC. PerssonH. Antivenom treatment in Vipera berus envenoming—report of 30 cases.J. Intern. Med.19942351576110.1111/j.1365‑2796.1994.tb01032.x 8283161
    [Google Scholar]
  11. AraújoA.S. LobatoZ.I.P. Chávez-OlórteguiC. VelardeD.T. Brazilian IgY-Bothrops antivenom: Studies on the development of a process in chicken egg yolk.Toxicon201055473974410.1016/j.toxicon.2009.11.004 19925817
    [Google Scholar]
  12. PaulK. ManjulaJ. DeepaE.P. SelvanayagamZ.E. GaneshK.A. Subba RaoP.V. Anti-Echis carinatus venom antibodies from chicken egg yolk: Isolation, purification and neutralization efficacy.Toxicon200750789390010.1016/j.toxicon.2007.06.017 17681579
    [Google Scholar]
  13. AlmeidaC.M.C. KanashiroM.M. Rangel FilhoF.B. MataM.F.R. KipnisT.L. Dias da SilvaW. Development of snake antivenom antibodies in chickens and their purification from yolk.Vet. Rec.19981432157958410.1136/vr.143.21.579 9854769
    [Google Scholar]
  14. LeeC.H. LeeY.C. LiangM.H. Antibodies against venom of the snake Deinagkistrodon acutus.Appl. Environ. Microbiol.2016821718010.1128/AEM.02608‑15 26475102
    [Google Scholar]
  15. DuanH. HeQ. ZhouB. Anti-Trimeresurus albolabris venom IgY antibodies: Preparation, purification and neutralization efficacy.J. Venom. Anim. Toxins Incl. Trop. Dis.20162212310.1186/s40409‑016‑0078‑3 27563307
    [Google Scholar]
  16. LiuJ. HeQ. WangW. Preparation and neutralization efficacy of IgY antibodies raised against Deinagkistrodon acutus venom.J. Venom. Anim. Toxins Incl. Trop. Dis.20172312210.1186/s40409‑017‑0112‑0 28396683
    [Google Scholar]
  17. KorahM.C. HimaS.P. v SR, Anil A, Harikrishnan VS, Krishnan LK. Pharmacokinetics and pharmacodynamics of avian egg-yolk derived pure anti-snake venom in healthy and disease animal-model.J. Pharm. Sci.202211161565157610.1016/j.xphs.2022.02.008 35196538
    [Google Scholar]
  18. de AndradeF.G. EtoS.F. Navarro dos Santos FerraroA.C. The production and characterization of anti-bothropic and anti-crotalic IgY antibodies in laying hens: A long term experiment.Toxicon201366182410.1016/j.toxicon.2013.01.018 23416799
    [Google Scholar]
  19. da RochaD.G. FernandezJ.H. de AlmeidaC.M.C. Development of IgY antibodies against anti-snake toxins endowed with highly lethal neutralizing activity.Eur. J. Pharm. Sci.201710640441210.1016/j.ejps.2017.05.069 28595875
    [Google Scholar]
  20. LeivaC.L. CangelosiA. MaricondaV. IgY-based antivenom against Bothrops alternatus: Production and neutralization efficacy.Toxicon2019163849210.1016/j.toxicon.2019.03.020 30914282
    [Google Scholar]
  21. KlempererF. Ueber natürliche Immunität und ihre Verwerthung für die Immunisirungstherapie.Naunyn Schmiedebergs Arch. Pharmacol.1893314-535638210.1007/BF01832882
    [Google Scholar]
  22. SchadeR. CalzadoE.G. SarmientoR. ChacanaP.A. Porankiewicz-AsplundJ. TerzoloH.R. Chicken egg yolk antibodies (IgY-technology): A review of progress in production and use in research and human and veterinary medicine.Altern. Lab. Anim.200533212915410.1177/026119290503300208 16180988
    [Google Scholar]
  23. TiniM. JewellU.R. CamenischG. ChilovD. GassmannM. Generation and application of chicken egg-yolk antibodies.Comp. Biochem. Physiol. A Mol. Integr. Physiol.2002131356957410.1016/S1095‑6433(01)00508‑6 11867282
    [Google Scholar]
  24. AlarcónC.E. HurtadoH. CastellanosJ.E. Anticuerpos aviares: Alternativa en producción y diagnóstico.Biomédica200020433834310.7705/biomedica.v20i4.1077
    [Google Scholar]
  25. GassmannM. Efficient production of chicken egg yolk antibodies against a conserved mammalian protein.Faseb J.1990482528253210.1096/fasebj.4.8.1970792
    [Google Scholar]
  26. MineY. Kovacs-NolanJ. Chicken egg yolk antibodies as therapeutics in enteric infectious disease: A review.J. Med. Food20025315916910.1089/10966200260398198 12495588
    [Google Scholar]
  27. SharmaJ.M. Introduction to poultry vaccines and immunity.Adv. Vet. Med.19994148149410.1016/S0065‑3519(99)80036‑6
    [Google Scholar]
  28. AlvarezA. MonteroY. JimenezE. ZerpaN. ParrillaP. MalavéC. IgY antibodies anti-Tityus caripitensis venom: Purification and neutralization efficacy.Toxicon20137420821410.1016/j.toxicon.2013.08.058 23994592
    [Google Scholar]
  29. PolsonA. CoetzerT. KrugerJ. von MaltzahnE. van der MerweK.J. Improvements in the isolation of IGY from the yolks of eggs laid by immunized hens.Immunol. Invest.198514432332710.3109/08820138509022667 4065934
    [Google Scholar]
  30. LaemmliU.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature1970227525968068510.1038/227680a0 5432063
    [Google Scholar]
  31. VollerA. BidwellD. HuldtG. EngvallE. A microplate method of enzyme-linked immunosorbent assay and its application to malaria.Bull. World Health Organ.1974512209211 4377238
    [Google Scholar]
  32. WalkerJ.M. Methods in Molecular Biology.Berlin, HeidelbergSpringer2024
    [Google Scholar]
  33. NoyaO. Alarcón de NoyaB. The multiple antigen blot assay (MABA): A simple immunoenzymatic technique for simultaneous screening of multiple antigens.Immunol. Lett.1998631535610.1016/S0165‑2478(98)00055‑8 9719439
    [Google Scholar]
  34. TowbinH. StaehelintT. GordonJ. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications.Proc. Natl. Acad. Sci. USA197976943504354
    [Google Scholar]
  35. ZerpaN.C. WideA. NodaJ. BermúdezH. PabónR. NoyaO.O. Immunogenicity of synthetic peptides derived from Plasmodium falciparum proteins.Exp. Parasitol.2006113422723410.1016/j.exppara.2006.01.007 16513113
    [Google Scholar]
  36. FinneyD.J. Statistical Method in Biological Assay.3rd edLondonCharles and Griffin and Co Ltd1978508
    [Google Scholar]
  37. GutiérrezJ. GenéJ. RojasG. CerdasL. Neutralization of proteolytic and hemorrhagic activities of Costa Rican snake venoms by a polyvalent antivenom.Toxicon198523688789310.1016/0041‑0101(85)90380‑0 3913055
    [Google Scholar]
  38. YamakawaM. NozakiM. HokamaZ. Fractionation of sakishima habu (Trimeresurus elegans) venom and lethal hemorrhagic, and edema forming activities of fractions – ScienceOpen Animal.Plant Microbial Toxins1976497109
    [Google Scholar]
  39. GutiérrezJ. RojasG. LomonteB. GenéJ. CerdasL. Comparative study of the edema-forming activity of Costa Rican snake venoms and its neutralization by a polyvalent antivenom.Comp. Biochem. Physiol. C Comp. Pharmacol.198685117117510.1016/0742‑8413(86)90069‑1 2877785
    [Google Scholar]
  40. LeónG. MongeM. RojasE. Comparison between IgG and F(ab’)(2) polyvalent antivenoms: Neutralization of systemic effects induced by Bothrops asper venom in mice, extravasation to muscle tissue, and potential for induction of adverse reactions.Toxicon2001396793801
    [Google Scholar]
  41. RomitoM ViljoenGJ Du PlessisDH Eliciting antigen-specific egg-yolk IgY with naked DNA.Biotechniques2001313670-675, 672, 674-675.10.2144/01313dd05 11570510
    [Google Scholar]
  42. GutiérrezJ.M. SanzL. Flores-DíazM. Impact of regional variation in Bothrops asper snake venom on the design of antivenoms: Integrating antivenomics and neutralization approaches.J. Proteome Res.20109156457710.1021/pr9009518 19911849
    [Google Scholar]
  43. LedsgaardL. JenkinsT. DavidsenK. Antibody cross-reactivity in antivenom research.Toxins (Basel)2018101039310.3390/toxins10100393 30261694
    [Google Scholar]
  44. BaudouF.G. RodriguezJ.P. FuscoL. de RoodtA.R. De MarziM.C. LeivaL. South American snake venoms with abundant neurotoxic components. Composition and toxicological properties. A literature review.Acta Trop.202122410611910.1016/j.actatropica.2021.106119 34481791
    [Google Scholar]
  45. CalveteJ.J. SanzL. CidP. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America.J. Proteome Res.20109152854410.1021/pr9008749 19863078
    [Google Scholar]
  46. Rodríguez-VargasA. VegaN. Reyes-MontañoE. Intraspecific differences in the Venom of Crotalus durissus cumanensis from Colombia.Toxins (Basel)202214853210.3390/toxins14080532 36006194
    [Google Scholar]
  47. Meléndez-MartínezD. Plenge-TellecheaL.F. Gatica-ColimaA. Cruz-PérezM.S. Aguilar-YáñezJ.M. Licona-CassaniC. Functional mining of the Crotalus spp. venom protease repertoire reveals potential for chronic wound therapeutics.Molecules20202515340110.3390/molecules25153401 32731325
    [Google Scholar]
  48. GutiérrezJ. EscalanteT. RucavadoA. HerreraC. FoxJ. A comprehensive view of the structural and functional alterations of extracellular matrix by snake venom metalloproteinases (SVMPs): Novel perspectives on the pathophysiology of envenoming.Toxins (Basel)201681030410.3390/toxins8100304 27782073
    [Google Scholar]
  49. Saravia-OttenP. ArceV. VelasquezR. Geographic and ontogenic variability in the venom of the neotropical rattlesnake Crotalus durissus: Pathophysiological and therapeutic implications.Rev. Biol. Trop.2002501337346
    [Google Scholar]
  50. Solano GodoyJ.A. Molano CardonaE.D. Bernal BautistaM.H. Murillo ArangoW. Actividad Fosfolipasa, Hemolítica y Bactericida preliminar del Veneno de la Serpiente de cascabel del Tolima.Cienc. Desarro.202011111912710.19053/01217488.v11.n1.2020.9869
    [Google Scholar]
  51. de RoodtA.R. Estévez-RamírezJ. Paniagua-SolísJ.F. Toxicidad de venenos de serpientes de importancia médica en México.Gac. Med. Mex.200514111321 15754746
    [Google Scholar]
  52. AguiarA.S. MelgarejoA.R. AlvesC.R. Giovanni-De-SimoneS. Single-step purification of crotapotin and crotactine from Crotalus durissus terrificus venom using preparative isoelectric focusing.Braz. J. Med. Biol. Res.1997301252810.1590/S0100‑879X1997000100004 9222399
    [Google Scholar]
  53. Rangel-SantosA. Dos-SantosE.C. Lopes-FerreiraM. LimaC. CardosoD.F. MotaI. A comparative study of biological activities of crotoxin and CB fraction of venoms from Crotalus durissus terrificus, Crotalus durissus cascavella and Crotalus durissus collilineatus.Toxicon200443780181010.1016/j.toxicon.2004.03.011 15284014
    [Google Scholar]
  54. Rangel-SantosA.C. MotaI. Effect of heating on the toxic, immunogenic and immunosuppressive activities of Crotalus durissus terrificus venom.Toxicon200038101451145710.1016/S0041‑0101(99)00238‑X 10758279
    [Google Scholar]
  55. Grillo RodríguezO. ScannoneH.R. Fractionation of Crotalus durissus cumanensis venom by gel filtration.Toxicon197614540040310.1016/0041‑0101(76)90090‑8 982480
    [Google Scholar]
  56. SalazarA.M. AguilarI. GuerreroB. Intraspecies differences in hemostatic venom activities of the South American rattlesnakes, Crotalus durissus cumanensis, as revealed by a range of protease inhibitors.Blood Coagul. Fibrinolysis200819652553010.1097/MBC.0b013e328304e02e 18685436
    [Google Scholar]
  57. RodriguezO.G. ScannoneH.R. ParraN.D. Enzymatic activities and other characteristics of Crotalus durissus cumanensis venom.Toxicon197412329730210.1016/0041‑0101(74)90073‑7 4376285
    [Google Scholar]
  58. CavalcanteW.L.G. Ponce-SotoL.A. MarangoniS. GallacciM. Neuromuscular effects of venoms and crotoxin-like proteins from Crotalus durissus ruruima and Crotalus durissus cumanensis.Toxicon201596464910.1016/j.toxicon.2015.01.006 25598498
    [Google Scholar]
  59. AguilarI. GirónM.E. Rodríguez-AcostaA. Purification and characterisation of a haemorrhagic fraction from the venom of the Uracoan rattlesnake Crotalus vegrandis.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.200115481576510.1016/S0167‑4838(01)00217‑5 11451438
    [Google Scholar]
  60. Rodriguez-AcostaA. AguilarI. GironM. Haemorrhagic activity of neotropical rattlesnake (Crotalus vegrandis Klauber, 1941) venom.Nat. Toxins199861151810.1002/(SICI)1522‑7189(199802)6:1<15:AID‑NT2>3.0.CO;2‑S
    [Google Scholar]
  61. CameyK.U. VelardeD.T. SanchezE.F. Pharmacological characterization and neutralization of the venoms used in the production of Bothropic antivenom in Brazil.Toxicon200240550150910.1016/S0041‑0101(01)00245‑8 11821121
    [Google Scholar]
  62. MeenatchisundaramS. ParameswariG. MichaelA. RamalingamS. Neutralization of the pharmacological effects of Cobra and Krait venoms by chicken egg yolk antibodies.Toxicon200852222122710.1016/j.toxicon.2008.04.179 18590753
    [Google Scholar]
  63. TeixeiraC.F.P. LanducciE.C.T. AntunesE. ChacurM. CuryY. Inflammatory effects of snake venom myotoxic phospholipases A2.Toxicon200342894796210.1016/j.toxicon.2003.11.006 15019493
    [Google Scholar]
  64. MoraJ. MoraR. LomonteB. GutiérrezJ.M. Effects of Bothrops asper snake venom on lymphatic vessels: Insights into a hidden aspect of envenomation.PLoS Negl. Trop. Dis.2008210e31810.1371/journal.pntd.0000318 18923712
    [Google Scholar]
  65. PereiraE.P.V. van TilburgM.F. FloreanE.O.P.T. GuedesM.I.F. Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review.Int. Immunopharmacol.20197329330310.1016/j.intimp.2019.05.015 31128529
    [Google Scholar]
/content/journals/jctv/10.2174/0126661217296708240506074324
Loading
/content/journals/jctv/10.2174/0126661217296708240506074324
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test